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Abstract

We introduce and construct indi¤erence prices under exponential for-
ward performance criteria in an incomplete binomial model. We propose a
pricing algorithm, which is iterative and yields the price in two sub-steps,
locally in time. At the beginning of each period, an intermediate payo¤
is produced which is non-linear and replicable, and, in turn, it is priced
by arbitrage, in the second sub-step. The indi¤erence price is thus con-
structed via an iterative non-linear pricing operator, which also involves
a martingale measure. The latter turns out to minimize the reverse rel-
ative entropy. Properties of the forward prices are discussed as well as
di¤erences with their classical counterparts.

1 Introduction

We introduce, construct and study indi¤erence prices in an incomplete binomial
model under forward performance criteria. Such criteria, proposed by two of the
authors (see, among others, [12] and [15]), complement the traditional expected
utility ones by allowing for dynamic adaptation of risk preferences as the market
evolves. We refer the reader to, among others, [15], [16], [17] and [19] for an
overview on the forward performance approach.
The binomial model we consider is more general than the ones studied in

the traditional exponential indi¤erence valuation literature, for it includes a
non-traded stochastic factor that a¤ects not only the claim�s payo¤ (as it is the
case, among others, in [1], [4], [10], [11], [23] and [24]) but, also, the transition
probability and/or the values of the traded stock. This extension is crucial in
incorporating models with stochastic investment opportunity sets. Binomial
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models of this kind were analyzed in the classical setting in [9] and [18] for
power and exponential utilities, respectively.
We �rst construct a forward performance process for the incomplete model

herein and, in turn, analyze the associated indi¤erence prices. We focus on a
criterion of exponential type (cf. (13)) since exponential risk preferences have
been predominantly used in indi¤erence valuation.
The main contribution is the construction of a valuation algorithm for the

forward indi¤erence prices. We show that, for a claim written at time 0 and
maturing at t; its price �s (Ct) ; s = 0; 1; :::; t; satis�es

�s (Ct) = E(s:s+1)Q� (�s+1 (Ct)) := EQ�

�
1


lnEQ�

�
e�s+1(Ct)

���Fs _ FSs+1�����Fs� ;
where Fs and FSs are the �ltrations generated by both the stock and the sto-
chastic factor, and the stock, respectively, and Q� an appropriately chosen mar-
tingale measure.
Therefore, the price is constructed iteratively,

�s (Ct) = E(s;t)Q� (Ct) := E(s;s+1)Q�

�
E(s+1;s+2)Q� :::E(t�1;t)Q� (Ct)

�
:

Each price iteration has two sub-steps. In the �rst, the intermediate payo¤

C(s;s+1) (�s+1 (Ct)) :=
1


lnEQ�

�
e�s+1(Ct)

���Fs _ FSs+1� (1)

is produced, which is non-linear and replicable. In turn, its arbitrage-free price
yields, in the second sub-step, the indi¤erence price,

�s (Ct) = EQ�
�
C(s;s+1) (�s+1 (Ct))

���Fs� : (2)

Central role plays the emerging pricing measure Q�; which turns out to be a
martingale one that minimizes the reverse relative entropy (see Proposition 7).
Moreover, it has the property that the conditional distribution of the stochastic
factor, given the information on the traded stock, remains the same as the one
under the historical measure (see (36)), in that, for s = 1; 2; :::; t;

Q�
�
Ys
��Fs�1 _ FSs � = P �Ys ��Fs�1 _ FSs � :

The forward indi¤erence prices have intuitively pleasing properties. Among
others, we show that the above intermediate payo¤ C(s;s+1) (�s+1 (Ct)) provides
a direct analogue of the traditional certainty equivalent (cf. (51)). Namely,
consider the nonlinear payo¤ of certainty equivalent type

CE(s;s+1) (�s+1 (Ct)) := �U (�1)s+1

�
EP
�
Us+1 (��s+1 (Ct))j Fs _ FSs+1

��
; (3)

where P is the historical measure, Us+1 the forward performance process and
U
(�1)
s+1 its spatial inverse. We establish that it coincides with the above payo¤,

CE(s;s+1) (�s+1 (Ct)) = C(s;s+1) (�s+1 (Ct)) :
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As a result, the forward indi¤erence price can be represented as the arbitrage-
free price of an appropriately chosen conditional certainty equivalent for each
valuation period.
We also show that the single-period conditional distribution of the pricing

measure Q� depends exclusively on the associated single-period conditional risk
neutral and historical probabilities (see (32),(33)). This, together with the form
of E(s:s+1)Q� above, highlight the essential features of the indi¤erence valuation
under forward exponential criteria: the price is constructed by "single-period"
operations - both in terms of the pricing functional and the involved pricing
measure - which are repeated from one-period to the next with single-period
adjustments of the conditional risk neutral and historical probabilities. Fur-
thermore, all three pricing ingredients, Q�; E(s:s+1)Q� and E(s:t)Q� ; are independent
of the maturity of the claim. Finally, because forward performance criteria are
de�ned for all times, sequentially from one period to the next as the market
moves (cf. (17)), one can price claims that arrive at later times with arbitrary
maturities (see discussion below Corollary 13).
Note that most of these properties fail in the classical setting, where prices

are de�ned in terms of expected utility from terminal wealth in a chosen horizon,
say [0; T ]. Indeed, while the forms of the corresponding single- and multi-step
pricing functionals E(s:s+1)Qme

T
and E(s:t)Qme

T
are similar to the ones herein (see, [23],

[24], [10] for complete markets and a claim written only on the nontraded asset,
and [18] for a model like the one herein), the choice of the horizon strongly a¤ects
the pricing measure QmeT , which is the minimal relative entropy one ([2], [5],
[21]). Moreover, its conditional distribution does not have the aforementioned
local features that Q� has. From the indi¤erence valuation perspective, once
the investment horizon is (pre)chosen, no new claim arriving at a future time,
that was not known a priori when the original investment horizon was set up,
and maturing beyond T can be priced.
The paper is organized as follows. In section 2, we present the model and its

forward investment performance process, and propose an example of exponential
type. In section 3, we introduce the forward indi¤erence price and in section 4
we construct the associated pricing algorithm. In section 5, we present various
properties of the prices and discuss di¤erences with their classical counterparts.

