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Abstract

We study the Merton portfolio optimization problem in the presence of stochastic volatility using

asymptotic approximations when the volatility process is characterized by its time scales of fluctuation.

This approach is tractable because it treats the incomplete markets problem as a perturbation around the

complete market constant volatility problem for the value function, which is well-understood. When

volatility is fast mean-reverting, this is a singular perturbation problem for a nonlinear Hamilton-Jacobi-

Bellman PDE, while when volatility is slowly varying, it is a regular perturbation. These analyses can

be combined for multifactor multiscale stochastic volatility models. The asymptotics shares remarkable

similarities with the linear option pricing problem, which follows from some new properties of the

Merton risk-tolerance function.

We give examples in the family of mixture of power utilities and also we use our asymptotic analysis

to suggest a “practical” strategy which does not require tracking the fast-moving volatility. In this paper,

we present formal derivations of asymptotic approximations, and we provide a convergence proof in the

case of power utility and single factor stochastic volatility. We assess our approximation in a particular

case where there is an explicit solution.

1 Introduction

The Merton problem of portfolio optimization in continuous-time stochastic models has a long history dating

to the seminal papers by Robert Merton published in 1969 and 1971 and re-printed in Merton [1992]. There,

he was able to produce explicit solutions for how to allocate investment capital between risky stocks and a

riskless money-market account, when the stocks are modeled as geometric Brownian motions (that is, they

have constant volatilities), and when the utility function that describes the investor’s risk-aversion is of some

specific types.

The goal of this article is to study the optimal investment problem within multiscale stochastic volatility

models. In this context, asymptotic analysis has been developed over a number of years to simplify option

pricing problems, and this is described in the recent book by Fouque et al. [2011], where singular and

regular perturbation methods can be used for effective approximations of the linear pricing problem; here

we present new results for the nonlinear Merton problem for general utility functions on IR+. This extends

earlier analysis for simple power utilities in Fouque et al. [2000, Section 10.1], and expansions for the

partial hedging problem in Jonsson and Sircar [2002a,b] in the dual problem, both for fast mean-reverting

stochastic volatility. Here, we construct the expansion directly in the primal problem under both fast and
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slow volatility fluctuations. Indifference pricing approximations with exponential utility and fast volatility

were studied in Sircar and Zariphopoulou [2005].

We work under the multiscale stochastic volatility framework used in Fouque et al. [2011] for option

pricing, where there is one fast volatility factor, and one slow. Here, the volatility is a function σ of a fast

factor Y and a slow factor Z: σ(Yt, Zt). We also allow these two factors to drive the growth rate: µ(Yt, Zt).

The stock or index price process S and its volatility-driving factors (Y, Z) are described by:

dS t = µ(Yt, Zt)S t dt + σ(Yt, Zt)S t dW
(0)
t , (1)

dYt =
1

ε
b(Yt) dt +

1
√
ε

a(Yt) dW
(1)
t ,

dZt = δ c(Zt) dt +
√
δ g(Zt) dW

(2)
t ,

where the standard Brownian motions
(
W

(0)
t ,W

(1)
t ,W

(2)
t

)
are correlated as follows:

d〈W (0),W (1)〉t = ρ1 dt, d〈W (0),W (2)〉t = ρ2 dt, d〈W (1),W (2)〉t = ρ12 dt,

where |ρ1| < 1, |ρ2| < 1, |ρ12| < 1, and 1 + 2ρ1ρ2ρ12 − ρ2
1
− ρ2

2
− ρ2

12
> 0, in order to ensure positive defi-

niteness of the covariance matrix of the three Brownian motions. The model is described by the coefficients

µ, σ, b, a, c and g. The parameters ε and δ, when small, characterize the fast and slow variation of Y and

Z factors respectively. Further technical details of the model are presented during the formal asymptotic

calculations in the following sections.

As alluded to in Chacko and Viceira [2005] for instance, two volatility factors, one fast and one slow,

need to be considered simultaneously, but the existing literature handles models with only one volatility

component. Typically these results are applied to the effects of the slow factor. In Chacko and Viceira

[2005], at the end of their Section 5.1, the authors explicitly state:

“The estimate of the reversion parameter κ in the precision equation implies a half-life of a shock to

precision of about 2 years in the monthly sample. The rate of mean reversion is slower in the annual

sample, where the estimate of the half-life of a shock to precision is about 16 years. French, Schwert and

Stambaugh (1987), Schwert (1989), and Campbell and Hentschel (1990) have also found a relatively slow

speed of adjustment of shocks to stock volatility in low frequency data. This slow reversion to the mean in

low frequency data contrasts with the fast speed of adjustment detected in high frequency data by Andersen,

Benzoni and Lund (1998).

