
ASYMPTOTIC ANALYSIS OF FORWARD PERFORMANCE PROCESSES IN

INCOMPLETE MARKETS AND THEIR ILL-POSED HJB EQUATIONS

MYKHAYLO SHKOLNIKOV, RONNIE SIRCAR, AND THALEIA ZARIPHOPOULOU

Abstract. We consider the problem of optimal portfolio selection under forward investment per-
formance criteria in an incomplete market. The dynamics of the prices of the traded assets depend
on a pair of stochastic factors, namely, a slow factor (e.g. a macroeconomic indicator) and a fast fac-
tor (e.g. stochastic volatility). We analyze the associated forward performance SPDE and provide
explicit formulae for the leading order and first order correction terms for the forward investment
process and the optimal feedback portfolios. They both depend on the investor’s initial preferences
and the dynamically changing investment opportunities. The leading order terms resemble their
time-monotone counterparts, but with the appropriate stochastic time changes resulting from av-
eraging phenomena. The first-order terms compile the reaction of the investor to both the changes
in the market input and his recent performance. Our analysis is based on an expansion of the un-
derlying ill-posed HJB equation, and it is justified by means of an appropriate remainder estimate.

1. Introduction

This paper analyzes the optimal portfolio selection problem under forward investment criteria in
incomplete markets. Incompleteness stems from the presence of imperfectly correlated stochastic
factors that affect the dynamics of the traded assets. Such factors have been widely used in the
literature and model an array of market inputs, like, among others, stochastic volatility, stochastic
interest rates, predictability of asset returns, and various macroeconomic indicators. Herein, we
consider a pair of such factors, which are taken, however, to move at different time scales.

The mathematical formulation of the problem of optimal investment in continuous time was
pioneered by Merton in [Me1], [Me2] and is usually referred to as the Merton problem. In the
classical Merton problem the investor faces a complete market and seeks an investment portfolio
that optimizes her expected utility from wealth acquired in the investment process. Therein, the
investor’s utility function (or, equivalently, her preferences) is determined ex ante and does not
change over time. The Merton problem has been studied in a variety of frameworks and we refer to
the books [Du], [KS] for excellent accounts of the classical results. However, the setup of the Merton
problem has two inherent drawbacks: 1) the investor has to decide about her utility function ex
ante and cannot adapt it to market observations; 2) the investments over different time horizons are
typically inconsistent with each other: for example, for 0 < T1 < T2 the solution to the investment
problem for the time period [0, T1] is in general not the restriction to [0, T1] of the solution to
the investment problem for the time period [0, T2] with the T1 utility function also imposed at
T2. In particular, it is not clear how to invest in a time-consistent fashion over rolling horizons
(deterministic or random).

Forward investment performance criteria were introduced and developed in [MZ1] and [MZ2],
and provide a complementary setting to the traditional expected utility framework. They allow
for dynamic adaptation of the investor’s risk preferences given how the market conditions change
and, also, take into account the updated performance of the implemented strategies. The forward
performance process U(t, ·), t ≥ 0 is a stochastic process adapted to the filtration of the investor
with the properties that with probability one all functions x 7→ U(t, x) are increasing and concave
(and, thus, can serve as utility functions); for every self-financing strategy π and the corresponding
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portfolio value process Xπ the process U(t,Xπ(t)), t ≥ 0 is a supermartingale in the filtration of
the investor; and there exists a self-financing strategy π∗ such that the process U(t,Xπ∗(t)), t ≥ 0
is a martingale in the filtration of the investor. The pair (U, π∗) encodes how the preferences of
the investor and her optimal investment decisions jointly evolve in time from the given U(0, ·).
For a more detailed description of these criteria, further motivation and construction of concrete
examples, we refer the reader, among others, to [ElM], [KOZ], [MZ5], [MZ6], [NT], and [NZ1].

The specification of the initial datum U(0, ·) is a central issue and a topic of current research in
the forward portfolio selection approach. From the theoretical point of view, the main question is
the characterization of the set of admissible initial data that give a well-defined solution. This was
addressed in [MZ4] for the case of time-monotone forward processes and we refer to these results
repeatedly herein.

From the practical point of view, the question is how to use and translate investor’s targets
- for example, desired upcoming investment performance or personal market views, etc. - to a
mathematical input. Questions of this nature were studied in [MZ4] (section 5.2) where it is
shown how an investment target on the upcoming average return can be used to infer the initial
utility input. For example, one can think of a client presenting a fund manager with the desired
investment target (e.g. 5% above the S&P 500 performance) and a band around the investment
target (e.g. 4-6% above the S&P 500 performance), which give an indication about the client’s
initial utility function U(0, ·). Then, the fund manager’s problem is to find a pair (U, π∗) with the
given U(0, ·). Therefore, the question of finding large classes of forward performance processes U
and the corresponding optimal portfolios π∗ is of great importance.

Assuming the filtration of the investor to be generated by a Brownian motion and her forward
performance process U(t, x) to be an Itô process in t and twice continuously differentiable in x, one
can show (see [MZ5] and [NT] for more details) that U is a solution of the fully nonlinear stochastic
partial differential equation (SPDE)

(1.1) dU(t, x) =
1

2

∥∥Ux(t, x)λ(t) + σ(t)σ−1(t) aWx (t, x)
∥∥2

Uxx(t, x)
dt+ a(t, x)T dW(t).

Here W = (W, B̃) is a standard Brownian motion that generates the filtration of the investor;
W is a Brownian motion to whose filtration the asset prices are adapted; σ is the corresponding
volatility matrix of the asset prices and σ−1 is its Moore-Penrose pseudoinverse; λ is the market

price of risk; a = (aW , aB̃) is a suitable stochastic process adapted to the filtration of the investor;
and the superscript T denotes transpose.

The forward SPDE (1.1) provides the analogue of the Hamilton-Jacobi-Bellman (HJB) equation
that is associated with the classical optimization problems of expected utility from terminal wealth.
As in the traditional setting, it is fully nonlinear and possibly degenerate. There are, however,
fundamental differences between (1.1) and its classical counterpart. Firstly, (1.1) is posed forward
in time, which makes the problem ill-posed. Secondly, the forward volatility process a(t, x) is up
to the investor to choose, in contrast to the classical case, where it is the mere outcome of the
Itô decomposition of the value function process. The specification of the correct class of forward
volatility processes is a very challenging problem, which remains open.

So far three classes of forward performance processes have been exhibited in the literature: 1)
time-monotone forward performance processes, that is: forward performance processes which are of
finite variation in the time variable (see [MZ4] for more details); 2) homothetic forward performance
processes, that is: forward performance processes whose dependence on the investor’s wealth x is
of power form (see [NZ1] and [NT] for more details); 3) forward performance processes of factor
form in complete markets (see [NT] for more details). These three types of forward performance
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processes result from significant simplifications of the SPDE (1.1) in certain special cases: time-
monotone forward performance processes are obtained by setting a ≡ 0 and solving the resulting
partial differential equation (PDE); homothetic forward performance processes result from choosing
U to be of product form with power function dependence on x; and forward performance processes
of factor form in complete markets are derived using a reduction of the SPDE (1.1) to a Hamilton-
Jacobi-Bellman (HJB) equation that can be linearized in the complete market framework using the
Fenchel-Legendre transform.

As in [MZ5] and [NT] we consider forward performance processes of factor form (see Subsection
1.1 for the exact details), so that (1.1) can be reduced to an (ill-posed) HJB equation. However, we
consider the incomplete market case in which the HJB equation cannot be linearized by a simple
transformation. Nonetheless, we are able to find explicit formulas for the leading order and first-
order correction terms of the solution to such an HJB equation. These yield the leading order and
first-order correction terms of the corresponding pair (U, π∗). We complement these results by an
appropriate estimate of the remainder term.

A similar expansion for the classical Merton problem in an incomplete market was given in
[FSZ]. In contrast to the Merton problem setup in [FSZ], we face the additional difficulty of the
HJB equation being ill-posed. In addition, no general estimates of the remainder were given in
[FSZ], so that our approach provides new insights in the Merton problem setting as well.

The following subsection describes our framework.

1.1. Setting. We consider n tradeable securities whose prices follow the stochastic differential
equations

(1.2) dSi(t) = Si(t)µi
(
Y δ(t), Y ε(t)

)
dt+ Si(t)σi

(
Y δ(t), Y ε(t)

)T
dW (t), i = 1, 2, . . . , n

and where Y δ, Y ε are two observable real-valued stochastic factors. The factors are modelled by
one-dimensional diffusion processes

dY δ(t) = δ b(Y δ(t)) dt+
√
δ κ(Y δ(t)) dB1(t),

dY ε(t) =
1

ε
γ(Y ε(t)) dt+

1√
ε
α(Y ε(t)) dB2(t).(1.3)

We think of δ, ε as being small positive numbers, so that Y δ should be thought of as a slow factor
(e.g. a macroeconomic indicator) and Y ε as a fast factor (e.g. a fast mean-reverting stochastic
volatility). Hereby, the noise W = (W,B1, B2) is jointly a (d + 2)-dimensional Brownian motion,
W is a d-dimensional standard Brownian motion, B1, B2 are one-dimensional standard Brownian
motions, and the covariance structure is given by

ρsj t := 〈Wj , B1〉(t), j = 1, 2, . . . , d,

ρfj t := 〈Wj , B2〉(t), j = 1, 2, . . . , d,

ρs,f t := 〈B1, B2〉(t).

Since we allow for non-perfect correlation between the asset price processes and the stochastic
factors, the market is in general incomplete.

In our setting the forward performance SPDE (1.1) reads

dU(t, x) =
1

2

∥∥Ux(t, x)λ
(
Y δ(t), Y ε(t)

)
+ σ

(
Y δ(t), Y ε(t)

)
σ
(
Y δ(t), Y ε(t)

)−1
aWx (t, x)

∥∥2

Uxx(t, x)
dt

+ a(t, x)T dŴ(t).

(1.4)
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Here σ
(
Y δ(t), Y ε(t)

)
=
(
σ1

(
Y δ(t), Y ε(t)

)
, . . . , σn

(
Y δ(t), Y ε(t)

))
is the volatility matrix of the stock

price processes (1.2), and

λ
(
Y δ(t), Y ε(t)

)
=
(
σ
(
Y δ(t), Y ε(t)

)T
)−1µ

(
Y δ(t), Y ε(t)

)
is the market price of risk. The superscripts T and −1 denote transpose and Moore-Penrose

pseudoinverse as before; and Ŵ is the standard Brownian motion obtained from the Brownian
motion W by left-multiplication with a suitable constant matrix.