2 The model and its forward performance crite-
ria

We start with the probabilistic setup of the incomplete multi-period binomial
model. There are two traded assets, a riskless bond and a stock. The bond is
assumed to o¤er zero interest rate.
The values of the stock are denoted by St; t = 1; 2; ::: with S0 > 0:We de�ne

the random variables

�t =
St
St�1

; �t = �
d
t ; �

u
t with 0 < �dt < 1 < �

u
t : (4)
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Incompleteness comes from a non-traded stochastic factor. Its levels, de-
noted by Yt; t = 0; 1; :::; satisfy Yt 6= 0. We introduce the random variables

�t =
Yt
Yt�1

; �t = �
d
t ; �

u
t with 0 < �dt < �

u
t : (5)

We then view f(St; Yt) : t = 0; 1; :::g as a two-dimensional stochastic process
de�ned on a probability space (
;F ; (Ft) ;P). The �ltration Ft is generated by
Si and Yi, or, equivalently, by the random variables �i and �i, for i = 0; 1; :::; t.
We also consider the �ltration FSt generated only by Si; i = 0; 1; :::; t. The real
(historical) probability measure on 
 and F is denoted by P.
We introduce the sets

At = f! : �t (!) = �ut g and Bt = f! : �t (!) = �ut g ; (6)

and assign the single-period conditional probabilities P (AtBtj Ft�1) ;
P (AtBct j Ft�1) ; P (ActBtj Ft�1), P (ActBct j Ft�1) ; for t = 1; 2; ::::
Throughout, we will be using the notation AB to denote the intersection

A \ B of sets A and B: We will be also using the notations "Z 2 Ft" or "Z
is Ft-mble" interchangeably to state that a generic random variable Z is Ft-
measurable.
An investor starts at t = 0 with endowment X0 = x; x 2 R; and trades

between the stock and the bond, following self-�nancing strategies. The number
of shares of stock held in his portfolio over the time interval [t�1; t); t = 1; 2; :::;
is denoted by �t: The set of admissible policies is denoted by A and consists
of all sequences � = f�1; �2; ::; �t; :::g ; where each term �t is a real-valued
Ft�1-mble random variable.
The investor�s wealth is, then, given, for t = 1; 2; :::, by

X�
t = x+

tX
i=1

�i 4 Si; (7)

where the price increment 4Si = Si � Si�1.
The performance of the various investment strategies is measured via a sto-

chastic criterion, the so-called forward performance process, which measures
the output of admissible portfolios and gives a selection criterion as follows: a
strategy is deemed optimal if it generates a wealth process whose average per-
formance is maintained over time. Speci�cally, the average performance of this
strategy, at any future date, conditionally on today�s information preserves the
performance of this strategy up until today. Any strategy that fails to maintain
the average performance over time is, then, sub-optimal. We formalize this more
rigorously below.

De�nition 1 An Ft-adapted process Ut (x) is a forward performance process
if, for t = 0; 1; :::;
i) the mapping x! Ut (x) ; x 2 R; is strictly increasing and strictly concave,
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ii) for each � 2 A,

Ut (X
�
t ) � EP

�
Ut+1

�
X�
t+1

���Ft� ; (8)

iii) there exists �� 2 A for which

Ut

�
X��

t

�
= EP

�
Ut+1

�
X��

t+1

����Ft� : (9)

The concept of forward performance process was introduced by two of the
authors in [12] for the binomial model at hand in a single-period setting. It was
subsequently extended to Itô-di¤usion markets, and we refer the reader, among
others, to [14], [15], [17], and [19], and references therein.
Characterizing the entire family of forward performance processes remains

an open question and is being currently investigated by the authors and others.
In the case of Itô-di¤usion markets, a stochastic PDE was derived in [16] for
the forward performance process. The novel element therein is the forward
performance volatility process, which is an investor-speci�c input. As a result,
forward performance processes are not in general unique.
Special classes of volatilities were proposed in [15], which can be interpreted

as zero-volatility cases for alternative market settings under a di¤erent nu-
meraire and/or market views. More recent works on the forward SPDE include
[3], [8], [19], [20] and [22]. For a complete study of the zero-volatility case see
[17].
Herein, we study discrete-time forward processes and focus on analyzing the

associated indi¤erence prices. Because in the classical expected utility frame-
work such prices have been constructed primarily for exponential risk prefer-
ences, we are interested in a similar class of criteria as well.

2.1 An exponential forward performance process

We look for a forward performance process of the form

Ut (x) = �e�x+H0;t ; x 2 R and  > 0;

for an appropriately chosen process H0;t; satisfying H0;0 = 0 and H0;t 2 Ft;
t = 1; 2; ::::
As mentioned earlier, forward performance processes are not unique, for they

depend critically on the choice of their volatility process. Herein, we focus on a
forward process of the above form which, as we show below, turns out to also be
decreasing in time, for each x:We choose to start with this class of discrete-time
forward criteria because they provide the simplest direct extension of the zero-
volatility case in Itô-di¤usion markets, which also turn out to be time-monotone
processes (see [17]).
For general semimartingale markets, exponential forward processes were ana-

lyzed in [27], and subsequently used for the construction of maturity-independent
entropic risk measures in [26].
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We proceed with some auxiliary results. For t = 1; 2; :::; we denote by Qt
the set of equivalent martingale measures de�ned on Ft. We also denote (with
a slight abuse of notation) by Q its generic element and recall the conditional
risk neutral probabilities

qt = Q (Atj Ft�1) =
1� �dt
�ut � �dt

; (10)

with At and �
d
t ; �

u
t as in (6) and (4).

De�nition 2 The process ht; t = 1; 2; :::; is de�ned by

ht = qt ln
qt

P (Atj Ft�1)
+ (1� qt) ln

1� qt
P (Act j Ft�1)

; (11)

with qt and At as in (10) and (6), respectively.

Note that actually ht 2 Ft�1 and, moreover,

e�ht =

�
P (Atj Ft�1)

qt

�qt �P (Act j Ft�1)
1� qt

�1�qt
: (12)

We present one of the main results next.

Theorem 3 Let h as in (11) and  > 0. Then, for t = 1; 2; ::: and x 2 R; the
process

Ut (x) = �e�x+�
t
i=1hi ; (13)

with U0 (x) = �e�x, is a forward performance.
The policy given, for i = 1; 2; :::; t; by

��i =
1

Si�1

�
�ui � �di

� ln (�ui � 1)P (Aij Fi�1)�
1� �di

�
P (Aci j Fi�1)

(14)

is optimal and generates the optimal wealth process

X�
t = x+

1



tX
i=1

�i � 1�
�ui � �di

� ln (�ui � 1)P (Aij Fi�1)�
1� �di

�
P (Aci j Fi�1)

: (15)

We �rst present the following auxiliary result.