These results suggest that there might be high frequency and low frequency (or long-memory) compo-

nents in stock market volatility (Chacko and Viceira, 2003). By construction, the single component model

... cannot capture these components simultaneously. On the other hand, it is very difficult to find analytical

solutions for a model with multiple components in volatility. We hope that by focusing on estimates of the

single component model derived from low frequency data, we can capture the persistence and variability

characteristics of the volatility process that are most relevant to long-term investors. Accordingly, in our

calibration exercise we focus on the monthly and annual estimates of the single component model.”

The main contribution of our work is to be able to treat the portfolio optimization problem with general

utility functions allowing for non-constant relative risk aversion (in contrast to the case of power utilities),

and in the context of incomplete markets with stochastic volatility. We achieve this by driving volatility

with two factors, one on a fast time scale and one on a slow time scale, and using perturbation methods.

Surprisingly, the first corrections in the expansion of the value function are given explicitly in terms of the

derivatives of the leading order value function (itself the solution of the Hamilton-Jacobi-Bellman (HJB)

PDE for the Merton problem with constant parameters). The first order correction to the optimal strategy is

also given explicitly in terms of derivatives of the leading order value function. Of course this is an enormous

gain as the constant coefficient problem involves a PDE in time plus one space dimension, whereas the

original problem has an HJB equation with time plus three space dimensions.
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We also show that in the leading order term in the portfolio allocation, the fast factor is averaged in some

parts of the formula, but tracked in others, and the corresponding strategy achieves the optimal expected

utility up to the first order corrections. The asymptotic analysis here for the nonlinear portfolio problem has

remarkable similarities with that for the linear European option pricing problem, thanks to the properties of

a specific “risk-tolerance” function, specifically that it satisfies Black’s (fast diffusion) PDE.

To keep the presentation manageable, we focus on the analysis of the two factors separately. We begin

in Section 2 with the case of fast mean-reverting stochastic volatility, which leads to a singular perturbation

problem for the associated HJB PDE. In Section 3, we analyze the case of slowly fluctuating volatility,

which leads to a regular perturbation problem, and reveals a useful “Vega-Gamma” relationship for the

classical Merton value function. Section 4 discusses how the fast and slow results can be combined for

approximations under multiscale stochastic volatility.

Section 5 proposes a “practical” portfolio strategy for the multifactor mutiscale volatility model. The

advantage of this strategy is that it does not require tracking the fast volatility factor, and we quantify its

suboptimality. In Section 6.2, we introduce the family of mixture of power utility functions, which allows

for non-constant relative risk aversion, specifically, declining with increasing wealth. We present numerical

solutions to illustrate the tractability of the asymptotic approximations. We give an accuracy proof for power

utilities and one-factor stochastic volatility (either fast or slow) in Section 6.3. In Section 6.4, we compare

our approximation within a model with explicit solution. Section 7 concludes and suggests directions of

extension.

2 Merton Problem under Fast Mean-Reverting Stochastic Volatility

We first analyze the Merton problem over a finite time horizon [0, T ] with general terminal utility function

under fast mean-reverting stochastic volatility. We have the following dynamics for a stock or index price

process S :

dS t = µ(Yt)S t dt + σ(Yt)S t dW
(0)
t (2)

dYt =
1

ε
b(Yt) dt +

1
√
ε

a(Yt) dW
(1)
t , (3)

where W (0) and W (1) are Brownian motions in a filtered probability space (Ω,F , (F )t, IP) with instantaneous

correlation coefficient between volatility and stock price shocks ρ1 ∈ (−1, 1). Here we assume that the

process Yt = Y
(1)

t/ε
in distribution, where Y (1) is an ergodic diffusion process with unique invariant distribution

Φ, independent of ε. This re-scaling of time explains the 1√
ε

in front of the Brownian motion in (3) and

means that Y also has unique invariant distribution Φ.

We use the notation 〈·〉 for averaging with respect to Φ:

〈g〉 =
∫

g(y)Φ(dy). (4)

The ergodicity models mean-reversion of volatility, while the parameter ε > 0 characterizes the typical time-

scale over which it returns to its long-run mean level. We are interested in the fast mean-reverting regime,

that is as ε ↓ 0. For a detailed exposition of stochastic volatility time scales, we refer to [Fouque et al., 2011,

Chapter 3]. For a general reference on the extensive literature on the Merton problem under various market

frictions, particularly by dynamic programming methods, we refer to the recent book by Pham [2009].