In this paper we focus on solutions of (1.4) of factor form, namely on processes represented as

(1.5) U(t, x) = V
(
t, x, Y δ(t), Y ε(t)

)
,

for some deterministic function V = V (t, x, y1, y2). As discussed in the introduction of [NT], such
solutions are particularly natural from the economic point of view. Indeed, thinking of the forward
performance process U as encoding the preferences of the investor on a set of trading strategies
given the state of the world she observes and assuming that there are only finitely many quantities
the investor keeps track of, it is natural to assume that the state enters her preferences through
the corresponding finite number of factor processes.

Assuming V ∈ C1,2,2,2, applying Itô’s formula to V
(
t, x, Y δ(t), Y ε(t)

)
, equating first the resulting

martingale part with the martingale part on the right-hand side of (1.4), and then the two bounded
variation parts, one concludes that the function V (t, x, y1, y2) is a classical solution of the HJB
equation

(1.6) Vt +Aδ,εy V − 1

2

∥∥Vx λ+ σ σ−1
(
Vxy1
√
δ κ ρs + Vxy2

1√
ε
αρf

)∥∥2

Vxx
= 0 .

Here Aδ,εy is the generator of the diffusion process
(
Y δ, Y ε

)
.

We also note that the initial condition U(0, ·) for the SPDE (1.4) translates into an initial
condition V (0, x, y1, y2) for the HJB equation (1.6), so that the latter is posed in the “wrong” time
direction and, in particular, one does not expect solutions to exist for all initial conditions or to
depend continuously on them. In general, this ill-posedness is the main mathematical difficulty in
dealing with forward performance processes.

The main results of the paper (Proposition 4.1, Theorem 4.4) identify explicitly the leading
order and first order correction terms of the solution V of (1.6) in the limit regime δ ↓ 0, ε ↓ 0.
This allows to identify the leading order and first order correction terms of the corresponding pair
(U, π∗) explicitly as well (see Proposition 5.3). All our results are obtained under the following two
assumptions.

Assumption 1.1. (i) The range of left-multiplication by the matrix σ is all of Rd, so that σ σ−1

is the d × d identity matrix. In particular, this implies n ≥ d (and so the incompleteness in
the model stems from the imperfectly correlated factors). Further, λ is smooth in (y1, y2).

(ii) The initial condition does not depend on the factors, and we will write it as V (0, x). Further
V (0, x) is increasing and strictly concave in x.

(iii) The function (Vx)(−1)(0, e−x) admits the representation

(Vx)(−1)(0, e−x) =

∫
R

ezx − 1

z
ν0(dz) + C0,

for some non-negative finite Borel measure ν0 on R and constant C0 ∈ R, where (Vx)(−1)(0, ·)
is the inverse of the function Vx(0, ·).

The latter condition is related to the ill-posedness of the initial value problem for the HJB
equation (1.6), and will turn out to be necessary for the leading order term of V to be well-defined.
A class of possible initial conditions is given by V (0, x) = c1 x

c2 , c1 > 0, c2 ∈ (0, 1).
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Assumption 1.2. The process Y ε is positive recurrent with a unique invariant distribution µ. Clearly,
the latter does not depend on the value of ε (since a change in ε corresponds to a multiplication of
the generator of Y ε by a constant).

1.2. Outline. To ensure that the main ideas are not obscured by cumbersome notation we first
consider the cases where only the slow factor Y δ is present (“slow factor case”, Section 2) or only
the fast factor Y ε is present (“fast factor case”, Section 3).

In the slow factor case we provide explicit formulas for the leading order and first order correction
terms of V in Propositions 2.1 and 2.2, and justify the approximation of V by such in Theorem
2.6. The corresponding results in the fast factor case can be found in Propositions 3.1 and 3.2, and
Theorem 3.6. In Section 4 we consider the general case and give explicit formulas for the leading
order and first order correction terms of V in Proposition 4.1. The corresponding remainder
estimate can be found in Theorem 4.4. Finally, in Section 5 we give explicit formulas for the
portfolios associated with our approximation (Definition 5.1) and explain in which sense they are
approximately optimal (Proposition 5.3).

2. Forward investment problem with a slow factor

The first situation we consider is the slow factor case, that is when µi and σi in (1.2) depend
only on Y δ, and so V (t, x, y1, y2) in (1.5) does not depend on y2. Moreover, to simplify the notation
we write ρ for ρs and y for y1 throughout the present section. In view of Assumption 1.1, and with
these notations, the HJB equation (1.6) becomes

(2.1) Vt +
1

2
δ κ(y)2 Vyy + δ b(y)Vy −

1

2

‖Vx λ(y) + Vxy
√
δ κ(y) ρ‖2

Vxx
= 0.

Here we aim to find an expansion of V of the form

(2.2) V = V (0) +
√
δ V (1) +O(δ)

in the limit regime δ ↓ 0. To this end, we will first derive expressions for V (0) and V (1) informally
and then justify the resulting expansion in Theorem 2.6 below.

2.1. Asymptotic Analysis. To obtain the leading order term V (0) we set δ = 0 in (2.1):

(2.3) V
(0)
t − 1

2

‖λ(y)‖2
(
V

(0)
x

)2
V

(0)
xx

= 0.

In addition, we endow the latter equation with the initial condition V (0)(0, x, y) = V (0, x). The
resulting problem corresponds to taking the volatility coefficient in the forward performance SPDE
(1.4) to be zero. This is precisely the case of time-monotone forward performance processes studied

in [MZ4]. The formula for the solution V (0) of (2.3) can be therefore recovered directly from [MZ4,
Theorems 4 and 8].

Proposition 2.1 (Leading order term, slow factor). The solution V (0) of the HJB equation (2.3)

with the initial condition V (0)(0, x, y) = V (0, x) admits the following representation in terms of ν0

and C0 in Assumption 1.1(iii):

(2.4) V (0)(t, x, y) = u
(
‖λ(y)‖2 t, x

)
where u is given by

u(t, x) = −1

2

∫ t

0
e−h

(−1)(s,x)+ s
2 hx

(
s, h(−1)(s, x)

)
ds+ V (0, x),(2.5)

h(t, x) =

∫
R

ezx−
1
2
z2t − 1

z
ν0(dz) + C0,
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and h(−1) denotes the inverse of h in the variable x.

This follows from a transformation of (2.3) to the ill-posed heat equation and Widder’s Represen-
tation Theorem of positive solutions to this equation ([Wi, Theorem 8.1]). Both this transformation
and Widder’s Theorem will be used to construct higher order terms of the expansion. The interpre-
tation of (2.4) is that, at principal order, the forward performance measure is the complete market
solution, but with the Sharpe ratio frozen to λ(y).

Next, we turn to the correction term V (1) in (2.2). To obtain an equation for V (1) we plug

V (0) +
√
δ V (1) into (2.1) and collect the terms of order

√
δ. To this end, we note the expansions

‖
(
V (0) +

√
δ V (1)

)
x
λ+

(
V (0) +

√
δ V (1)

)
xy

√
δ κ ρ‖2

=
(
V (0)
x

)2‖λ‖2 +
√
δ
(

2V (0)
x V (1)

x ‖λ‖2 + 2V (0)
x V (0)

xy κλTρ
)

+O(δ) ,

1

V
(0)
xx +

√
δ V

(1)
xx

=
1

V
(0)
xx

−
√
δ

V
(1)
xx(

V
(0)
xx

)2 +O(δ) .

The resulting equation for V (1) reads

(2.6) V
(1)
t +

1

2

‖λ(y)‖2
(
V

(0)
x

)2(
V

(0)
xx

)2 V (1)
xx −

‖λ(y)‖2 V (0)
x

V
(0)
xx

V (1)
x = κ(y)λ(y)Tρ

V
(0)
x V

(0)
xy

V
(0)
xx

and it is endowed with the initial condition V (1)(0, x, y) = 0, since the zeroth order term V (0) has
already satisfied the initial condition for V .

Proposition 2.2 (Correction term, slow factor). The solution V (1) of the PDE (2.6) endowed with

the initial condition V (1)(0, x, y) = 0 is given by

(2.7) V (1)(t, x, y) =
t

2
κ(y)λ(y)Tρ

V
(0)
x (t, x, y)V

(0)
xy (t, x, y)

V
(0)
xx (t, x, y)

.

Proof. We start by introducing the change of variables

(2.8) (t, ξ, y) :=
(
t,− log V (0)

x − ‖λ(y)‖2

2
t, y
)
,

and set w(0)(t, ξ, y) = V (0)(t, x, y), w(1)(t, ξ, y) = V (1)(t, x, y). The latter functions are well-defined,

since V (0) is strictly increasing and strictly concave in x, so that ξ is a strictly increasing function
of x.

By viewing the equation (2.3) as the “linear” equation

(2.9) V
(0)
t +

‖λ(y)‖2

2

(
V

(0)
x

V
(0)
xx

)2

V (0)
xx − ‖λ(y)‖2

(
V

(0)
x

V
(0)
xx

)
V (0)
x = 0

with coefficients depending on V (0), computing the derivatives

V
(0)
t = w

(0)
t +

‖λ(y)‖2

2
w

(0)
ξ

(
−
(
V

(0)
x

V
(0)
xx

)
x

− 2

)
,(2.10)

V (0)
x = w

(0)
ξ

(
− V

(0)
xx

V
(0)
x

)
,(2.11)

V (0)
xx = w

(0)
ξξ

(
V

(0)
xx

V
(0)
x

)2

+ w
(0)
ξ

(
V

(0)
xx

V
(0)
x

)2(V (0)
x

V
(0)
xx

)
x

,(2.12)
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and plugging (2.10), (2.11) and (2.12) into (2.9), we obtain

w
(0)
t +

‖λ(y)‖2

2

(
V

(0)
x

V
(0)
xx

)2(
w

(0)
ξξ

(
V

(0)
xx

V
(0)
x

)2

+w
(0)
ξ

(
− V

(0)
x

V
(0)
xx

)
x

)
−‖λ(y)‖2

(
V

(0)
x

V
(0)
xx

)
w

(0)
ξ

(
− V

(0)
xx

V
(0)
x

)
= 0.