Lemma 4 For i = 1; 2; :::; and hi as in (11), we have

sup
�i2Fi�1

EP
�
�e��i�Si jFi�1

�
= �e�hi ; (16)

with the maximum occurring at ��i given in (14).
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Proof. We have, with Ai as in (6),

EP
�
�e��i�Si

��Fi�1�
= EP

�
�e��iSi�1(�

u
i �1)1Ai

���Fi�1�+ EP ��e��iSi�1(�di�1)1Ac
i

���Fi�1�
= �

�
e��iSi�1(�

u
i �1)P (Aij Fi�1) + e��iSi�1(�

d
i�1)P (Aci j Fi�1)

�
;

where we used the measurability properties of the involved quantities. Direct
di¤erentiation then yields that the optimum occurs at (14). Then, the �rst term
above becomes

�e��
�
i Si�1(�

u
i �1)P (Aij Fi�1) = �

�
e�

�
i Si�1(�

u
i ��

d
i )
�� �ui �1

�u
i
��d

i P (Aij Fi�1)

= �

0@ (�ui � 1)P (Aij Fi�1)�
1� �di

�
P (Aci j Fi�1)

1A
�

�ui �1
�u
i
��d

i

P (Aij Fi�1)

= �
�
1� qi
qi

��(1�qi)�P (Aij Fi�1)
P (Aci j Fi�1)

��(1�qi)
P (Aij Fi�1)

= �
�

qi
1� qi

�1�qi
(P (Aij Fi�1))qt (P (Aci j Fi�1))

1�qi ;

where we used (10). Similarly,

�e��
�
i Si�1(�

d
i�1)P (Aci j Fi�1)

= �
�
1� qi
qi

�qi
(P (Aij Fi�1))qi (P (Aci j Fi�1))

1�qi :

Therefore,

EP

�
�e��

�
i�Si

���Fi�1�
= �(P (Aij Fi�1))qi (P (Aci j Fi�1))

1�qi

 �
qi

1� qi

�1�qi
+

�
1� qi
qi

�qi!

= �
�
P (Aij Fi�1)

qi

�qi �P (Aci j Fi�1)
qi

�1�qi
(qi + (1� qi)) = �e�hi ;

where we used (12).
We continue with the proof of Theorem 3.

Proof. Requirement (i) in De�nition 1 follows directly. Next, we establish (8).
Using (7) and (13), we need to show that, for t � 0 and �i 2 Fi�1; i = 1; :::; t+1;
and x 2 R;

�e�(x+�
t
i=1�i�Si)+�

t
i=1hi � EP

�
�e�(x+�

t+1
i=1�i�Si)+�

t+1
i=1hi jFt

�
:
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The above inequality reduces to

EP
�
�e��t+1�St+1 jFt

�
� �e�ht+1 ;

and we easily conclude using Lemma 4.
To show (9) we work as follows. Let X�

t ; t = 0; 1; :::; given by (15). We need
to establish

�e�X
�
t +�

t
i=1hi = EP

�
�e�X

�
t+1+�

t+1
i=1hi jFt

�
:

Using that X�
t+1 = X�

t + �
�
t+1 4 St+1 and the measurability of the involved

quantities, the above equality simpli�es to EP
�
e��

�
t+14St+1+ht+1 jFt

�
= 1;

and we conclude using Lemma 4 once more.

We note how Ut (x) is constructed from one period to the next: at each time
t;

Ut (x) = Ut�1 (x) e
ht

= Ut�1 (x)

�
qt

P (Atj Ft�1)

�qt � 1� qt
P (Act j Ft�1)

�1�qt
; (17)

(cf. (13) and (11)). In other words, to construct Ut (x) ; we need Ut�1 (x)
and the single-period conditional risk neutral and historical probabilities qt and
P (Atj Ft�1) ;measuring the movement of the traded asset for the next upcoming
period only, conditionally on today�s information. In other words, the forward
process is constructed by progressive, forward in time, "single-period" model
updates. Moreover, the forward performance process incorporates the market
information from initial time 0 up to current time t; "path-by-path", as the
term H0;t = e�

t
i=1hi indicates. Thus, Ut (x) evolves in perfect alignment with

the market, forward in time.
This is not the case in the classical expected utility framework. For a trad-

ing horizon, say [0; T ] ; the classical value process is of the form Vt;T (x) =
�e�x+Ht;T ; with Ht;T being the aggregate minimal entropy conditionally on
Ft; till the end of the investment horizon [t; T ] (see, for example, [21]). There-
fore, for any time t 2 [0; T ] ; its construction uses the model speci�cation for
the entire remaining investment time [t; T ] ; and incorporates the market infor-
mation in a much coarser manner, through the term Ht;T associated with the
average aggregate relative entropy from t to T; conditionally on Ft:

3 Forward exponential indi¤erence valuation

In this section, we recall the notion of the writer�s forward exponential indi¤er-
ence price and provide an iterative algorithm for its construction. Such prices
were �rst introduced in [12] (see, also, [11]) for European claims in a single pe-
riod model. They were subsequently studied in di¤usion models with stochastic
volatility in [13], and for American-type claims in [7].
Herein, we consider a generic claim, written on both the traded stock and

the non-traded factor, say at time t0; taken for simplicity to be t0 = 0. The
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claim matures at t > 0 yielding payo¤ Ct; represented as an Ft-mble random
variable.
For convenience, we eliminate the "exponential" terminology and also occa-

sionally rewrite some quantities for the reader�s convenience.

De�nition 5 Consider a claim, written at time t0 = 0 and yielding at t > 0
payo¤ Ct 2 Ft: Let Us; s = 0; 1; :::; t; be the forward performance process given
by

Us (x) = �e�x+�
s
i=1hi

and h as in De�nition 1 (cf. (13) and (11)).
For s = 0; 1; :::; t� 1; the writer�s forward indi¤erence price is de�ned as the

amount �s(Ct) 2 Fs such that, for all wealth levels x 2 R;

Us (x) = sup
�s+1;:::;�t

EP
�
Ut
�
x+ �s(Ct) + �

t
i=s+1�i�Si � Ct

���Fs� ; (18)

with �i 2 Fi�1; i = s+ 1; :::; t; and �t(Ct) = Ct:

Similarly to the classical setting, the above indi¤erence pricing condition
re�ects the indi¤erence of the writer between two scenaria: start at s with
wealth x and trade optimally till t without taking the claim in consideration, or
start at s with wealth x and also accept the compensation �s(Ct); then trade
optimally (with initial wealth x + �s(Ct)) till t and also ful�ll the liability Ct;
at time t.
For the reader�s convenience, we start with the construction of the indi¤er-

ence price �t�1 (Ct) ; just one period before maturity. Its form will motivate the
upcoming choices of the pricing functionals as well as the speci�cation of the
emerging pricing measure, for all previous times.

Lemma 6 At time t� 1; the indi¤erence price �t�1 (Ct) is given by

�t�1 (Ct) = qt
1


ln

 
EP
�
eCt1At

��Ft�1�
P (Atj Ft�1)

!
+ (1� qt)

1


ln
EP
�
eCt1Ac

t

��Ft�1�
P (Act j Ft�1)

;

(19)
with qt and At as in (10) and (6).