Let (Xt, t ∈ [0, T ]) denote the wealth process and πt the amount of wealth an investor holds in stock

at time t, with the remaining held in a money market account paying interest at rate r. With continuous

self-financing trading, we have dXt = πt
dS t

S t
+ r(X − πt) dt, that is

dXt = (rXt + πt(µ(Yt) − r)) dt + πtσ(Yt) dW
(0)
t .
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For simplicity of exposition and without loss of generality, we will take r = 0 throughout.

Assumption 2.1. The investor has a terminal utility function U(x) on IR+, which is smooth: U ∈ C∞(IR+). It

is also strictly increasing and strictly concave, and it satisfies the “usual conditions” (Inada and Asymptotic

Elasticity):

U′(0+) = ∞, U′(∞) = 0, AE[U] := lim
x→∞

x
U′(x)

U(x)
< 1.

Assumption 2.1 holds throughout the paper and will not always be recalled.

We define the value function

Vε(t, x, y) = sup
π

IE {U(XT ) | Xt = x, Yt = y} ,

where the supremum is taken over admissible strategies that are Ft-progressively measurable and satisfy

IE

{∫ T

0

σ(Yt)
2π2

t dt

}
< ∞.

The associated Hamilton-Jacobi-Bellman (HJB) PDE problem for Vε is

Vεt +
1

ε
L0Vε +max

π

(
1

2
σ(y)2π2Vεxx + π

(
µ(y)Vεx +

ρ1a(y)σ(y)
√
ε

Vεxy

))
= 0, t < T, x ∈ IR+, y ∈ IR, (5)

with the terminal condition Vε(T, x, y) = U(x), and where L0 is the infinitesimal generator of the process

Y (1):

L0 =
1

2
a(y)2 ∂

2

∂y2
+ b(y)

∂

∂y
. (6)

Maximizing the quadratic expression in π, the optimal portfolio function is given in feedback form by

π∗(t, x, y) = − µ(y)

σ(y)2

Vεx

Vεxx

− ρ1a(y)
√
εσ(y)

Vεxy

Vεxx

. (7)

Inserting the maximizer π∗ into (5) leads to the HJB PDE problem

Vεt +
1

ε
L0Vε −

(
λ(y)Vεx +

ρ1a(y)√
ε

Vεxy

)2

2Vεxx

= 0, t < T, x ∈ IR+, y ∈ IR, (8)

Vε(T, x, y) = U(x), (9)

where µ appears through the Sharpe ratio λ, which is defined by λ(y) =
µ(y)

σ(y)
.

Assumption 2.2. The value function Vε(t, x, y) is smooth on [0, T ] × IR+ × IR, and is strictly increasing and

strictly concave in the wealth argument x for each y ∈ IR and t ∈ [0, T ). Moreover, it is the unique solution

in this class of the HJB equation (8) with terminal condition (9).

We observe that (8) is a fully nonlinear PDE which is not easily solved either analytically or numerically,

for general utility functions. In the limit ε → 0, it is a singular perturbation problem, and our approach

is to construct an asymptotic approximation of the solution. This approach has been used to simplify a

host of derivative pricing problems which are characterized by linear PDEs as detailed in Fouque et al.

[2011], and summarized later in Section 2.4. There, the challenges involve non-smoothness of option payoffs

and boundary conditions for non-European options. Here, the terminal condition is smooth but the main

challenge is the nonlinearity of the PDE.
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2.1 Classical Constant Parameter Merton Problem

The special case of µ and σ in (2) being constants is the classical Merton problem, which has been studied

extensively. In the upcoming asymptotic analysis of the stochastic parameter problem, the classical Merton

value function will play a key role in constructing the approximation to Vε. To facilitate the presentation,

we review some background results. To this end, we denote by M(t, x; λ) the Merton value function when

the growth rate µ, the volatility σ and hence the Sharpe ratio λ = µ/σ, are constant, and the investor has

utility function U satisfying our standing Assumption 2.1.

Then M is the unique smooth (on [0, T ] × IR+), strictly increasing and strictly concave solution of the

HJB PDE problem

Mt −
1

2
λ2 M2

x

Mxx

= 0, M(T, x; λ) = U(x). (10)

It is also continuously differentiable with respect to λ. These properties have been established primarily

using the Fenchel-Legendre transformation, which transforms (10) to a linear constant coefficient parabolic

PDE problem (the heat equation), for which regularity results are standard.

It is also convenient to introduce the so-called risk-tolerance function R(t, x; λ) associated with the clas-

sical Merton value function:

R(t, x; λ) = − Mx(t, x; λ)

Mxx(t, x; λ)
, (11)

which is well-defined as M is strictly concave. It follows from the smoothness of M in (t, x) that R is also

smooth in (t, x). The classical Merton portfolio policy is given byπ(M)
=
λ
σ

R(t, x; λ).