This readily simplifies to

(2.13) w
(0)
t +

‖λ(y)‖2

2
w

(0)
ξξ = 0

in the coordinates (t, ξ, y).

A similar computation for w(1) shows that (2.6) transforms into

(2.14) w
(1)
t +

‖λ(y)‖2

2
w

(1)
ξξ = κλ(y)T ρ t λ(y)T λ′(y)w

(0)
ξξξ

in the new variables. Hereby, to obtain the right-hand side of (2.14) we have relied on the following
two considerations:

(a) Note from (2.5) that u is differentiable in t and that ut is differentiable in x, which, with the

assumed smoothness of λ, implies the differentiability of w(0) in y. Then, by differentiating
(2.13) in y and rearranging one obtains(

w(0)
y

)
t
+
‖λ(y)‖2

2

(
w(0)
y

)
ξξ

= −λ(y)T λ′(y)w
(0)
ξξ .

Moreover, the latter equation, endowed with the initial condition w
(0)
y (0, ξ, y) = 0, has the

unique solution w
(0)
y = −t λ(y)T λ′(y)w

(0)
ξξ (note that the uniqueness of the solution is a conse-

quence of Widder’s Theorem). In the original coordinates this solution reads

(2.15) V (0)
y = −t λ(y)T λ′(y)

((
V

(0)
x

)2
V

(0)
xx

)
x

V
(0)
x

V
(0)
xx

.

(b) In addition, by using (2.11), (2.12) one finds

w
(0)
ξξξ = −V

(0)
x

V
(0)
xx

(((
V

(0)
x

)2
V

(0)
xx

)
x

V
(0)
x

V
(0)
xx

)
x

.

A combination of (a) and (b) gives the right-hand side of (2.14). At this point, one can check that

the unique solution of (2.14), endowed with the initial condition w(1)(0, ξ, y) = 0 is given by

w(1) =
t2

2
κ(y)λ(y)T ρ λ(y)T λ′(y)w

(0)
ξξξ.

Hereby, the uniqueness part of the statement follows by applying again the Widder’s Theorem. To
obtain the proposition, it remains to change the coordinates back to (t, x, y) and use that

V (0)
xy = −t λ(y)T λ′(y)

(((
V

(0)
x

)2
V

(0)
xx

)
x

V
(0)
x

V
(0)
xx

)
x

,

which can be obtained from (2.15) by a differentiation in x. �

Remark 2.3. This result can be considered as the forward performance analog of [FSZ, Proposition
3.3] for the (backwards in time) Merton problem, but here the transformation (2.8) is crucial to
reduce to the ill-posed heat equation for which Widder’s Theorem can be applied. In the traditional
utility maximization problem, the correction term can be computed directly using commutation of
certain operators and Black’s (fast diffusion) equation for the risk tolerance function, which is the
approach used in [FSZ]. Moreover in [FSZ], only the case of a single stock is considered, and here
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the analysis is done with multiple assets to obtain the correct coefficients in the approximations,
which could not be obtained from just the one asset case with simple parameter replacements.

We see from (2.7) that V (1) depends on the slow factor through the parameters κ and λ frozen
to the values κ(y) and λ(y), as well as λ′(y). It is easily computed in terms of derivatives of the

complete market forward performance measure V (0). We now give an additional representation
of the correction term V (1) which has a natural interpretation in terms of the original forward
performance problem.

Proposition 2.4 (Natural parametrization of correction term, slow factor). The solution V (1) of

the PDE (2.6) endowed with the initial condition V (1)(0, x, y) = 0, written as w(1)(t, ξ, y) in the
coordinates (t, ξ, y) defined in (2.8), admits the representation

(2.16) w(1)(t, ξ, y) =

∫ t

0
w(1),s(t, ξ, y) ds

where each w(1),s is the solution of the initial value problem

(2.17) w
(1),s
t +

‖λ(y)‖2

2
w

(1),s
ξξ = 0, t ≥ s

with initial condition

(2.18) w(1),s(s, ξ, y) = s κ(y)λ(y)T ρ ‖λ(y)‖2w(0)
ξξ (s, ξ, y).

In particular, each w(1),s can be represented as

(2.19) w(1),s(t, ξ, y) =

∫
R
ezξ−z

2(t−s) νs,y(dz)

with νs,y being a signed finite Borel measure on R.

In the original coordinates, the same representation reads

(2.20) V (1)(t, x, y) =

∫ t

0
V (1),s(t, x, y) ds

where each V (1),s is the solution of the initial value problem

V
(1),s
t +

‖λ(y)‖2

2

(
V

(0)
x

)2(
V

(0)
xx

)2 V (1),s
xx − ‖λ(y)‖2 V

(0)
x

V
(0)
xx

V (1),s
x = 0 , t ≥ s

with initial condition

V (1),s(s, x, y) = κ(y)λ(y)Tρ
V

(0)
x (s, x, y)V

(0)
xy (s, x, y)

V
(0)
xx (s, x, y)

.

Remark 2.5. We remark that each of the processes V (1),s (or, equivalently, w(1),s) can be viewed
as an “auxiliary” forward performance process. These should be interpreted as the first order
corrections that the investor makes at any given time s in reaction to the market conditions she
observes. Furthermore, when making a projection of her future preferences from a time t onwards,
the investor corrects her leading order forward performance criterion V (0) (or, equivalently, w(0))

by aggregating all her previous first order corrections V (1),s, s ∈ [0, t] (or, equivalently, w(1),s).

We refer to V (1),s as auxiliary to stress that it is neither a complete market forward performance
measure, nor a solution of the full incomplete market problem.
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Proof of Proposition 2.4. We first recall that w(0) is a classical solution of the forward heat equation

(2.13). Hence, the same is true for w
(0)
ξξ . At this point, an application of Widder’s Theorem shows

that the initial value problem (2.17), (2.18) has a solution that exists for all t ≥ s. In other words,

each function w(1),s, s ≥ 0 is well-defined. Since the forward heat equation with source (2.14)
has a unique classical solution starting from the zero initial condition by Widder’s Theorem, the
representation (2.16) will follow once we establish that the right-hand side of (2.16) is a classical
solution of (2.14). This is the result of the following computation:

∂t

(∫ t

0
w(1),s(t, ξ, y) ds

)
= w(1),t(t, ξ, y) +

∫ t

0
w

(1),s
t (t, ξ, y) ds

= t κ(y)λ(y)T ρ ‖λ(y)‖2w(0)
ξξ (t, ξ, y)−

∫ t

0

‖λ(y)‖2

2
w

(1),s
ξξ (t, ξ, y) ds

= t κ(y)λ(y)T ρ ‖λ(y)‖2w(0)
ξξ (t, ξ, y)− ‖λ(y)‖2

2
∂ξξ

(∫ t

0
w(1),s(t, ξ, y) ds

)
.

Finally, (2.19) follows applying again Widder’s Theorem [Wi, Theorem 8.1], and the representation
(2.20) is the result of writing (2.16) in the original coordinates (t, x, y). �

The next theorem shows that, under appropriate assumptions, the error in the approximation of
the true value function V by V (0) +

√
δ V (1) is indeed of order δ, as one would expect. To this end,

we define the non-linear functional
(2.21)

ηδ :=
‖λ‖2

2δ
Vxx

(
Vx
Vxx
− V

(0)
x

V
(0)
xx

)2

+
κλT ρ√

δ

(
Vx Vxy
Vxx

− V
(0)
x V

(0)
xy

V
(0)
xx

)
+

1

2
κ2 ‖ρ‖2

V 2
xy

Vxx
− 1

2
κ2 Vyy − b Vy ,

recall the change of coordinates (t, x, y) 7→ (t, ξ, y) of (2.8), and set

(2.22) η̃δ(t, ξ, y) = ηδ(t, x, y).

The bound on the approximation error can be then stated as follows.

Theorem 2.6 (Remainder estimate, slow factor). Suppose that there exist δ0 > 0 and T ≤ ∞ such
that for all δ ∈ (0, δ0) the HJB equation (2.1) has a solution V ∈ C1,2,2

(
[0, T )× (0,∞)×R

)
which

is increasing and strictly concave in the second argument. Then,

(i) the quantity

(2.23)

∫
R
e
− z2

2 ‖λ‖2 t

∞∑
k=0

(−1)k z2k

(2k)! 2k ‖λ‖2k tk

(
d

dξ

)2k ∫ t

0

∫
R
η̃δ(s, ξ − χ, y) s−1/2 e

− χ2

2 ‖λ‖2 s dχds dz,

with η̃δ as in (2.22), is well-defined and finite for all δ ∈ (0, δ0), and
(ii) for every (t, x, y) ∈ [0, T )× (0,∞)× R for which the limit superior

(2.24)

lim
δ↓0

∣∣∣∣ ∫
R
e
− z2

2 ‖λ‖2 t

∞∑
k=0

(−1)k z2k

(2k)! 2k ‖λ‖2k tk

(
d

dξ

)2k ∫ t

0

∫
R
η̃δ(s, ξ − χ, y) s−1/2 e

− χ2

2 ‖λ‖2 s dχdsdz

∣∣∣∣
is finite, the error bound

(2.25) lim
δ↓0

δ−1
∣∣∣V (t, x, y)− V (0)(t, x, y)−

√
δ V (1)(t, x, y)

∣∣∣ <∞
applies. If the limit superior in (2.24) is bounded above uniformly on a subset of [0, T ) ×
(0,∞) × R, then the limit superior in (2.25) is bounded above uniformly on the same subset
of [0, T )× (0,∞)× R.
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Remark 2.7. The meaning of condition (2.24) can be understood as follows. As explained in the
proof of Theorem 2.6 below, the nonlinearity ηδ arising in the expansion of the HJB equation (2.1)
is fed into an initial value problem for a backward heat equation through a source term in the
new coordinates (t, ξ, y). The latter problem is severely ill-posed, with its solution operator rapidly
magnifying the inverse Laplace modes (i.e. the analogues of Fourier modes for the inverse Laplace
transform operator) of the source term. Therefore, in order to control the solutions uniformly for
all small positive δ, one needs an a priori estimate on the inverse Laplace transform of the source
term that is uniform for all small positive δ. The latter is precisely the content of condition (2.24).
In fact, the proof of Theorem 2.6 reveals that condition (2.24) is sharp in the sense of (2.24) being
equivalent to (2.25).