Proof. We need to show that for x 2 R;

Ut�1 (x) = sup
�t2Ft�1

EP

�
�e�(x+�t�1(Ct)+�t�St�Ct)+�

t
i=1hi

���Ft�1� ;
with �t�1 (Ct) as in (19). Using (13) and the measurability of the involved
quantities, the above reduces to showing

sup
�t2Ft�1

EP

�
�e�(�t�1(Ct)+�t�St�Ct)+ht

���Ft�1� = 1: (20)

We have,

EP

�
�e�(�t�St�Ct)

���Ft�1�
9



= EP

�
�e��tSt�1(�

u
t �1)eCt1At

���Ft�1�+ EP ��e��tSt�1(�dt�1)eZ1Ac
t

���Ft�1�
= �

�
e��tSt�1(�

u
t �1)EP

�
eCt1At

��Ft�1�+ e��tSt�1(�dt�1)EP �eCt1Ac
t

��Ft�1��
= �

�
e��tSt�1(�

u
t �1)Z1t�1 + e

��tSt�1(�dt�1)Z2t�1

�
;

with the random variables Z1t�1; Z
2
t�1 de�ned as

Z1t�1 = EP
�
eCt1At

��Ft�1� and Z2t�1 = EP
�
eCt1Ac

t

��Ft�1� . (21)

The optimum above occurs at

��;Ctt =
1

St�1

�
�ut � �dt

� ln (�ut � 1)Z1t�1�
1� �dt

�
Z2t�1

=
1

St�1

�
�ut � �dt

� ln (1� qt)Z1t�1
qtZ2t�1

:

In turn,

EP

�
�e�(�

�;Ct
t �St�Ct)

���Ft�1�
= �

 �
1� qt
qt

Z1t�1
Z2t�1

��(1�qt)
Z1t�1 +

�
1� qt
qt

Z1t�1
Z2t�1

�qt
Z2t�1

!

= �
�
Z1t�1
qt

�qt � Z2t�1
1� qt

�1�qt
:

Therefore,

EP

�
�e�(�

�;Ct
t �St�Ct)

���Ft�1� = � exp ln �Z1t�1
qt

�qt � Z2t�1
1� qt

�1�qt!!

= � exp
�
qt ln

Z1t�1
qt

+ (1� qt) ln
Z2t�1
1� qt

�
:

Next, observe that

qt ln
Z1t�1
qt

+ (1� qt) ln
Z2t�1
1� qt

= qt ln
EP
�
eCt1At

��Ft�1�
qt

+ (1� qt) ln
EP
�
eCt1Ac

t

��Ft�1�
1� qt

= qt ln

 
EP
�
eCt1At

��Ft�1�
P (Atj Ft�1)

!
+ (1� qt) ln

EP
�
eCt1Ac

t

��Ft�1�
P (Act j Ft�1)

�
�
qt ln

P (Atj Ft�1)
qt

+ (1� qt) ln
P (Act j Ft�1)
1� qt

�
= �t�1 (Ct)� ht:
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Therefore,

sup
�t2Ft�1

EP

�
�e�(�

�;Ct
t �St�Ct)

���Ft�1� = �e�t�1(Ct)�ht ;
and (20) follows.

Next, we make the following key observations. First, let us de�ne the random
variable

C(t�1;t) (Ct) :=
1


ln
EP
�
eCt

��Ft�1�
P (Atj Ft�1)

1At +
1


ln
EP
�
eCt

��Ft�1�
P (Act j Ft�1)

1Ac
t
; (22)

and observe that C(t�1;t) (Ct) 2 FSt : In particular, it can be expressed as

C(t�1;t) (Ct) =
1


lnEP

�
eCt

��Ft�1 _ FSt � : (23)

In turn, observe that (19) yields that the indi¤erence price is the conditional ex-
pectation of C(t�1;t) (Ct) under any martingale measure, namely, for all Q 2Qt;

�t�1 (Ct) = EQ

�
C(t�1;t) (Ct)

���Ft�1� : (24)

What the above tells us is that the indi¤erence price �t�1 (Ct) is constructed
via a two-step pricing procedure. In the �rst step, the claim�s payo¤ Ct is "dis-
torted", conditionally on Ft�1 _ FSt ; and the intermediate payo¤ C(t�1;t) (Ct)
is created. The payo¤ is nonlinear and FSt -mble. In the second step, the indif-
ference price is produced as the arbitrage-free price of this intermediate payo¤
C(t�1;t) (Ct).
Note that if Ct 2 FSt ; then, C(t�1;t) (Ct) = Ct and, naturally, �t�1 (Ct) =

EQ (Ctj Ft�1) : In general, the price can be represented as the non-linear expres-
sion

�t�1 (Ct) = EQ

�
1


lnEP

�
eCt

��Ft�1 _ FSt �����Ft�1� ;
which involves an inner non-linear expression under the historical measure, and
an outer conditional expectation under any martingale measure.
Next, we pose the question whether we can actually express the price �t�1 (Ct)

as
�t�1 (Ct) = E(t�1;t)Q� (Ct) ;

for an appropriate indi¤erence pricing non-linear functional and a speci�c mar-
tingale measure (not necessarily unique) Q� 2 Qt. This will provide an in-
tuitively pleasing non-linear analogue of forward indi¤erence prices to their
arbitrage-free counterparts.
To this end, the values of the payo¤ C(t�1;t) (Ct) suggest that we should seek

a martingale measure Q� 2 Qt such that

EP
�
eCt1At

��Ft�1�
P (Atj Ft�1)

=
EQ�

�
eCt1At

��Ft�1�
Q� (Atj Ft�1)

11



and
EP
�
eCt1Ac

t

��Ft�1�
P (Act j Ft�1)

=
EQ�

�
eCt1Ac

t

��Ft�1�
Q� (Act j Ft�1)

We, then, see that it su¢ ces for the candidate measure Q� to satisfy

Q� (AtBtj Ft�1)
qt

=
P (AtBtj Ft�1)
P (Atj Ft�1)

,
Q� (AtBct j Ft�1)

qt
=
P (AtBct j Ft�1)
P (Atj Ft�1)

(25)
Q� (ActBtj Ft�1)

1� qt
=
P (ActBtj Ft�1)
P (Act j Ft�1)

;
Q� (ActBct j Ft�1)

1� qt
=
P (ActBct j Ft�1)
P (Act j Ft�1)

:

(26)
In turn, we observe that, under such Q�; the intermediate payo¤ C(t�1;t) (Ct)
retains its form, in that under both P and Q�;

C(t�1;t) (Ct) =
1


lnEQ�

�
eCt

��Ft�1 _ FSt � = 1


lnEP

�
eCt

��Ft�1 _ FSt � :
We then see that if we de�ne the non-linear pricing functional

E(t�1;t)Q� (Z) := EQ�
�
C(t�1;t) (Z)

���Ft� = EQ� � 1

lnEQ�

�
eZ
��Ft�1 _ FSt �����Ft�1� ;

(27)
for a generic Z 2 Ft, we can actually express the indi¤erence price at t � 1 in
the desired concise form

�t�1 (Ct) = E(t�1;t)Q� (Ct) : (28)

Observe that the measure Q� is used in both expectations in (27) since the outer
one is applied to an FSt �mble random variable.
Notice that despite the fact that both forward random functionals Ut and