We also define the differential operators

Dk = R(t, x; λ)k ∂
k

∂xk
, k = 1, 2, · · · , (12)

and the linear operator Lt,x(λ)

Lt,x(λ) =
∂

∂t
+

1

2
λ2D2 + λ

2D1, (13)

whose coefficients depend on R(t, x; λ). We observe that the Merton PDE (10) can be re-written as

Lt,x(λ)M = 0, (14)

because

Mt −
1

2
λ2 (Mx)2

Mxx

= Mt +
1

2
λ2

(
Mx

Mxx

)2

Mxx + λ
2

(
− Mx

Mxx

)
Mx = Lt,x(λ)M.

Our reason for introducing these operator notations will become clear in the derivation of the asymptotic

expansions.

We will develop some further results about the constant λ Merton value and risk-tolerance functions

as we need them for the asymptotic analysis, specifically the fast diffusion equation (Lemma 2.3) and the

“Vega-Gamma” relationship (Lemma 3.2).

2.2 Expansion of the Value Function

We look for an expansion of the value function of the form

Vε(t, x, y) = v(0)(t, x, y) +
√
ε v(1)(t, x, y) + εv(2)(t, x, y) + ε3/2v(3)(t, x, y) · · · .
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Inserting this expansion into (8), and collecting terms in successive powers of ε, we obtain at the highest

order ε−1:

L0v(0) − 1

2
ρ2

1a(y)2
(v

(0)
xy )2

v
(0)
xx

= 0.

As L0 takes derivatives in y, this equation is satisfied by v(0)(t, x) independent of y. With this choice, we

have v
(0)
y = 0, and so expanding the nonlinear term in (8) up to order

√
ε gives:

(
λ(y)Vεx +

ρ1a(y)√
ε

Vεxy

)2

2Vεxx

=

(
λ(y)(v

(0)
x +

√
εv

(1)
x ) + ρ1a(y)(v

(1)
xy +

√
εv

(2)
xy )

)2 1

2v
(0)
xx

1 −
√
ε

v
(1)
xx

v
(0)
xx

 + · · · . (15)

Therefore, at the next highest order ε−1/2 in the expansion of the PDE, there is no contribution from the

nonlinear term, and we obtain simply L0v(1)
= 0. Again, we satisfy this equation with v(1)

= v(1)(t, x),

independent of y.

Then, collecting the order one terms leads to:

v
(0)
t +L0v(2) − 1

2
λ(y)2 (v

(0)
x )2

v
(0)
xx

= 0. (16)

2.2.1 Zeroth Order Term v(0)

Equation (16) is a Poisson equation for v(2) whose solvability condition (Fredholm Alternative) requires that

〈
v

(0)
t −

1

2
λ(y)2 (v

(0)
x )2

v
(0)
xx

〉
= 0,

where 〈·〉 was defined in (4). Introducing the constant square-averaged Sharpe ratio λ by

λ
2
=

〈
µ2

σ2

〉
, (17)

and, as v(0) does not depend on y, the solvability condition gives

v
(0)
t −

1

2
λ

2 (v
(0)
x )2

v
(0)
xx

= 0, (18)

and the terminal condition is v(0)(T, x) = U(x).

We see that (18) is the nonlinear PDE (10) for the Merton problem with constant Sharpe ratio λ, and so,

v(0)(t, x) = M(t, x; λ), (19)

where M is the classical constant parameter Merton value function introduced in Section 2.1.

Using the notation introduced in (13), we have that

Lt,x(λ) =
∂

∂t
+

1

2
λ

2
D2 + λ

2
D1 and Dk =

−
v

(0)
x (t, x)

v
(0)
xx (t, x)


k
∂k

∂xk
= R(t, x; λ)k ∂

k

∂xk
. (20)

Then equation (18) can be re-written as

Lt,x(λ)v(0)
= 0, (21)

as shown in the derivation of (14).
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2.2.2 First Order Term v(1)

Similarly, we can write (16) as

L0v(2)
+Lt,x(λ(y))v(0)

= 0. (22)

From (22) and (21), we have

L0v(2)
= −

(
Lt,x(λ(y)) − Lt,x(λ)

)
v(0)
= −

(
λ(y)2 − λ2

) (
1

2
D2 + D1

)
v(0).

This is a Poisson equation for v(2) whose solutions that are in L2(Φ) (ensuring reasonable behavior at infinity)

differ by a constant (see, for instance, [Fouque et al., 2011, Section 3.2]). Therefore,

v(2)
= −θ(y)

(
1

2
D2 + D1

)
v(0)
+C(t, x), (23)

where θ(y) is a solution of the ODE (in the y variable)

L0θ =

(
λ(y)2 − λ2

)
, (24)

and C(t, x) is some ‘constant’ of integration in y, that may depend on (t, x).