Proof of Theorem 2.6. We start by expressing the HJB equation (2.1) as

(2.26) Vt −
‖λ‖2

2

V 2
x

Vxx
−
√
δ κ λT ρ

Vx Vxy
Vxx

=
δ

2
κ2 ‖ρ‖2

V 2
xy

Vxx
− δ

2
κ2 Vyy − δ b Vy .

Next, we write V = V (0) +
√
δ V (1) +

√
δ Q, insert the latter expression into the left-hand side of

(2.26), and expand in
√
δ using the elementary identity

1

a+
√
δ b

=
1

a
−
√
δ

b

a2 +
√
δ ab

, a < 0, b < − a√
δ
.

Recalling that the functions V (0) and V (1) were constructed in such a way that all terms in (2.26)

on the orders of 1 and
√
δ cancel out, and collecting the remaining terms we obtain after a lengthy

but straightforward computation that

(2.27)
√
δ Qt −

√
δ ‖λ‖2 V

(0)
x

V
(0)
xx

Qx +
√
δ
‖λ‖2

2

(
V

(0)
x

)2(
V

(0)
xx

) Qxx = δ ηδ.

Next, we let Q̃ :=
√
δ Q, recall the change of coordinates

(t, ξ, y) :=
(
t,− log V (0)

x (t, x, y)− ‖λ(y)‖2

2
t, y
)

of (2.8), and define q(t, ξ, y) := Q̃(t, x, y). By the same computation as in the proof of Proposition
2.2, the partial differential equation (2.27) can be rewritten as

(2.28) qt +
‖λ‖2

2
qξξ = δ η̃δ

where η̃δ(t, ξ, y) = ηδ(t, x, y) as before. Then, Duhamel’s principle for the backward equation (2.28)
implies that

(2.29)
1√

2πt ‖λ‖

∫
R
q(t, ξ − χ, y) e

− χ2

2 ‖λ‖2 t dχ = δ

∫ t

0

1√
2πs ‖λ‖

∫
R
η̃δ(s, ξ − χ, y) e

− χ2

2 ‖λ‖2 s dχds.

It follows that the right-hand side of the latter equation is in the domain of the inverse Weierstrass
transform in the sense of [Wi2, equations (5), (6)]. This, in turn, implies that the quantity in (2.23)
is well-defined and finite for all δ ∈ (0, δ0). Moreover, applying the inverse Weierstrass transform
to both sides of (2.29), we see that, up to a multiplicative constant, the function ξ 7→ δ−1 q(t, ξ, y)
is given by the quantity inside the absolute value in (2.24). The statement of the theorem is now
immediate. �



FORWARD PERFORMANCE PROCESSES 11

2.2. Example: Forward Performance Process of Power Type. We illustrate the results with
the family of power utility forward performance processes. For a constant risk aversion coefficient
γ ∈ (0,∞)\{1}, we impose the initial condition for the HJB equation (1.6) to be

V (0, x) = γγ
x1−γ

1− γ
.

This corresponds to Examples 16 and 18 in [MZ4].

We focus on an example where there is an exact solution to the problem with one factor volatility.
Namely, we take a market model

dSi(t) = Si(t)µi
(
Y δ(t)

)
dt+ Si(t)σi

(
Y δ(t)

)T
dW (t), i = 1, 2, . . . , n

dY δ(t) = δ(m− Y δ(t)) dt+
√
δ β
√
Y δ(t) dB1(t),

where σi(y) and µi(y) are chosen such that

λ(y) = Λ
√
y, for some Λ ∈ Rd,

and the Brownian motions Wj are correlated with the Brownian motion B1 according to
〈Wj , B1〉(t) = ρj t. We further suppose that ‖ρ‖2 6= γ

γ−1 . This class of model was used, for

instance, for a classical infinite horizon consumption problem in [CV].

We insert the ansatz

V (t, x, y) = γγ
x1−γ

1− γ
g(t, y)

into the HJB equation (2.1) to end up with

gt +
1

2
δ β2y gyy +

(
δ(m− y) + Γ

√
δy β ΛTρ

)
gy +

Γ

2

(
‖Λ‖2y g + δ β2y ‖ρ‖2

g2
y

g

)
= 0,

where Γ = 1−γ
γ and the initial condition is g(0, y) = 1. Next, we make the transformation g = Ψq

with the choice q = 1
1+Γ‖ρ‖2 , which after a short computation leads to the linear equation

Ψt +
1

2
δβ2yΨyy +

(
δ(m− y) + Γ

√
δy β ΛTρ

)
Ψy +

Γ

2q
‖Λ‖2yΨ = 0

with initial condition Ψ(0, y) = 1. Looking for a solution of the form exp(A1(t)y + A2(t)) we find
that A1, A2 need to solve the ODEs

A′1 =
1

2
δ β2A2

1 +
(√
δ Γβ ΛTρ− δ

)
A1 +

Γ

2q
‖Λ‖2,

A′2 = δ mA1

with zero initial conditions. Let a± be the roots of the quadratic corresponding to the right-hand
side of the Riccati equation for A1:

δ β2

2
a2 +

(√
δ Γβ ΛTρ− δ

)
a+

Γ ‖Λ‖2

2q
= 0.

We assume that the model parameters are such that both roots are real and a+ > 0. This is the case
when γ ∈ (0, 1), ΛTρ < 0, and Γ q (ΛTρ)2 > ‖Λ‖2; or γ > 1, ΛTρ > 0, q < 0, and Γ q (ΛTρ)2 > ‖Λ‖2;
or γ > 1 and q > 0. In any of these cases, we then obtain the solution

A1(t) = a−
1− e−∆t

1− a−
a+
e−∆t

and A2(t) = δ m

(
a−t−

2

δ β2
log

(
1− a−

a+
e−∆t

1− a−
a+

))
,
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where ∆ is the square root of the discriminant of the quadratic above. We, in turn, deduce that
since a+ > 0, the solution

(2.30) V (t, x, y) = γγ
x1−γ

1− γ
exp

(
q (A1(t) y +A2(t))

)
is well-defined for all t ≥ 0.

We can now check condition (2.24) of Theorem 2.6 to show the convergence of our approximation

V (0)(t, x, y) +
√
δ V (1)(t, x, y) = γγ

x1−γ

1− γ
e−

1
2

Γ ‖λ‖2t +

√
δ

4
t2 y β ΛTρ ‖Λ‖2 Γ

γ
γγ

x1−γ

1− γ
e−

1
2

Γ ‖λ‖2t,

where the expression for V (0) follows from Proposition 2.1 with ν0 being a Dirac mass at γ−1 and
C0 = γ, and the expression for V (1) is a consequence of Proposition 2.2.

In (2.21), the term in the parentheses in the first summand turns out to be zero, because both

V and V (0) are multiples of x1−γ , and the term in parentheses in the second summand is of order√
δ, because V (0) can be obtained from V by setting δ = 0, and V is smooth in δ. Therefore

η is a product of x1−γ and a function of (t, y) depending smoothly on δ (which follows from the
smoothness of A1, A2), and hence, η̃δ in (2.22) is a product of eξΓ and another function of (t, y)
depending smoothly on δ. An explicit computation of the inverse Weierstrass transform in (2.24)
reduces the expression there to

lim
δ↓0

∣∣∣∣ ∫ t

0
eξΓ−(t−s)Γ2 ‖λ‖2

2 F (s, y; δ) ds

∣∣∣∣ ,
for some function F depending smoothly on δ. In particular, the latter limit superior is finite and
so the conditions of Theorem 2.6 are satisfied in this example.

3. Forward investment problem with a fast factor

The second situation we consider is the fast factor case, that is when µi and σi in (1.2) depend
only on Y ε, and so V (t, x, y1, y2) in (1.5) does not depend on y1. To simplify the notation, we write
ρ for ρf and y for y2 throughout this section. With these notations and in view of Assumption 1.1,
the HJB equation (1.6) becomes

(3.1) Vt +
α(y)2

2ε
Vyy +

γ(y)

ε
Vy −

1

2

‖Vx λ(y) + Vxy
1√
ε
α(y) ρ‖2

Vxx
= 0.

Our goal here is to find an explicit expansion of the solution V to (3.1) of the form

(3.2) V = V (0) +
√
ε V (1) +O(ε)

in the limit regime ε ↓ 0. As in the previous section, we will first derive formulas for V (0) and V (1)

informally, and then justify the resulting expansion by means of a suitable remainder estimate.

To find V (0) we plug (3.2) into (3.1) and collect the leading order terms (namely, those on the
order of ε−1) to get

(3.3)
α(y)2

2
V (0)
yy + γ(y)V (0)

y − 1

2
α(y)2‖ρ‖2

(
V

(0)
xy

)2
V

(0)
xx

= 0.

Note that we can satisfy (3.3) by choosing V (0) as a function of t and x only. As we explain below,

the exact choice of V (0) will be pinned down by the lower order terms in the expansion of (3.1).
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To proceed, we plug (3.2) into (3.1), and collect the terms of order ε−1/2. We obtain

−α(y)λ(y)T ρ
V

(0)
x V

(0)
xy

V
(0)
xx

−α(y)2 ‖ρ‖2 V
(0)
xy V

(1)
xy

V
(0)
xx

+
α(y)2 ‖ρ‖2

2

(
V

(0)
xy

)2
V

(1)
xx(

V
(0)
xx

)2 +
α(y)2

2
V (1)
yy +γ(y)V (1)

y = 0.

Choosing V (0) to be independent of y as we noted earlier, the latter equation simplifies to

α(y)2

2
V (1)
yy + γ(y)V (1)

y = 0.

Clearly, the above equation can be satisfied by choosing V (1) to be a function of (t, x) only. As

with V (0), the exact choice of V (1) will result from considering lower order terms in the expansion
of (3.1).

Next, we insert the extended expansion

V = V (0) +
√
ε V (1) + ε V (2) + ε3/2 V (3) +O(ε2)

into (3.1) in order to find the terms of order 1. This results in the equation

(3.4) V
(0)
t − ‖λ(y)‖2

2

(
V

(0)
x

)2
V

(0)
xx

+
α(y)2

2
V (2)
yy + γ(y)V (2)

y = 0.