Ut�1; entering in the derivation of �t�1 (Ct) ; are path-dependent through the
terms �ti=1hi and �

t�1
i=1hi appearing in their exponents (cf. (13)), the indi¤erence

price �t�1 (Ct) takes a substantially simpli�ed "single-period" form.
Furthermore, the involved conditional probabilities of the emerging pricing

measure Q� have also "single-period" dependence, since they are determined
exclusively by qt and P (Atj Ft�1) (cf. (25),(26)).
A natural question arises, given the nonlinearity of C(t�1;t) (Ct) ; whether it

can be interpreted as a certainty equivalent of some form. In section 4, we show
that this is indeed the case. Speci�cally, we establish that

C(t�1;t) (Ct) = �U (�1)t

�
EP

�
Ut (�Ct)

��Ft�1 _ FSt �� :
This also yields a natural interpretation of �t�1 (Ct) as the arbitrage-free price
of a payo¤ with certainty equivalent characteristics.
In the next section, we show how to extend the above constructions and

interpetations to all previous periods t � 2; t � 3; :::; de�ne analogous to (23),
(24) pricing functionals and specify a pricing measure from the martingale ones
satisfying similar to (25),(26) properties.

12



4 The (writer�s) forward indi¤erence pricing al-
gorithm

Motivated by the form of the indi¤erence price �t�1 (Ct) in (28), we seek an
analogous price representation,

�s (Ct) = E(s;t)Q� (Ct) ;

for an appropriate chosen multi-period valuation functional E(s;t)Q� and a pricing
measure Q�; for s = 0; 1; :::; t: As for the case s = t � 1, the main challenge is
how to incorporate the path dependence of the forward functionals Us and Ut
(appearing in De�nition 5) coming from the terms �si=1hi and �

t
i=1hi (cf. (13)).

We propose such a multi-period pricing functional of an iterative form,

E(s;t)Q� (�) = E(s;s+1)Q�

�
E(s+1;s+2)Q� :::E(t�1;t)Q� (�)

�
, with the single-period pricing func-

tionals resembling (27). We also show that the appropriate pricing measure Q�
is a martingale one that has similar to (25),(26) local properties. Furthermore,
we prove that it actually minimizes the reverse relative entropy in [0; t] over all
martingale measures de�ned on Ft:

4.1 The forward indi¤erence pricing measure, and the
single- and multi-step valuation functionals

We start with some introductory results and notation. For t = 1; 2; :::; recall
that Qt is the set of equivalent martingale measures and Q its generic element.
For s = 1; 2; :::; t; we have

Q
�
�s 2

n
�ds ; �

u
s

o
; �s 2

�
�ds ; �

u
s

	
jFs�1

�
= Q (AsBsj Fs�1)1AsBs

+Q (AsBcsj Fs�1)1AsBc
s
+Q (AcsBsj Fs�1)1Ac

sBs
+Q (AcsBcsj Fs�1)1Ac

sB
c
s
;

and, similarly, for the historical measure,

P
�
�s 2

n
�ds ; �

u
s

o
; �s 2

�
�ds ; �

u
s

	
jFs�1

�
= P (AsBsj Fs�1)1AsBs

+P (AsBcsj Fs�1)1AsBc
s
+ P (AcsBsj Fs�1)1Ac

sBs
+ P (AcsBcsj Fs�1)1Ac

sB
c
s
;

with �s; �s; As; Bs as in (4),(5) and (6).
We will be using the condensed notation for the conditional distributions

Q (�s; �s jFs�1 ) , Q
�
�s 2

n
�ds ; �

u
s

o
; �s 2

�
�ds ; �

u
s

	
jFs�1

�
(29)

and
P (�s; �s jFs�1 ) , P

�
�s 2

n
�ds ; �

u
s

o
; �s 2

�
�ds ; �

u
s

	
jFs�1

�
: (30)

Next, we seek a martingale measure that minimizes, for s = 1; 2; :::; t; the
conditional expectation

�EP
�
ln
Q (�s; �s jFs�1 )
P (�s; �s jFs�1 )

����Fs�1� : (31)

13



For this, we need to �nd the minimizers of

�
�
P (AsBs jFs�1 ) ln

Q (As; Bs jFs�1 )
P (As; Bs jFs�1 )

+P (AsBcs jFs�1 ) ln
Q (AsBcs jFs�1 )
P (AsBcs jFs�1 )

+P (AcsBs jFs�1 ) ln
Q (AcsBs jFs�1 )
P (AcsBs jFs�1 )

+P (AcsBcs jFs�1 ) ln
Q (AcsBcs jFs�1 )
P (AcsBcs jFs�1 )

�
:

Direct calculations yield the above quantity is minimized if one chooses

Q� (AsBsj Fs�1)
qs

=
P (AsBsj Fs�1)
P (Asj Fs�1)

;
Q� (AsBcsj Fs�1)

qs
=
P (AsBcsj Fs�1)
P (Asj Fs�1)

;

(32)
Q� (AcsBsj Fs�1)

1� qs
=
P (Acs; Bsj Fs�1)
P (Acsj Fs�1)

;
Q� (AcsBcsj Fs�1)

1� qs
=
P (Acs; Bcsj Fs�1)
P (Acsj Fs�1)

:

(33)

Indeed, observe that the function f (z) = �
��
ln z

�

�
�+

�
ln c�z�

�
�
�
; with

�; �; c 2 (0; 1) achieves for z 2 [0; c] a minimum at the point z� = �
�+� c: Ap-

plying this for the triplets (�; �; c) = (P (AsBsj Fs�1) ;P (AsBcsj Fs�1) ; qs) and
(�; �; c) = (P (AcsBsj Fs�1) ;P (AcsBcsj Fs�1) ; 1� qs) ; respectively, we conclude.
We then consider a martingale measure Q�; de�ned on Ft, satisfying, for

t = 1; 2; :::; the conditional properties (32) and (33), and we claim that it is well
de�ned. Indeed, for t = 1; 2; :::; we have

Q�
�
�1 2

n
�d1; �

u
1

o
; :::; �t 2

n
�dt ; �

u
t

o
; �1 2

�
�d1; �

u
1

	
; :::; �t 2

�
�dt ; �

u
t

	�
(34)

=
tY

s=1

Q�
�
�s 2

n
�ds ; �

u
s

o
; �s
�
�ds ; �

u
s

	���Fs�1� = tY
s=1

Q� (�s; �sj Fs�1) ;

with each term being well de�ned from (32) and (33).
Next, we derive the following characterization result in terms of the reverse

relative entropy measure, in which we use the self-evident condensed expressions
Q (�1; :::�t; �1; :::; �t) and P (�1; :::�t; �1; :::; �t) to denote the joint distributions
of (�1; :::�t; �1; :::; �t) under Q and P; respectively.