Consequently, the expansion of the nonlinear term up to order
√
ε computed in (15) simplifies to:

(
λ(y)Vεx +

ρ1a(y)√
ε

Vεxy

)2

2Vεxx

=

λ(y)(v
(0)
x +

√
εv

(1)
x ) +

1

2

√
ε ρ1a(y)θ′(y)

∂

∂x


(v

(0)
x )2

v
(0)
xx




2
1

2v
(0)
xx

1 −
√
ε

v
(1)
xx

v
(0)
xx

 + · · · ,

and we observe that C(t, x) no longer appears because v(2) appeared in (15) as v
(2)
xy .

Therefore, at order
√
ε in the expansion of the PDE, we have

L0v(3)
+ v

(1)
t −

1

2v
(0)
xx

2λ(y)v
(0)
x

λ(y)v
(1)
x +

1

2
ρ1a(y)θ′(y)

∂

∂x


(v

(0)
x )2

v
(0)
xx


 − λ(y)2(v

(0)
x )2 v

(1)
xx

v
(0)
xx

 = 0.

Using the operator notations Dk and Lt,x in (20), the equation above can be re-arranged as:

L0v(3)
+Lt,x(λ(y))v(1) − 1

2
ρ1λ(y)a(y)θ′(y)D2

1v(0)
= 0. (25)

Equation (25) is a Poisson equation for v(3) whose solvability condition is

Lt,x(λ)v(1)
=

1

2
ρ1BD2

1v(0), (26)

where we define the constant

B =
〈
λaθ′

〉
. (27)

As v(0) already satisfies the terminal condition for the full problem, that is v(0)(T, x) = U(x), we have that

the terminal condition for v(1) is: v(1)(T, x) = 0.

We note from (20) that

D2v(0)
= −D1v(0), (28)

so we could alternatively write (26) as

Lt,xv(1)
= −1

2
ρ1BD1D2v(0), v(1)(T, x) = 0.

We also observe that (26) is a linear PDE for v(1), with varying coefficients that depend on v(0), and a source

term also depending on v(0). In the next subsection, we derive an explicit expression for v(1) in terms of v(0).
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2.3 Computation of the Value Function Correction

We first introduce three crucial lemmas that will lead to the solution of the linear PDE problem (26) with a

zero terminal condition that will be given in Proposition 2.7.

2.3.1 Risk-Tolerance Equation and Commutation Result

The first lemma shows that, remarkably, the classical (constant λ) Merton risk-tolerance function, defined

in Section 2.1, satisfies its own autonomous PDE.

Lemma 2.3. The classical Merton risk-tolerance function R(t, x; λ), defined in (11), satisfies the fast diffu-

sion PDE:

Rt +
1

2
λ2R2Rxx = 0. (29)

Proof. Recall from Section 2.1 that R is smooth in (t, x). Differentiating (14) with respect to x gives

Mtx =
1

2
λ2R2Mxxx + λ

2RRxMxx.

But from RMxx = −Mx, we have R2Mxxx = (Rx + 1)Mx, and so

Mtx =
1

2
λ2(Rx + 1)Mx − λ2RxMx,

which gives that

Mtx +
1

2
λ2(Rx − 1)Mx = 0. (30)

Next, differentiating (11) with respect to t gives

Rt = −
Mtx

Mxx

+
Mx

(Mxx)2
Mtxx. (31)

Differentiating (30) with respect to x, we have

Mtxx = −
1

2
λ2(Rx − 1)Mxx −

1

2
λ2Rxx Mx,

and substituting this and (30) into (31) establishes (29). �

Remark 2.4. The PDE (29) solved by the risk-tolerance function R(t, x; λ) first appeared in Black [1968],

and is also referred to as the fast diffusion equation in Musiela and Zariphopoulou [2010].

Next, we provide a commutation result that will allow for easy verification of the formula for v(1) to

come in Proposition 2.7.

Lemma 2.5. The operators Lt,x(λ) and D1, defined in (13) and (12) respectively, acting on smooth functions

of (t, x), commute:

Lt,x(λ)D1 = D1Lt,x(λ).

Proof. For any smooth w(t, x), we compute

D2D1w − D1D2w = R2 ∂
2

∂x2
(Rwx) − R

∂

∂x
(R2wxx)

= R2(Rxxwx + 2Rxwxx + Rwxxx) − R(2RRxwxx + R2wxxx)

= R2Rxxwx. (32)
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Then

Lt,x(λ)D1w =

(
∂

∂t
+

1

2
λ2D2 + λ

2D1

)
D1w

= D1

(
∂

∂t
+

1

2
λ2D2 + λ

2D1

)
w +

(
Rt +

1

2
λ2R2Rxx

)
wx

= D1Lt,x(λ)w,

where we have used (29) and (32). �

The third lemma shows that just as M satisfies the PDE (14), so also do its derivatives (or “Greeks”)

Dk
1
M.