Hereby, we have used the fact that V (0) and V (1) do not depend on y. The next proposition shows
that there is a unique choice of V (0) such that V (0)(0, x, y) = V (0, x) and the equation (3.4), viewed

as an elliptic partial differential equation for V (2), has a solution.

Proposition 3.1 (Leading order term, fast factor). There is a unique function V (0) such that

V (0)(0, x, y) = V (0, x) and the equation (3.4) possesses a solution V (2). With

λ̄ =

(∫
R
‖λ(y)‖2 µ(dy)

)1/2

,

such a function V (0) admits the representation

(3.5) V (0)(t, x, y) = V (0)(t, x) = u
(
λ̄2 t, x

)
where u is given by

u(t, x) = −1

2

∫ t

0
e−h

(−1)(s,x)+ s
2 hx

(
s, h(−1)(s, x)

)
ds+ V (0, x),

h(t, x) =

∫
R

ezx−
1
2
z2t − 1

z
ν0(dz) + C0.

Here h(−1) is the inverse of h in the variable x, and ν0 and C0 were introduced in Assumption
1.1(iii).

Proof. We start by integrating (3.4) with respect to the invariant distribution µ of Assumption 1.2.

Since V (0) does not depend on y and∫
R

(α(y)2

2
V (2)
yy + γ(y)V (2)

y

)
µ(dy) ≡ 0

(due to the invariance of µ), we obtain

(3.6) V
(0)
t − λ̄2

2

(
V

(0)
x

)2
V

(0)
xx

= 0.

We easily conclude using [MZ4, Theorems 4 and 8]. �
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From (3.5) we observe that V (0) gives the complete market forward performance measure with
constant Sharpe ratio λ̄, where the appropriate averaging has been identified by the asymptotic
analysis.

To obtain V (1) we will expand the HJB equation (3.1) up to order ε1/2, which however requires

further information on V (2). As a first step, we subtract from the equation (3.4) its averaged version
(3.6) to get

(3.7)
α(y)2

2
V (2)
yy + γ(y)V (2)

y =
‖λ(y)‖2 − λ̄2

2

(
V

(0)
x

)2
V

(0)
xx

.

We introduce the notation

(3.8) φ(y) =

∫ ∞
0

Ey
[
‖λ(Y 1(s))‖2 − λ̄2

]
ds,

where Y 1 denotes the fast factor process, solution of the SDE (1.3), but with ε = 1. Then (see, for

example, [FPSS, Section 3.2, p. 94]), the solution V (2) of (3.7) admits the stochastic representation

(3.9) V (2)(t, x, y) = −1

2

(
V

(0)
x (t, x)

)2
V

(0)
xx (t, x)

φ(y) + C(t, x),

where C(t, x) is a function that does not depend on y.

We can now expand (3.1) up to order ε1/2 to obtain

V
(1)
t +

‖λ(y)‖2

2

(
V

(0)
x

V
(0)
xx

)2

V (1)
xx −

V
(0)
x

V
(0)
xx

λ(y)T
(
V (1)
x λ(y) + φ′(y)

((
V

(0)
x

)2
V

(0)
xx

)
x

α(y) ρ

)
+
α(y)2

2
V (3)
yy + γ(y)V (3)

y = 0.

Averaging this equation with respect to the invariant distribution µ of Assumption 1.2, we obtain
further
(3.10)

V
(1)
t +

λ̄2

2

(
V

(0)
x

V
(0)
xx

)2

V (1)
xx − λ̄2 V

(0)
x

V
(0)
xx

V (1)
x − V

(0)
x

V
(0)
xx

((
V

(0)
x

)2
V

(0)
xx

)
x

(∫
R
φ′(y)α(y)λ(y)T µ(dy)

)
ρ = 0,

which is the desired partial differential equation for V (1). Since V (0) satisfies the initial condition
for V , we endow (3.10) with the initial condition V (1)(0, x, y) = 0.

Proposition 3.2 (Correction term, fast factor). The unique classical solution of the partial differ-

ential equation (3.10) with the initial condition V (1)(0, x, y) = 0 is given by

(3.11) V (1)(t, x, y) = V (1)(t, x) = t
V

(0)
x

V
(0)
xx

((
V

(0)
x

)2
V

(0)
xx

)
x

(∫
R
φ′(y)α(y)λ(y)T µ(dy)

)
ρ,

with φ as in (3.8).

Proof. We introduce a new space variable

(3.12) ξ := − log V (0)
x − λ̄2

2
t.

Since V (0) is strictly increasing and strictly concave in x for any given t, ξ is a strictly increasing
function of x and we may define

w(0)(t, ξ) := V (0)(t, x) and w(1)(t, ξ) := V (1)(t, x).
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Following the calculations in the proof of Proposition 2.2 gives

(3.13) w
(0)
t +

1

2
λ̄2w

(0)
ξξ = 0.

A similar computation starting from (3.10) shows that the transformed correction term w(1) satisfies
the forward heat equation

(3.14) w
(1)
t +

1

2
λ̄2w

(1)
ξξ = w

(0)
ξξ

(∫
R
φ′(y)α(y)λ(y)T µ(dy)

)
ρ ,

with the initial condition w(1)(0, ξ) = 0. At this point, it is easy to check (using (3.13)) that

(3.15) w(1) = t w
(0)
ξξ

(∫
R
φ′(y)α(y)λ(y)T µ(dy)

)
ρ

satisfies (3.14) with the desired initial condition. Changing back to the original coordinates we
easily obtain (3.11).

The uniqueness part of the proposition follows from the uniqueness of the solution of the Cauchy
problem for the forward heat equation (see [Wi, Theorem 8.1]). �

Remark 3.3. This result can be considered as the forward performance analog of [FSZ, Proposition
2.7] for the (backwards in time) Merton problem, but here the transformation (3.12) is crucial to
reduce to the ill-posed heat equation for which Widder’s Theorem can be applied. The differences
highlighted in Remark 2.3 apply here too.

Next, we give an additional representation for the correction term V (1) which has a natural
interpretation in terms of the original portfolio optimization problem.

Proposition 3.4 (Natural parametrization of correction term, fast factor). Let w(0), w(1) be the

functions V (0), V (1) from Propositions 3.1, 3.2 written in the coordinates

(t, ξ) :=

(
t,− log V (0)

x − λ̄2

2
t

)
.

Then:

(i) w(1) admits the representation

(3.16) w(1)(t, ξ) =

∫ t

0
w(1),s(t, ξ) ds

where each w(1),s is the solution of the initial value problem

(3.17) w
(1),s
t +

λ̄2

2
w

(1),s
ξξ = 0, t ≥ s,

with initial condition

(3.18) w(1),s(s, ξ) = w
(0)
ξξ (s, ξ)

(∫
R
φ′(y)α(y)λ(y)T µ(dy)

)
ρ.

It can be therefore represented as

(3.19) w(1),s(t, ξ) =

∫
R
ezξ−z

2(t−s) ν(s)(dz),

with ν(s) being a suitable signed finite Borel measure on R.
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(ii) In the original coordinates, the same representation reads

V (1)(t, x) =

∫ t

0
V (1),s(t, x) ds

where each V (1),s is the solution of the initial value problem

V
(1),s
t +

λ̄2

2

(
V

(0)
x

)2(
V

(0)
xx

)2 V (1),s
xx − λ̄2 V

(0)
x

V
(0)
xx

V (1),s
x = 0, t ≥ s,

with initial condition

V (1),s(s, x) =
V

(0)
x (s, x)

V
(0)
xx (s, x)

((
V

(0)
x (s, x)

)2
V

(0)
xx (s, x)

)
x

(∫
R
φ′(y)α(y)λ(y)T µ(dy)

)
ρ.

Remark 3.5. The quantities V (1),s (or, equivalently, w(1),s) of Proposition 3.4 should be interpreted
in the same way as “auxiliary” forward performance processes as their analogues in the slow factor
case. We refer to Remark 2.5 above for more details, but point out that the asymptotic analy-
sis identifies the constant vector

(∫
R φ
′(y)α(y)λ(y)T µ(dy)

)
ρ as the principal correcting effect of

stochastic Sharpe ratio, in the case of nonzero correlations ρ.

Proof of Proposition 3.4. We first recall from the proof of Proposition 3.2 that w(0) is a classical

solution of the forward heat equation (3.13). Hence, w
(0)
ξξ is a solution of the same equation and,

therefore, the solutions w(1),s, s ≥ 0 of (3.17), (3.18) are well-defined and given by

w(1),s(t, x) = w
(0)
ξξ (t, ξ)

(∫
R
φ′(y)α(y)λ(y)T µ(dy)

)
ρ .

Therefore the right-hand side of the representation (3.16) is equal to the right-hand side of (3.15),
and, thus, (3.16) immediately follows. Moreover, the representation (3.19) is a direct consequence
of Widder’s Theorem. Finally, part (ii) of the proposition can be either established in the same
way as part (i), or by changing to the original coordinates (t, x) in (3.16), (3.17) and (3.18). �

We conclude this section with the appropriate remainder estimate. Specifically, we will show
that the error in the approximation of the true value function V by V (0) +

√
ε V (1) is of the order



FORWARD PERFORMANCE PROCESSES 17

ε. To this end, we introduce the non-linear functional

ηε :=
1

2ε1/2
‖λ(y)‖2

(
V

(0)
x

V
(0)
xx

)2
1

Vxx

(
Vxx − V (0)

xx

)
+

1

2ε
‖λ(y)‖2

(
V

(0)
x

V
(0)
xx

)2
1

Vxx

(
Vxx − V (0)

xx − ε1/2 V (1)
xx

) (
Vxx − V (0)

xx

)
+ λ(y)T V (0)

x

(
λ(y)V (1)

x + α(y) ρ V (2)
xy

)( 1

Vxx
− 1

V
(0)
xx

)
− 1

ε
‖λ(y)‖2 V (0)

x

(
Vx − V (0)

x − ε1/2 V (1)
x

)( 1

Vxx
− 1

V
(0)
xx

)
+

1

ε3/2
λ(y)T α(y) ρ

V
(0)
x

Vxx

(
Vxy − ε V (2)

xy

)
+

1

2ε

1

Vxx

∥∥λ(y)Vx − λ(y)V (0)
x + ε−1/2 α(y) ρ Vxy

∥∥2

+
1

ε2

((
Vt −

1

2

‖Vx λ(y) + Vxy
1√
ε
α(y) ρ‖2

Vxx

)
− ε
(
V

(0)
t − ‖λ(y)‖2

2

(
V

(0)
x

)2
V

(0)
xx

)

− ε3/2
(
V

(1)
t +

‖λ(y)‖2

2

(
V

(0)
x

V
(0)
xx

)2

V (1)
xx −

(
V

(0)
x

V
(0)
xx

)
λ(y)T

(
V (1)
x λ(y) + φ′(y)

((
V

(0)
x

)2
V

(0)
xx

)
x

α(y) ρ

)))
.