Proposition 7 For t = 1; 2; :::; let Qt be the set of equivalent martingale mea-
sures and Q� 2 Qt de�ned as in (34). Then Q� minimizes the reverse relative
entropy Ht, de�ned as

Ht = �EP
�
ln
Q (�1; :::; �t; �1; :::; �t)
P (�1; :::; �t; �1; :::; �t)

�
; (35)

for Q 2Qt:

Proof. First, observe that (35) can be written as

Ht = �
tX

s=1

EP

�
ln
Q (�s; �s jFs�1 )
P (�s; �s jFs�1 )

�
:
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and, in turn,

Ht = �
tX

s=1

EP

�
EP

�
ln
Q (�s; �s jFs�1 )
P (�s; �s jFs�1 )

�����Fs�1� ;
and we easily conclude.
The next result shows a key property of the measure Q�. It also provides

equalities (37), (38) which will play a main role in the construction of the forward
indi¤erence prices. Its proof follows easily.

Proposition 8 i) The martingale measure Q� de�ned as in (34) satis�es, for
t = 1; 2; :::; and s = 1; 2; :::; t;

Q�
�
Ys
��Fs�1 _ FSs � = P �Ys ��Fs�1 _ FSs � ; (36)

with the stochastic factor Ys given in (5).
ii) Moreover, if Z is an Fs-mble random variable and As as in (6), we have

EP (Z1As
jFs�1 )

P (As jFs�1 )
=
EQ� (Z1As jFs�1 )
Q� (As jFs�1 )

(37)

and
EP
�
Z1Ac

s
jFs�1

�
P (Acs jFs�1 )

=
EQ�

�
Z1Ac

t
jFs�1

�
Q� (Acs jFs�1 )

: (38)

We introduce the following single- and multi-period forward pricing func-
tionals.

De�nition 9 For t > 0; let Q�be the martingale measure as in (36) and, for
s = 0; 1; :::; t�1; let Z be an Fs+1-mble random variable in (
;F ;P). We de�ne
i) the single-step forward price functional

E(s;s+1)Q� (Z) = EQ�

�
1


lnEQ�

�
eZ

��Fs _ FSs+1 � jFs� (39)

and,
ii) the multi-step forward price functional, 0 � s < s0 � t;

E(s;s
0)

Q� (Z) = E(s;s+1)Q� (E(s+1;s+2)Q� (:::E(s
0�1;s0)

Q� (Z))): (40)

Remark 10 We caution the reader that, in general, for s0 > s+1 and Z 2 Fs0 ;

E(s;s
0)

Q� (Z) 6= EQ�
�
1


lnEQ�

�
eZ

��Fs _ FSs0 � jFs� : (41)

The reader familiar with existing indi¤erence pricing algorithms (see, among

others, [1], [10], [11], [23], [24]), might �nd the form of E(s;s+1)Q� and of E(s;s
0)

Q�
identical to the ones appearing in these references. This is not, however, the case.
The results herein are, not only, derived for entirely di¤erent risk preference
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criteria but, also, for more general incomplete market environments, since the
nested market model (bond and stock) is incomplete. Moreover, the involved
measure is not the minimal entropy one but, rather, the minimal reverse entropy
measure.
Another di¤erence, as we show in Proposition 16, is that E(s;s+1)Q� provides

an intuitively pleasing direct analogue of the arbitrage-free price of a conditional
certainty equivalent, while in the classical exponential utility such analogy fails.
The following auxiliary result will be used repeatedly in the construction of

the forward pricing algorithm.

Lemma 11 Let t > 0; s = 0; 1; :::; t� 1; and E(s;s+1)Q� be as in (39). Then, if Z
is an Fs+1-mble random variable,

sup
�s+12Fs

EP

�
�e�(�s+1�Ss+1�Z)+hs+1

���Fs� = �eE(s;s+1)Q� (Z);

with hs as in (11).

Proof. The proof follows by analogous arguments as the ones used to show
Lemma 6. For this, we only highlight the main steps. We have

EP

�
�e�(�s+1�Ss+1�Z)

���Fs� = ��e��s+1Ss(�us+1�1)Z1s + e��s+1Ss(�ds+1�1)Z2s�
with Z1s = EP

�
eZ1As+1

��Fs� and Z2s = EP

�
eZ1Ac

s+1

���Fs� : The optimum
occurs at the point

��;Zs+1 =
1

Ss

�
�us+1 � �ds+1

� ln (1� qs+1)Z1s
qs+1Z2s

at which we have

EP

�
�e�(�

�
s+1�Ss+1�Z)

���Fs� = �� Z1s
qs+1

�qs+1 � Z2s
1� qs+1

�1�qs+1
:

= � exp
�
qs+1 ln

Z1s
qs+1

+ (1� qs+1) ln
Z2s

1� qs+1

�
:

Working as in the proof of Lemma 6, we express the above quantity with respect
to the Q� measure,

qs+1 ln
Z1s
qs+1

+ (1� qs+1) ln
Z2s

1� qs+1

= qs+1 ln
EQ�

�
eZ1As+1

��Fs�
Q� (As+1j Fs)

+(1� qs+1) ln
EQ�

�
eZ1Ac

s+1

���Fs�
Q�
�
Acs+1

��Fs� �hs+1 (42)

where, we used the de�nition of hs+1; the measurability of Z and the second
part of Proposition 4, and the de�nition of E(s;s+1)Q� . We easily conclude.
We are now ready to present the forward indi¤erence pricing algorithm.
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Theorem 12 Consider a claim, introduced at time t0 = 0; yielding at time
t > 0; payo¤ Ct 2 Ft; and �s (Ct) be de�ned as in (18). Let, also, Q� be as in
(36); and E(s;s+1)Q� and E(s;s

0)
Q� as in (39) and (40), respectively. The following

statements hold:
i) The forward indi¤erence price, �s(Ct), is given, for s = 0; 1; :::; t � 1; by

the iterative algorithm
�t (Ct) = Ct;

�s(Ct) = E(s;s+1)Q� (�s+1(Ct)) (43)

= EQ�

�
1


lnEQ�

�
e�s+1(Ct)

��Fs _ FSs+1� jFs� :
ii) The forward indi¤erence price process �s(Ct) 2 Fs and satis�es, for

s = 0; 1; :::; t� 1;
�s(Ct) = E(s;t)Q� (Ct): (44)

iii) The forward indi¤erence price algorithm is consistent across time in that,
for 0 � s � s0 < t, the semigroup property

�s(Ct) = E(s;s
0)

Q� (E(s
0;t)

Q� (Ct)) (45)

= E(s;s
0)

Q� (�s0(Ct)) = �s(E(s
0;t)

Q� (Ct))

holds.