Lemma 2.6. Recall the operators Lt,x(λ) and D1, defined in (13) and (12) respectively, and the classical

Merton value function M introduced in Section 2.1. We have that

Lt,x(λ)Dk
1M = 0, k = 1, 2, · · · .

Proof. This follows from repeated use of Lemma 2.5 to establish Lt,x(λ)Dk
1
= Dk

1
Lt,x(λ), and then using

(14). �

2.3.2 Explicit Expression for v(1)

We can now give the main result of this subsection.

Proposition 2.7. The linear PDE (26) with zero terminal condition v(1)(T, x) = 0 has a unique solution

given by

v(1)(t, x) = −(T − t)
1

2
ρ1BD2

1v(0)(t, x), (33)

or, equivalently,

v(1)(t, x) = (T − t)
1

2
ρ1BD1D2v(0)(t, x). (34)

Proof. First we show that (33) is a solution of (26). We compute:

Lt,x(λ)

(
−(T − t)

1

2
ρ1BD2

1v(0)

)
=

1

2
ρ1BD2

1v(0) − (T − t)
1

2
ρ1BLt,x(λ)D2

1v(0)
=

1

2
ρ1BD2

1v(0),

because Lt,x(λ)D2
1
v(0)
= 0 by Lemma 2.6 and (19). Therefore the expression given in (33) solves the linear

PDE (26). It also satisfies the zero terminal condition. We obtain (34) by using (28) in (33).

For the uniqueness, we work as follows. We define the new variable

ξ = − log v
(0)
x (t, x) +

1

2
λ

2
(T − t), (35)

which is a well-defined one-to-one transformation, as v(0) is strictly increasing and strictly concave. Making

the substitution v(0)(t, x) = w(0)(t′, ξ), where t′ = t, we have from (20):

Lt,x(λ)v(0)
= H(λ)w(0)

=
∂w(0)

∂t′
+

1

2
λ

2 ∂2w(0)

∂ξ2
.

Therefore, w(0) solves the backwards heat equation Hw(0)
= 0, with terminal condition that depends on the

solution through the ξ transformation. Applying the same change of variables to equation (26), we find that

the correction is given by v(1)(t, x) = w(1)(t′, ξ), where w(1) solves the heat equation with source:

Hw(1)
=

1

2
ρ1Bw

(0)
ξξ
, w(1)(T, ξ) = 0.

Uniqueness of the solution (33) follows from classical results for this equation. �
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The benefit of the formula (33) is that the correction v(1), which quantifies the principal effect of stochas-

tic volatility when the correlation ρ1 , 0, can be computed from derivatives of v(0). If v(0) is explicitly known,

for instance with power utility then so is v(1), and we give the explicit formulas in that case for the full mul-

tiscale model in Section 6.1. Or, if v(0) is available numerically, then v(1) is obtained simply by numerical

differencing (illustrated in Section 6.2 with mixture of power utilities).

We also remark that the transformation (35) can be written

ξ =

∫ x

α(t)

1

R(t, u; λ)
du +

1

2
λ

2
(T − t),

where α(t) is defined by v
(0)
x (t, α(t)) = 1.

2.4 Comparison with Option Pricing Asymptotics

We briefly review the fast mean-reverting option pricing asymptotic approximation described in Fouque

et al. [2011], as there are some remarkable similarities one would not expect. The no arbitrage price

of a European option with payoff h(S T ) (under zero interest rates) is given by the following conditional

expectation:

Pε(t, S , y) = IE⋆ {h(S T ) | S t = S , Yt = y} ,
under the (market-selected) risk-neutral measure IP⋆, where the dynamics of (S , Y) is described by

dS t = σ(Yt)S t dW
(0)⋆
t ,

dYt =

(
1

ε
b(Yt) −

1
√
ε

a(Yt)Λ(Yt)

)
dt +

1
√
ε

a(Yt) dW
(1)⋆
t .

Here, W (0)⋆ and W (1)⋆ are IP⋆-Brownian motions with correlation structure IE⋆{dW (0)⋆dW (1)⋆} = ρ1 dt, and

Λ is the market price of volatility risk. Then a singular perturbation analysis of the linear PDE problem that

is solved by Pε shows that

Pε(t, S , y) = PBS (t, S ; σ̄) +
√
εP1(t, S ) + · · · ,

where the zeroth order term is the Black-Scholes option price with square averaged volatility σ̄2
= 〈σ(·)2〉.