(3.20)

Here V (2) is defined through (3.9), and we note that the value of ηε does not depend on the

choice of the constant C(t, x) in (3.9). We also set (t, ξ, y) :=
(
t,− log V

(0)
x − ‖λ(y)‖2

2 t, y
)
, and let

η̃ε(t, ξ, y) = ηε(t, x, y).

Theorem 3.6 (Remainder estimate, fast factor). Suppose that there exist ε0 > 0 and T ≤ ∞ such
that for all ε ∈ (0, ε0) the HJB equation (3.1) has a solution V ∈ C1,2,2

(
[0, T )× (0,∞)× R

)
which

is increasing and strictly concave in the second argument. Then,

(i) the quantity∫
R
e−

z2

2t

∞∑
k=0

(−1)k z2k

(2k)! 2k tk

(
d

dξ

)2k ∫ t

0

∫
R
η̃ε(s, ξ − χ, y) s−1/2 e−

χ2

2s dχdsdz

(defined via (3.20) and the paragraph following it) is well-defined and finite for all ε ∈ (0, ε0),
and

(ii) for every (t, x, y) ∈ [0, T )× (0,∞)× R for which the limit superior

(3.21) lim
ε↓0

∣∣∣∣ ∫
R
e−

z2

2t

∞∑
k=0

(−1)k z2k

(2k)! 2k tk

(
d

dξ

)2k ∫ t

0

∫
R
η̃ε(s, ξ − χ, y) s−1/2 e−

χ2

2s dχds dz

∣∣∣∣
is finite, the error bound

(3.22) lim
ε↓0

ε−1
∣∣∣V (t, x, y)− V (0)(t, x)−

√
ε V (1)(t, x)

∣∣∣ <∞
applies. If the limit superior (3.21) is bounded above uniformly on a subset of [0, T )×(0,∞)×R,
then the convergence in (3.22) is uniform on the same subset of [0, T )× (0,∞)× R.

Remark 3.7. Condition (3.21) is of the same form as condition (2.24), and the detailed interpretation
of the latter given in Remark 2.7 applies here as well.

Proof of Theorem 3.6. We proceed as in the proof of Theorem 2.6. Specifically, we insert the ansatz
V = V (0) + ε1/2 V (1) + ε V (2) + ε3/2 V (3) + ε2Q into the HJB equation (3.1) and expand the resulting



18 MYKHAYLO SHKOLNIKOV, RONNIE SIRCAR, AND THALEIA ZARIPHOPOULOU

equation in the powers of ε1/2. The terms V (0), V (1), V (2), and V (3) were chosen in such a way that
all terms on the orders of 1

ε ,
1
ε1/2

, 1 and ε1/2 cancel out. At this point, a tedious but straightforward
computation relying on the elementary identity

1

a+ ε1/2 b
=

1

a
− ε1/2 b

a2 + ε1/2 a b
, a < 0, b < −ε−1/2 a

allows to compute the terms of order ε and leads to

(3.23) ε Q̃t +
ε

2

‖λ(y)‖2
(
V

(0)
x

)2(
V

(0)
xx

)2 Q̃xx − ε
‖λ(y)‖2 V (0)

x

V
(0)
xx

Q̃x = ε ηε,

where Q̃ := ε−1
(
V −V (0)− ε1/2 V (1)

)
= V (2) + ε1/2 V (3) + εQ and ηε is defined according to (3.20).

One can then conclude the argument by repeating the steps in the proof of Theorem 2.6, making
the change of coordinates

(t, ξ, y) :=
(
t,− log V (0)

x − ‖λ(y)‖2

2
t, y
)

in (3.23), and combining Duhamel’s principle for the resulting equation with the formula for the
inverse Weierstrass transform given in [Wi2]. �

Remark 3.8. Consider the example of Section 2.2 with the explicit solution reparametrized according
to δ = ε−1, and take the corresponding approximation for a fast volatility factor as considered in
this section. Then, by direct computation φ(y) = ‖Λ‖2(y −m) and, therefore, our approximation
is

V (0) +
√
ε V (1) = γγ

x1−γ

1− γ
e−

1
2

Γ λ̄2t +
√
ε ‖Λ‖2 β mΛTρ,Γ2 γγ

x1−γ

1− γ
te−

1
2

Γ λ̄2t.

The corresponding remainder ηε has a complicated dependence on ε. However, an explicit Taylor
expansion in ε of the functions A1, A2 in the formula for V of (2.30) (with δ replaced by ε−1) shows
that ηε is given by a product of x1−γ and an order one in ε function of t, y. Consequently, η̃ε is a
product of eξΓ and a function of (t, y) that is of order 1 in ε. The argument of Section 2.2 yields
that the conditions of Theorem 3.6 are satisfied in this example and its fast factor approximation.

4. Multiscale forward investment problem

We combine our approaches to the forward investment problems with slow and fast factors
to analyze the multiscale forward investment problem described in Section 1.1. We consider an
expansion for V (t, x, y1, y2) in equation (1.6) of the form

V = V (0) +
√
δ V (1,0) +

√
ε V (0,1) +O(δ + ε)

in the limit regime δ ↓ 0, ε ↓ 0. We first give the general results and, in turn, explicit formulas for
the case of power utilities in Section 4.2.

4.1. First Order Approximations. It is convenient to define:

λ̄(y1) =

(∫
R

∥∥λ(y1, y2)
∥∥2
µ(dy2)

)1/2

,(4.1)

C1,0(y1) =
(
ρs
)T (∫

R
λ(y1, y2)µ(dy2)

)
κ(y1),(4.2)

C0,1(y1) =
(
ρf
)T (∫

R
λ(y1, y2)φy2(y1, y2)α(y2)µ(dy2)

)
,(4.3)
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where

(4.4) φ(y1, y2) =

∫ ∞
0

E
[∥∥λ(y1, Y

1(s))
∥∥2 − λ̄2(y1) | Y 1(0) = y2

]
ds,

and Y 1 denotes the fast factor process, solution of the SDE (1.3), but with ε = 1.

The following proposition gives explicit formulas for the leading order term V (0) and the first
order correction terms V (1,0) and V (0,1).

Proposition 4.1 (Explicit formulas, general case). (i) The leading order term V (0) admits the
representation

V (0)(t, x, y1, y2) = V (0)(t, x, y1) = u
(
λ̄2(y1)t, x

)
where u is given by

u(t, x) = −1

2

∫ t

0
e−h

(−1)(s,x)+ s
2 hx

(
s, h(−1)(s, x)

)
ds+ V (0, x),

h(t, x) =

∫
R

ezx−
1
2
z2t − 1

z
ν0(dz).+ C0.

Here h(−1) is the inverse of h in the variable x, and ν0 and C0 were introduced in Assumption
1.1(iii).

(ii) The slow scale correction term V (1,0) is given by

(4.5) V (1,0)(t, x, y1) =
t

2
C1,0(y1)

V
(0)
xy1 V

(0)
x

V
(0)
xx

and admits the natural parametrization

(4.6) V (1,0)(t, x, y1) =

∫ t

0
V (1),δ,s(t, x, y1) ds,

where each V (1),δ,s is a solution of the initial value problem

V
(1),δ,s
t +

λ̄2(y1)

2

(
V

(0)
x

V
(0)
xx

)2

V (1),δ,s
xx − λ̄2(y1)

(
V

(0)
x

V
(0)
xx

)
V (1),δ,s
x = 0, t ≥ s ,

with initial condition

V (1),δ,s(s, x, y1) = C1,0(y1)
V

(0)
xy1(s, x, y1)V

(0)
x (s, x, y1)

V
(0)
xx (s, x, y1)

.

(iii) The fast scale correction term V (0,1) is given by

(4.7) V (0,1)(t, x, y1) = t C0,1(y1)

(
V

(0)
x

V
(0)
xx

)((
V

(0)
x

)2
V

(0)
xx

)
x

.

The function V (0,1) admits the natural parametrization

V (0,1)(t, x, y1) =

∫ t

0
V (1),ε,s(t, x, y1) ds,

where each V (1),ε,s is a solution of the initial value problem

V
(1),ε,s
t +

λ̄2(y1)

2

(
V

(0)
x

V
(0)
xx

)2

V (1),ε,s
xx − λ̄2(y1)

(
V

(0)
x

V
(0)
xx

)
V (1),ε,s
x = 0, t ≥ s ,
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with initial condition

V (1),ε,s(s, x, y1) = C0,1(y1)
V

(0)
x (s, x, y1)

V
(0)
xx (s, x, y1)

(
V

(0)
x (s, x, y1)2

V
(0)
xx (s, x, y1)

)
x

.

Remark 4.2. The quantities V (1),δ,s, V (1),ε,s of Proposition 4.1 should be interpreted in the same
way as their analogues in the single factor cases. We refer to Remark 2.5 for more details. However,
we highlight that the analysis identifies the following reduced parameters: λ̄(y1) in (4.1), the Sharpe
ratio root mean square-averaged with respect to the fast factor and frozen at the value y1 of the
slow factor; C1,0(y1) in (4.2), which has the effect of the correlation ρs between the slow factor and

equity returns; and C0,1(y1) in (4.3), which has the effect of the correlation ρf between the fast
factor and equity returns.