Proof. Assertions (43) and (44) were proved in Lemma 6 for s = t� 1.
To show (43) for s = t � 2; we �rst observe that representation (13) yields

with repeated use of Lemma 11 and (13), and �t�1 2 Ft�2; �t 2 Ft�1;

sup
�t�1;�t

EP (Ut(Xt � Ct)jFt�2) = sup
�t�1

EP

�
sup
�t

EP (Ut(Xt � Ct)jFt�1) jFt�2
�

= sup
�t�1

EP

�
e�(x+�t�1�St�1)+�

t�1
i=1hi sup

�t

EP

�
�e�(�t�St�Ct)+ht jFt�1

�
jFt�2

�
= sup

�t�1

EP

�
e�(x+�t�14St�1)+�

t�1
i=1hi

�
�eE

(t�1;t)
Q� (Ct)

�
jFt�2

�
= e�

t�2
i=1hi sup

�t�1

EP

�
�e�(x+�t�1�St�1�E

(t�1;t)
Q� (Ct))+ht�1 jFt�2

�
= �e�

�
x�E(t�2;t�1)Q�

�
E(t�1;t)Q� (Ct)

��
+�t�2i=1hi = Ut�2

�
x� E(t�2;t�1)Q�

�
E(t�1;t)Q� (Ct)

��
= Ut�2

�
x� E(t�2;t)Q� (Ct)

�
:

The rest of the assertions follow along similar albeit tedious arguments.
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We conclude with the case of multiple claims. Before we present the general
result, let us consider the simple case of two claims, written at t = 0 and
maturing at t� 1 and t; yielding payo¤s Ct�1 2 Ft�1 and Ct 2 Ft; respectively.
Then, since Ct�1 2 Ft; we have

�t�1(Ct�1 + Ct) = E(t�1;t)Q� (Ct�1 + Ct)

= EQ�

�
1


lnEQ�

�
e(Ct�1+Ct)

��Ft�1 _ FSt � jFt�1� = Ct�1 + �t�1(Ct):
Trivially, one may view Ct�1+ �t�1(Ct) as a new claim maturing at time t� 1;
and price it iteratively for s = t� 2; t� 3; ::; 0: The assumption that all claims
are written at time t = 0 can be easily removed. Note, however, what in both
cases (i.e. common or varying inscription times), the market model needs to be
speci�ed at time 0 till the longest a priori known maturity.

Corollary 13 Let t = 1; 2; ::: and s = 0; 1; :::; t�1: Consider claims Cs; :::; Cj ; :::Ct
with Cj 2 Fj ; j = s; :::; t; written at t = 0: The forward indi¤erence price,
�s(�

t
j=sCj), is given, for s = 0; 1; :::; t� 1; by the iterative algorithm

�t (Ct) = Ct;

�s(�
t
j=sCj) = Cs + E

(s;s+1)
Q� (Cs+1 + �s+1(�

t
j=s+2Cj))

= Cs + EQ�

�
1


lnEQ�

�
e(Cs+1+�s+1(�

t
j=s+2Cj))

��Fs _ FSs+1� jFs� :
ii) The forward indi¤erence price process �s(�tj=sCj) 2 Fs and satis�es, for

s = 0; 1; :::; t;
�s(�

t
j=sCj)

= Cs + E(s;s+1)Q�

�
Cs+1 + E(s+1;s+2)Q�

�
Cs+2 + :::E(t�1;t)Q� (Ct)

��
:

An interesting case arises when there is no a priori knowledge at initial time
0 about all incoming claims and their maturities.
For example, consider the case that a single claim, Ct; is written at time

0 that matures at time t; but it is not known whether additional claims will
arrive. Then, at time s 2 (0; t] ; a new claim, say ~Ct0 ; arrives with expiration t0:
If t0 < t; then its valuation is easily accommodated by the above Corollary.
If, however, t0 > t; then one �rst needs to specify at time s the market model

for the period (t; t0], and, in turn, employ the forward exponential criterion for
times t + 1; t + 2; :::; t0; and price by indi¤erence. This can be readily done,
however, since the forward process can be de�ned for all times, sequentially
forward in time.
Note that in the traditional expected utility framework, such �exibility does

not exist. Indeed, once the investment horizon [0; t] is prespeci�ed at time 0;
only claims maturing at times up to t can be priced. Any claim arriving later and
with maturity beyond t cannot be priced, because the expected utility problem
cannot be extended beyond t unless time-consistency is violated.
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5 Properties of forward exponential indi¤erence
prices

The forward indi¤erence pries is constructed via the optimal behavior of the
investor with and without the claim in consideration. As such, it incorporates
and re�ects the individual risk preferences. Due to the exponential choice, it is
independent of the investor�s wealth.

� Time consistency
The forward pricing operator E(s;t)Q� is time consistent, in that the price at
any intermediate time, say s; can be thought as the price of a claim equal
to the corresponding indi¤erence price at a future time s0; namely,

�s(Ct) = �s(�s0(Ct)); 0 � s � s0 � t:

This property is re�ected in (45).

� Scaling and monotonicity properties
The following properties of E(s;s+1)Q� (Z) ; Z; Z 0 2 Fs+1 hold:

i) The mapping  ! E(s;s+1)Q� (Z; ) is increasing and continuous, and

lim
!0+

E(s;s+1)Q� (Z; ) = EQ� (Z) and lim
!1

E(s;s+1)Q� (Z; ) = EQ� kZkL1Q�f�jSs g :

Moreover,

lim
!0

@

@
E(s;s+1)Q� (Z; ) =

1

2
EQ� (V arQ� (Z jSs )) ;

and, thus,

E(s;s+1)Q� (Z; ) = EQ� (Z) +
1

2
EQ� (V arQ� (Z jSs )) + o () :

The assertions follow by routine arguments, and their proof is ommitted.
iii) For � 2 (0; 1) ; Hölder�s inequality gives

E(s;s+1)Q� (�Z + (1� �)Z
0
) � �E(s;s+1)Q� (Z) + (1� �)E(s;s+1)Q� (Z

0
):

iv) For � > 1; Jensen�s inequality yields

�E(s;s+1)Q� (Z) � E(s;s+1)Q� (�Z) ;

and the reverse inequality for � 2 (0; 1) :
v) Let Z = ~Z + �Z; such that ~Z 2 Fs+1 and �Z 2 FSs+1 Then,

E(s;s+1)Q� (Z) = E(s;t)Q�

�
~Z
�
+ EQ�

�
�Z
��Fs� :
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� A two-step iterative construction

The forward indi¤erence price is constructed via an iterative pricing scheme
which starts at the claim�s maturity and is applied backwards in time in (43).
The scheme has local and dynamic properties.
Dynamically, at each time interval, say (s; s+1), the price �s(Ct) is computed

via the single-step forward price functional E(s;s+1)Q� , applied to the end of the
period payo¤. The latter turns out to be the indi¤erence price �s+1(Ct), as
discussed earlier. The functional E(s;s+1)Q� is independent of the speci�c payo¤.