It does not depend on the current level Yt = y, and it is the solution of the PDE problem

LBS PBS = 0, PBS (T, S ) = h(S ),

where the Black-Scholes operator is defined by

LBS =
∂

∂t
+

1

2
σ̄2D2, Dk = S k ∂

k

∂S k
, k = 1, 2, · · · .

Note that the operators Dk relevant for this problem are logarithmic derivatives that can be converted to a

polynomial of regular derivatives by changing to log-stock variables.

The correction term P1 also does not depend on the current level Yt = y, and is the solution of the

inhomogeneous Black-Scholes PDE

LBS P1 = − (V3D1D2 + V2D2) PBS , (36)

with zero terminal condition: P1(T, S ) = 0. The constant group parameters V3 and V2 contain the effect of

the correlation ρ1 and the volatility risk premium Λ respectively:

V3 = −
1

2
ρ1〈aσφ′〉, V2 =

1

2
〈aΛφ′〉,

10



where φ(y) is a solution of the equation L0φ = σ(y)2 − σ̄2. Then, it is straightforward to show that the

operators LBS and Dk commute, and as a consequence, the explicit solution P1 of (36) is given by

P1 = (T − t) (V3D1D2 + V2D2) PBS .

Comparing with the analysis of the nonlinear Merton problem in the previous sections: the role of the

stock price variable S is played by the wealth variable x; the role of the Black-Scholes price PBS is played by

the Merton value function M; the role of the square-averaged volatility parameter σ̄ by the square-averaged

Sharpe ratio λ; the role of the Dk by Dk; the role of the Black-Scholes operator LBS by Lt,x. Furthermore,

just as the option price correction can be found in terms of Greeks up to third-order (D1D2) in the stock

price of PBS , the correction v(1) to the value function can be found in terms of D1D2 derivatives of v(0)

(formula (34). The parameter V3 in the options problem is replaced by 1
2
ρ1B in the portfolio problem (with

θ in (24) playing the role of φ), and there is no market price of volatility risk in the control problem which

is with respect to the historical measure IP.

We also point out that a similar comparison with option pricing asymptotics can be made with the slow

scale volatility expansion we will construct in Section 3 as well as the combined multiscale expansion in

Section 4, but we omit the comparison here for space. In the option pricing problem, model hypotheses and

a proof of accuracy of the asymptotic approximation is given in [Fouque et al., 2011, Chapter 4]. In Section

6.3, we provide a proof of accuracy for the Merton problem with power utility and one factor of stochastic

volatility (either fast or slow), when the problem can be transformed to a linear equation.

2.5 Optimal Portfolio

We now analyze and interpret how the principal expansion terms v(0) and v(1) for the value function can be

used in the expression for the optimal portfolio π∗ in (7), which leads to an approximate feedback policy of

the form

π∗(t, x, y) = π(0)(t, x, y) +
√
ε π(1)(t, x, y) + · · · .

2.5.1 Zeroth Order Strategy

First, we insert the zeroth order term v(0) in the expansion for Vε, which we found in Section 2.2.1. This

gives the zeroth order optimal portfolio function in feedback form

π(0)(t, x, y) := − λ(y)

σ(y)

v
(0)
x

v
(0)
xx

=
λ(y)

σ(y)
R(t, x; λ).

Now, in the case of the Merton problem with constant Sharpe ratio λc and constant volatility σc, the optimal

strategy is given by

π(M)(t, x) :=
λc

σc

R(t, x; λc).

The naive Merton strategy would be to use the strategy π(M), even when the coefficients (µ, σ) are driven

by stochastic factors. The question would be which constant coefficients (λc, σc) to use? In the context of

our multiscale stochastic volatility models, this question can be answered by finding the zeroth order of the

optimal strategy among strategies that do not depend on the fast factor. This will be explained in more detail

in Section 5.

The moving Merton strategy consists in using π(M), but with coefficients following the varying factors.

In the case of only the fast factor Yt, it is given by

π(MM)(t, x, y) :=
λ(y)

σ(y)
R(t, x; λ(y)).

11



Note that in the case of power or log utility, π(0) and π(MM) coincide as R does not depend on λ, and they are

myopic as R does not depend on time.

The asymptotics identifies that, for general utility functions, π(0) is neither a naive Merton strategy π(M)

(with some averaged coefficients), nor the moving Merton strategy π(MM) , but rather a hybrid in which the

pre-factor λ/σ moves with the stochastic factor Y , while the risk tolerance component R is computed using

the constant averaged Sharpe ratio λ defined in (17).

Moreover, we demonstrate in Appendix A that using our zeroth order suboptimal strategy π(0) results in

the optimal value, not only up to the principal term v(0), but also up to first order
√
ε correction v(0)

+
√
ε v(1).