Proof of Proposition 4.1. We start with the proofs of parts (i) and (iii). To this end, we insert
δ = 0 into the HJB equation (1.6), employ Assumption 1.1, and then proceed as in the proofs of
Propositions 3.1, 3.2, and 3.4. The arguments from therein can be repeated directly by replacing
λ(y) by λ(y1, y2). In particular, V (0) and V (0,1) are determined via an averaging of the equations

(4.8) V
(0)
t − ‖λ‖

2

2

(
V

(0)
x

)2
V

(0)
xx

+ Ly2 V (0,2) = 0

and

(4.9) V
(0,1)
t +

‖λ‖2

2

(
V

(0)
x

V
(0)
xx

)2

V (0,1)
xx − V

(0)
x

V
(0)
xx

λT
(
V (0,1)
x λ+ φy2

((
V

(0)
x

)2
V

(0)
xx

)
x

αρ

)
+ Ly2 V (0,3) = 0

with respect to µ(dy2). Here ε−1Ly2 is the generator of the fast factor Y ε, that is

Ly2 =
1

2
α(y2)2∂y2y2 + γ(y2)∂y2 ,

and the terms V (0), V (0,1), V (0,2), V (0,3) are the ones appearing in the expansion of the solution to
(1.6) with δ = 0. In particular, subtracting from (4.8) its averaged version, we obtain the expression

V (0,2)(t, x, y1, y2) = −1

2
φ(y1, y2)

(
V

(0)
x

)2
V

(0)
xx

+ C(t, x, y1)

where C(t, x, y1) is a function that does not depend on y2, and φ was defined in (4.4).

It remains to prove part (ii). To this end, we again employ Assumption 1.1 and insert the ansatz

V (0) +
√
δ V (1) into the HJB equation (1.6). Collecting the terms of order

√
δ in the resulting

equation we get

V
(1)
t −

(
λ
V

(0)
x

V
(0)
xx

+

(
ρf
)T
α

√
ε

V
(0)
xy2

V
(0)
xx

)(
ρsκV (0)

xy1 + λV (1)
x +

ρfα√
ε

V
(1)
xy2

V
(0)
xx

)
+

1

2

∥∥λV (0)
x + ρf α√

ε
V

(0)
xy2

∥∥2
V

(1)
xx

V
(0)
xx

+
1

ε
γ(y)V (1)

y2 +
1

2ε
α V (1)

y2y2 +
1√
ε
κα ρs,f V (0)

y1y2 = 0.

(4.10)

We can now write V (1) = V (1,0) +
√
ε V (1,1) + ε V (1,2) and expand equation (4.10) in powers of ε as

in the proof of Proposition 3.2. By doing so, we conclude that V (1,0) and V (1,1) can be chosen as
functions independent of y2.
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Moreover, V (1,0) can be determined by averaging the equation

V
(1,0)
t +

1

2
‖λ‖2

(
V

(0)
x

V
(0)
xx

)2

V (1,0)
xx − ‖λ‖2 V

(0)
x

V
(0)
xx

V (1,0)
x − κλTρs V

(0)
xy1 V

(0)
x

V
(0)
xx

+ Ly2 V (1,2) = 0(4.11)

with respect to µ(dy2). The averaged equation is endowed with the initial condition

V (1,0)(0, x, y1) = 0 and can be solved explicitly by means of a transformation to an ill-posed
backward heat equation as in the proofs of Propositions 2.2 and 2.4. This gives the explicit formula
for V (1,0) and its natural parametrization. �

Remark 4.3. Formulas (4.6) and (4.7) can be considered as the forward performance analogs of
those appearing in [FSZ, Section 4.1] for the (backwards in time) Merton problem. The differences
highlighted in Remark 2.3 apply here too.

We now complement the explicit formulas for the leading order terms V (0), V (1,0), V (0,1) by a
convergence theorem justifying the approximation of the true value function V by the function
V (0) +

√
δ V (1,0) +

√
ε V (0,1). We will need the non-linear functional ηδ,ε, whose lengthy formula we

give in Appendix A. We also set (t, ξ, y1, y2) :=
(
t,− log V

(0)
x − ‖λ‖

2

2 t, y1, y2

)
, and let

(4.12) η̃δ,ε(t, ξ, y1, y2) := ηδ,ε(t, x, y1, y2).

Theorem 4.4 (Remainder estimate, general case). Suppose that there are δ0 > 0, ε0 > 0, and
T ≤ ∞ such that, for all (δ, ε) ∈ (0, δ0) × (0, ε0), the HJB equation (1.6) has a solution V ∈
C1,2,2,2

(
[0, T )×(0,∞)×R2

)
which is increasing and strictly concave in the second argument. Then,

(i) the quantity

(δ + ε)−1

∫
R
e−

z2

2t

∞∑
k=0

(−1)k z2k

(2k)! 2k tk

(
d

dξ

)2k ∫ t

0

∫
R
η̃δ,ε(s, ξ − χ, y1, y2) s−1/2 e−

χ2

2s dχds dz,

with η̃δ,ε defined in (4.12), is well-defined and finite for all (δ, ε) ∈ (0, δ0)× (0, ε0), and
(ii) for every (t, x, y1, y2) ∈ [0, T )× (0,∞)× R2 for which the limit superior

(4.13)

lim
δ↓0,ε↓0

(δ + ε)−1

∣∣∣∣ ∫
R
e−

z2

2t

∞∑
k=0

(−1)k z2k

(2k)! 2k tk

(
d

dξ

)2k ∫ t

0

∫
R
η̃δ,ε(s, ξ − χ, y1, y2) s−1/2 e−

χ2

2s dχds dz

∣∣∣∣
is finite, the error bound

(4.14) lim
δ↓0,ε↓0

(δ+ ε)−1
∣∣∣V (t, x, y1, y2)− V (0)(t, x, y1)−

√
δ V (1,0)(t, x, y1)−

√
ε V (0,1)(t, x, y1)

∣∣∣ <∞
applies. If the limit superior (4.13) is bounded above uniformly on a subset of [0, T )× (0,∞)×
R2, then the convergence in (4.14) is uniform on the same subset of [0, T )× (0,∞)× R2.

Remark 4.5. Condition (4.13) is of the same form as condition (2.24), and the detailed interpretation
of the latter given in Remark 2.7 applies here as well.

Proof of Theorem 4.4. We proceed as in the proof of Theorem 2.6. More specifically, we plug
V = V (0) +

√
δ V (1,0) +

√
ε V (0,1) +Q into the HJB equation (1.6) and apply a Taylor’s expansion

to the resulting equation in
√
δ and

√
ε. Hereby, we use the elementary identity

1

a+ b
=

1

a
− b

a2 + ab
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and the definitions of V (0), V (1,0), V (0,1), V (2), V (3), V (1,1), and V (1,2) to eliminate the terms of
orders 1,

√
δ, and

√
ε. The remaining equation then reads

(4.15) Qt +
‖λ‖2

2

(
V

(0)
x

V
(0)
xx

)2

Qxx − ‖λ‖2
(
V

(0)
x

V
(0)
xx

)
Qx = ηδ,ε,

where ηδ,ε is defined prior to the statement of the theorem. One can now conclude by repeating
the steps in the proof of Theorem 2.6, namely by making the change of coordinates

(4.16) (t, ξ, y1, y2) :=
(
t,− log V (0)

x − ‖λ‖
2

2
t, y1, y2

)
in (4.15), and combining Duhamel’s principle for the resulting equation with the formula for the
inverse Weierstrass transform given in [Wi2]. �

4.2. Power utility example. We illustrate the results with the family of power utility forward
performance processes. For a constant risk aversion coefficient γ ∈ (0,∞)\{1}, we impose the
initial condition of the HJB equation (1.6) to be

V (0, x) = γγ
x1−γ

1− γ
.

Similar to Section 2.2, we have the following explicit solution for the constant parameter value
function V (0)(t, x, y1) in part (i) of Proposition 4.1:

(4.17) V (0)(t, x, y1) = u
(
λ̄2(y1)t, x

)
where u(t, x) = γγ

x1−γ

1− γ
e−

1
2

Γt, and Γ =
1− γ
γ

,

which can be verified by taking the measure ν0 to be a Dirac delta centered at γ−1 and the constant
C0 = γ.

From (4.5) in Proposition 4.1 we compute

V (1,0)(t, x, y1) =
1

2
t2C1,0(y1)Γ2λ̄(y1)λ̄′(y1)V (0)(t, x, y1),

and from (4.7) we obtain

V (0,1)(t, x, y1) = t C0,1(y1)Γ2V (0)(t, x, y1).

Then, the three-term approximation to the forward performance value function is given by
(4.18)

V (t, x, y1, y2) =

(
1 +

1

2

√
δ t2C1,0(y1)Γ2λ̄(y1)λ̄′(y1) +

√
ε t C0,1(y1)Γ2

)
V (0)(t, x, y1) +O(δ + ε),

where V (0) is given explicitly in (4.17).

5. Approximately optimal portfolio

In this last section we define the portfolio associated with our approximation and establish its
approximate optimality.

Definition 5.1. Let the feedback portfolio function π≈ be given by

π≈ = −(σT )−1 λ

(
V

(0)
x

V
(0)
xx

+
√
δ
V

(0)
xx V

(1,0)
x − V (0)

x V
(1,0)
xx(

V
(0)
xx

)2 +
√
ε
V

(0)
xx V

(0,1)
x − V (0)

x V
(0,1)
xx(

V
(0)
xx

)2 )

−
√
δ κ (σT )−1 ρs

V
(0)
xy1

V
(0)
xx

+
√
ε (σT )−1ρfα

φy2

V
(0)
xx

((
V

(0)
x

)2
V

(0)
xx

)
x

(5.1)
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where V (0), V (1,0) and V (0,1) are as in Proposition 4.1 and φ is given in (4.4). The formula (5.1) is
obtained by recalling that the nonlinearity in the HJB equation (1.6) results from the optimization
problem

sup
π

(
(λVx +

√
δ κ ρs Vxy1 +

1√
ε
α ρf Vxy2)T (σ π) +

1

2
Vxx (σ π)T (σπ)

)
,

replacing V by its expansion V (0) +
√
δ V (1,0) +

√
ε V (0,1) in the formula for the corresponding opti-

mizer π∗, and applying Taylor’s expansion in δ, ε to the result. We refer to π≈ as the approximately
optimal portfolio which is justified by the next proposition.

Remark 5.2. One can use formula (4.18) for the value function in the case of the power forward
performance to compute the approximately optimal portfolio. We omit the lengthy expression here.