Locally, the pricing role of E(s;s+1)Q� is similar to its single-period counterpart,
developed in [10], in that it is non-linear and produces the price in two sub-
steps. In the �rst sub-step, the end of the period payo¤ �s+1(Ct) is distorted
and produces an intermediate payo¤, say C(s;s+1)(Ct); given by

C(s;s+1)(Ct) =
1


lnEQ�

�
e�s+1(Ct)

��Fs _ FSs+1� : (46)

This payo¤ is replicable and is, in turn, priced by expectation, yielding

�s(Ct) = EQ�(C(s;s+1)(Ct) jFs ): (47)

In the �rst step, the conditioning is with regards to Fs _ FSs+1 while, in the
second, it is only with respect to Fs:

� Analogies with the static certainty equivalent

The classical certainty equivalent is a static pricing rule, yielding the price
of a generic claim, say Z, as

CE (Z) = �u(�1) (EP (u (�Z))) ; (48)

for a concave and increasing utility function u (see, for example, [6]). Notice
that, in contrast to the indi¤erence prices, the above price is derived in the
absence of any trading activity. Notice, also, that the measure appearing above
is the historical probability measure and not any martingale one.
Given that the forward price is constructed taking into account the investor�s

risk preferences, shall one expect that they would provide multi-period analogues
of the static certainty equivalent rule? This is not obvious and, as a matter of
fact, such analogy fails in the classical setting.
In seeking a multi-period analogue of (48), it is natural to assume that the

role of u and u(�1) will be played by the process Ut (x) and its spatial inverse
U
(�1)
t (x) ; with the latter given, for t = 1; 2; :::; by

U
(�1)
t (x) = � 1


ln (�x) + 1



tX
i=1

hi; (49)

and U (�1)0 (x) = � 1
 ln (�x) ; for x 2 R

� and h as in (11).
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We now consider an analogue of the certainty equivalent, de�ned, for Z 2
Fs+1, as

CE(s;s+1) (Z) := �U (�1)s+1

�
EP

�
Us+1 (�Z)

��Fs _ FSs+1 �� : (50)

Lemma 14 Let t > 0 and s = 0; 1; :::; t; and Q� be the forward indi¤erence
pricing measure. Then, for any Z 2 Fs+1; the following assertions hold:
i) The dynamic certainty equivalent CE(s;s+1) (Z) satis�es

CE(s;s+1) (Z) =
1


lnEQ�

�
eZ

��Fs _ FSs+1 � : (51)

ii) Moreover, CE(s;s+1) (Z) is invariant under P and Q�; namely,

�U (�1)s+1

�
EP

�
Us+1 (�Z)

��Fs _ FSs+1 �� = �U (�1)s+1

�
EQ�

�
Us+1 (�Z)

��Fs _ FSs+1 �� :
Proof. To establish (51), we �rst observe that, under the measure Q�;

EQ�
�
Us+1 (�Z)

��Fs _ FSs+1 � = EQ� ��eZ+�s+1i=1hi
���Fs _ FSs+1�

= �e�
s+1
i=1hiEQ�

�
eZ
��Fs _ FSs+1� ;

where we used that �s+1i=1hi is Fs-mble. In turn, the forms of (13) and (49) yield

�U (�1)s+1

�
EQ�

�
Us+1 (�Z)

��Fs _ FSs+1 ��
=
1


ln
�
e�

s+1
i=1hiEQ�

�
eZ
��Fs _ FSs+1��� 1



s+1X
i=1

hi

=
1


lnEQ�

�
eZ
��Fs _ FSs+1� :

Using property (36), however, we have that

1


lnEQ�

�
eZ
��Fs _ FSs+1� = 1


lnEP

�
eZ
��Fs _ FSs+1� ;

and the rest of the proof follows easily.
The above results yield the following representation of the forward indi¤er-

ence price.

Proposition 15 Consider a claim Ct at time 0 and yielding payo¤ Ct at time
t > 0: For s = 0; 1; ::; t; its forward indi¤erence price �s (Ct) is given as the
arbitrage-free price of the conditional certainty equivalent (cf. (50)) of the in-
di¤erence price at the end of the period, namely,

�s (Ct) = EQ�
�
CE(s;s+1) (�s+1 (Ct))

���Fs� :
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� The pricing measure

As we have already established, the pricing measure Q� is the one that
minimizes the reverse relative entropy (cf. Proposition 7). It has the intuitively
pleasing property (36), in that, for each period [s� 1; s), the conditional on
Fs�1_FSs distribution of the stochastic factor Ys is the same under both P and
Q�:

� Dependence on the maturity of the claim

The forward pricing functionals E(s;s+1)Q� and E(s;t)Q� are independent of the
claim�s maturity. Indeed, neither their form or the involved measure depend
on the time t that the claim matures. This does not mean that the price is
independent of the claim�s maturity, an obvious wrong conclusion. Rather, it
says that the forward pricing operator per se does not depend on the speci�c
maturity.
This setting is very much aligned with the one in complete markets where

the pricing operator, given by the conditional expectation of the (discounted)
payo¤, is independent of the claim�s maturity.

� Comparison with the traditional exponential utility valuation

We conclude commenting on some distinct features of the forward and classi-
cal exponential indi¤erence prices. To make the notation more familiar with the
traditional setting, we assume that the claim matures at time T and that we con-
sider the classical expected utility problem in [0; T ] with utility UT (x) = �e�x;
x 2 R;  > 0:
We recall that the case of a binomial model with exponential preferences in

which a claim is written exclusively on a non-traded asset but in a complete
nested (stock and bond) market model was studied in [23], [24], [10] and [11].
These results were subsequently generalized by the authors in [18] for a setting
like the one herein. Similar results for power utilities were analyzed in [9].
Let us denote by �s;T (CT ) ; s = 1; 2; :::; T � 1; the traditional exponential

indi¤erence price of the claim CT and by Vs;T (x) the associated value func-
tion processes. There are several di¤erences between the prices �s;T (CT ) and
�t (CT ) : As it was shown in [18], the classical price is also computed iteratively,

�s;T (CT ) = EQme
T

�
1


lnEQme

T

�
e�s+1;T (CT )

���Fs _ FSs+1�����Fs� ;
where �s+1;T (CT ) is the indi¤erence price of the claim at the end of the period
(s; s+ 1].
The measure QmeT is the minimal relative entropy one and its density depends

crucially on the horizon choice T; while this not the case with Q�: As a result,
the form of �s;T (�) also depends on the horizon choice, while the form of �t (�)
does not.
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Another di¤erence, is that the classical price has no natural interpretation as
the arbitrage-free price of a dynamic conditional certainty equivalent. Indeed,
it can be shown1 that, if Z is Fs+1-mble, then

1


lnEQme

T

�
eZ
��Fs _ FSs+1� 6= �V (�1)s+1;T

�
EP

�
Vs+1;T (�Z)

��Fs _ FSs+1 �� :
Finally, as discussed at the end of Section 4, the forward indi¤erence val-

uation mechanism is applicable for claims arriving at arbitrary future times,
known a priori or not. This is because the forward criterion can be de�ned se-
quentially as time progresses and market evolves. This is not the case, however,
in the classical case.
A detailed comparative study between the traditional and forward exponen-

tial indi¤erence prices, and their respective measures is being carried out by two
of the authors in [25]
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