Proposition 5.3. Suppose that there are δ0 > 0, ε0 > 0, and T ≤ ∞ such that, for all
(δ, ε) ∈ (0, δ0) × (0, ε0), the HJB equation (1.6) has a solution V δ,ε ∈ C1,2,2,2([0, T ) × (0,∞) × R2)
which is increasing and strictly concave in the second argument. Then, the value process
V δ,ε(t,Xπ≈(t), Y δ(t), Y ε(t)) satisfies a SDE of the form

(5.2) dV δ,ε = V δ,ε
y1

√
δ κdB1(t) + V δ,ε

y2

1√
ε
α dB2(t) + V δ,ε

x σTπ≈ dW (t) + Θδ,ε dt

with drift coefficient Θδ,ε = Θδ,ε(t,Xπ≈(t), Y δ(t), Y ε(t)). If, in addition, the limits superior resulting

from (4.13) by replacing η̃δ,ε with any of η̃δ,εξ , η̃δ,εξξ , η̃δ,εξξξ, η̃
δ,ε
ξy1

, η̃δ,εξy2 are finite, then

(5.3) lim
δ↓0,ε↓0

(δ + ε)−1
∣∣Θδ,ε(t, x, y1, y2)

∣∣ <∞.
In other words, the performance of the portfolio π≈ fails to fulfill the martingale criterion of opti-
mality only by a bounded variation term of order δ + ε.

Proof. The SDE (5.2) is obtained by combining

dXπ(t) = µ
(
Y δ(t), Y ε(t)

)T
π≈(t) dt+ σ

(
Y δ(t), Y ε(t)

)T
π≈(t) dW (t),

the definition of π≈ (Definition 5.1), and Itô’s formula. Writing V δ,ε = V (0) +
√
δ V (1,0) +

√
ε V (0,1) +

Qδ,ε and recalling the HJB equation (1.6) we see that the drift coefficient Θδ,ε is a linear combination

of Qδ,εx , Qδ,εxy1 , Qδ,εxy2 , and Qδ,εxx, with the coefficients being uniformly bounded in δ, ε wherever the

limits superior lim
δ↓0,ε↓0

V δ,ε
x , lim

δ↓0,ε↓0

∣∣V δ,ε
xy1

∣∣, lim
δ↓0,ε↓0

∣∣V δ,ε
xy2

∣∣, lim
δ↓0,ε↓0

− 1

V δ,εxx
are finite.

Next, recall the change of variables (4.16), write qδ,ε(t, ξ, y1, y2) for Qδ,ε(t, x, y1, y2), and recall
from the proof of Theorem 4.4 that qδ,ε satisfies the backward equation

(5.4) qδ,εt +
‖λ‖2

2
qδ,εξξ = η̃δ,ε

with zero initial condition. Differentiation of this equation in ξ, Duhamel’s principle for the resulting

equation, and the formula for the inverse Weierstrass transform given in [Wi2] yield that qδ,εξ (and

therefore also Qδ,εx ) admits a control of the form (5.3) at a point if condition (4.13) holds for η̃δ,εξ
at that point. Repeated differentiation in ξ gives the same result for qδ,εξξ (and therefore also Qδ,εxx)

and η̃δ,εξξ , as well as for qδ,εξξξ and η̃δ,εξξξ.

Lastly, differentiate the equation (5.4) in ξ, y1 to get(
qδ,εξy1

)
t
+
‖λ‖2

2

(
qδ,εξy1

)
ξξ

= η̃δ,εξy1 − λ
T
y1 λ q

δ,ε
ξξξ.
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By linearity qδ,εξy1 = q̂δ,ε − t λTy1 λ q
δ,ε
ξξξ, where q̂δ,ε solves

q̂δ,εt +
‖λ‖2

2
q̂δ,εξξ = η̃δ,εξy1 .

Hence, q̂δ,ε admits a control of the form (5.3) wherever condition (4.13) is satisfied by η̃δ,εξy1 , whereas

qδ,εξξξ has already been controlled before. The desired bound on Qδ,εxy1 then follows from the bounds

on qδ,εξy1 , qδ,εξξ , and qδ,εξ . To finish the proof it remains to estimate Qδ,εxy2 in a similar manner and to

combine the estimates on Qδ,εx , Qδ,εxy1 , Qδ,εxy2 , and Qδ,εxx. �

Remark 5.4. In the case that only a slow factor is present (that is, in the setting of Section 2) a
statement analogous to that of Proposition 5.3 holds for the portfolio function

π≈ = −(σT )−1 λ

(
V

(0)
x

V
(0)
xx

+
√
δ
V

(0)
xx V

(1)
x − V (0)

x V
(1)
xx(

V
(0)
xx

)2 )
−
√
δ κ (σT )−1 ρ

V
(0)
xy

V
(0)
xx

where V (0) and V (1) are as in Propositions 2.1 and 2.2, respectively.

We easily deduce that a similar result holds for the case that only a fast factor is present (that
is, in the setting of Section 3) for the portfolio function

π≈ = −(σT )−1 λ

(
V

(0)
x

V
(0)
xx

+
√
ε
V

(0)
xx V

(1)
x − V (0)

x V
(1)
xx(

V
(0)
xx

)2 )
+
√
ε (σT )−1ρα

φy

V
(0)
xx

((
V

(0)
x

)2
V

(0)
xx

)
x

where V (0) and V (1) are as in Propositions 3.1 and 3.2, respectively, and φ(y) is given in (3.8).

6. Conclusion

We have provided a convergent approximation for forward performance processes in a multifactor
incomplete markets model, as well as for the corresponding optimal portfolio. Our approach is
based on a perturbation analysis of the corresponding ill-posed HJB equation. The principal term
in the approximation results from the appropriately averaged problem, whose solution is known
from Widder’s Theorem. The correction terms for fast and slow volatility factors can be computed
explicitly in terms of this leading order term.

We have also given explicit calculations in the case of power utility. The ease of the formulas
provided in more general cases, as well as conditions for convergence, should allow future work
to develop the financial implications of forward performance processes in realistic market environ-
ments.
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Appendix A. Expression for ηδ,ε in Section 4

ηδ,ε := − 1

Vxx

(
δ

2
‖λ‖2

(
V (1,0)
x

)2
+
ε

2
‖λ‖2

(
V (0,1)
x

)2
+
‖λ‖2

2

(
Vx − V (0)

x −
√
δ V (1,0)

x −
√
ε V (0,1)

x

)2
+
κ2

2
‖ρs‖2 δ

(
V (0)
xy1

)2
+
δ2

2
κ2 ‖ρs‖2

(
V (1,0)
xy1

)2
+
δ

2
ε κ2 ‖ρs‖2

(
V (0,1)
xy1

)2
+

1

2ε
α2 ‖ρf‖2 (Vxy2)2

+
δ

2
κ2 ‖ρs‖2

(
Vxy1 − V (0)

xy1 −
√
δ V (1,0)

xy1 −
√
ε

2
V (0,1)
xy1

)2
+ δ κ λTρs V (0)

x V (1,0)
xy1

+ κλTρs
√
δ ε V (0)

x V (0,1)
xy1 +

√
δ ε ‖λ‖2 V (1,0)

x V (0,1)
x + κλTρs δ V (0)

xy1 V
(1,0)
x

+ δ3/2 κλTρs V (1,0)
x V (1,0)

xy1 + δ
√
ε κ λTρs V (1,0)

x V (0,1)
xy1 +

√
δ√
ε
α λTρf V (1,0)

x Vxy2

+
√
δ ε κ λTρs V (0)

xy1 V
(1,0)
x + δ

√
ε κ λTρs V (0,1)

x V (1,0)
xy1 +

√
δ ε κ λTρs V (0,1)

x V (0,1)
xy1

+ αλTρf V (0,1)
x Vxy2 + δ3/2 κ2 ‖ρs‖2 V (0)

xy1 V
(1,0)
xy1 + δ

√
ε κ2 ‖ρs‖2 V (0)

xy1 V
(0,1)
xy1

+

√
δ√
ε
α κ
(
ρs
)T
ρf V (0)

xy1 Vxy2 + δ3/2√ε κ2 ‖ρs‖2 V (1,0)
xy1 V (0,1)

xy1 +
δ√
ε
α κ
(
ρs
)T
ρf V (1,0)

xy1 Vxy2

+
√
δ α κ

(
ρs
)T
ρf V (0,1)

xy1 Vxy2 + κ ρs
(
Vxy1 − V (0)

xy1 −
√
δ V (1,0)

xy1 −
√
ε V (0,1)

xy1

)
×
(√
δ λ V (0)

x +
√
δ λ V (1,0)

x + δ κ ρs V (0)
xy1 + δ3/2 κ ρs V (1,0)

xy1 + δ
√
ε κ ρs V (0,1)

xy1 +

√
δ√
ε
α ρf Vxy2

)
+ λ

(
Vx − V (0)

x −
√
δ V (1,0)

x −
√
ε V (0,1)

x

)
×
(√
δ λ V (1,0)

x +
√
ε λ V (0,1)

x +
√
δ κ ρs V (0)

xy1 + δ κ ρs V (1,0)
xy1 +

√
δ ε κ ρs V (1,0)

xy1 +
1√
ε
α ρf Vxy2

)
+
√
δ κ λTρs

(
Vx − V (0)

x −
√
δ V (1,0)

x −
√
ε V (0,1)

x

) (
Vxy1 − V (0)

xy1 −
√
δ V (1,0)

xy1 −
√
ε V (0,1)

xy1

))
−
(

1

Vxx
− 1

V
(0)
xx

)(
‖λ‖2

√
δ V (0)

x V (0),δ
x + ‖λ‖2

√
ε V (0)

x V (0),ε
x +

√
δ κ λTρs V (0)

x V (0)
xy1

+
1√
ε
α λTρf V (0)

x Vxy2 + ‖λ‖2 V (0)
x

(
Vx − V (0)

x −
√
δ V (1,0)

x −
√
ε V (0,1)

x

))

− ‖λ‖
2

2

(
V

(0)
x

V
(0)
xx

)2 (
Vxx − V (0)

xx

)2
Vxx

−Aδy1 V −
Aεy2
ε

(
V − ε V (2) − ε3/2 V (3) −

√
δ ε3/2 V (1,2)

)
.

Here Aεy2 V
(2), Aεy2 V

(3) and Aεy2 V
(1,2) are defined through (4.8), (4.9) and (4.11), respectively.
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