2.5.2 First Order Correction to Optimal Portfolio

Our approximation to the optimal strategy can be made more accurate by going to the next order terms.

Inserting the expansion of the value function up to terms in
√
ε in (7) gives π∗ = π̃ε + higher order terms,

where we define

π̃ε = − λ(y)

σ(y)

(v
(0)
x +

√
ε v

(1)
x )

(v
(0)
xx +

√
ε v

(1)
xx )
−
√
ε
ρ1a(y)

σ(y)

v
(2)
xy

v
(0)
xx

= π(0) −
√
ε


λ(y)

σ(y)


v

(1)
x

v
(0)
xx

− v
(0)
x

(v
(0)
xx )2

v
(1)
xx

 +
1

2

ρ1a(y)

σ(y)v
(0)
xx

θ′(y)
∂

∂x


(v

(0)
x )2

v
(0)
xx


 ,

and we used formula (23) for v(2). Then, using the definition of D1 and D2 in (20), and substituting for v(1)

from (34) gives

π̃ε = π(0)
+

√
ε ρ1

2σ(y)v
(0)
x

(
Bλ(y)(T − t) (D1 + D2) − a(y)θ′(y) I

)
D1D2v(0), (37)

where the constant B was defined in (27), and I denotes the identity operator. Explicit formulas for power

utilities and for the full multiscale model are given in Section 6.1.

We will see in formula (48) that D2v(0) can be written proportional to the sensitivity of v(0) with respect

to the Sharpe ratio, which fluctuates with the stochastic factor Y . Therefore the terms multiplying
√
ε in (37)

can be thought of as the principal terms hedging this factor risk. We will comment more on this in Section

4.2 for the full multiscale model.

3 Slow Scale Volatility Asymptotics

We now perform an asymptotic analysis under the assumption that stochastic volatility is slowly fluctuating.

We show in Section 4 that under two-factor multiscale stochastic volatility models, with both a fast and a

slow factor, how the results of the fast analysis in the previous section and the slow analysis in this section

combine.

We have the model

dS t = µ(Zt)S t dt + σ(Zt)S t dW
(0)
t

dZt = δc(Zt) dt +
√
δg(Zt) dW

(2)
t , (38)

where W (0) and W (2) are Brownian motions with instantaneous correlation coefficient between volatility and

stock price shocks ρ2 ∈ (−1, 1), and δ is the small time-scale parameter for expansion. Here, we assume

that Zt = Z
(1)
δt

in distribution, where Z(1) is a diffusion process with drift and diffusion coefficients c and g

respectively, which explains the
√
δ in front of the Brownian motion in (38). We do not need any ergodicity

12



assumptions on Z(1) for the slow scale asymptotics in the limit δ ↓ 0, but we require the coefficients µ(z) and

σ(z) to be differentiable.

The HJB PDE problem for the value function of the Merton problem

Vδ(t, x, z) = sup
π

IE {U(XT ) | Xt = x, Zt = z} ,

is

Vδt + δM2Vδ −

(
λ(z)Vδx +

√
δ ρ2g(z)Vδxz

)2

2Vδxx

= 0, Vδ(T, x, z) = U(x), (39)

whereM2 is the infinitesimal generator of the process Z(1):

M2 =
1

2
g(z)2 ∂

2

∂z2
+ c(z)

∂

∂z
, (40)

and the Sharpe ratio λ(z) =
µ(z)

σ(z)
.

Assumption 3.1. The value function Vδ(t, x, z) is smooth on [0, T ] × IR+ × IR, and is strictly increasing and

strictly concave in the wealth argument x for each z ∈ IR and t ∈ [0, T ). Moreover, it is the unique solution

in this class of the HJB PDE problem (39).

3.1 Slow Scale Expansion

We look for an expansion for the value function Vδ of the form

Vδ(t, x, z) = v(0)(t, x, z) +
√
δ v(1)(t, x, z) + δv(2)(t, x, z) + δ3/2v(3)(t, x, z) · · · . (41)

Then it follows by setting δ = 0 in (39) that v(0) solves

v
(0)
t −

1

2
λ(z)2 (v

(0)
x )2

v
(0)
xx

= 0, v(0)(T, x, z) = U(x). (42)

Therefore, comparing with (10), the principal term is the Merton value function with the current Sharpe

ratio λ(z) =
µ(z)

σ(z)
:

v(0)(t, x, z) = M(t, x; λ(z)), (43)

where M(t, x; λ) was defined in Section 2.1. As with the fast factor zeroth order approximation to the value

function given in (19), the zeroth order approximation in the slow factor model is the constant parameter

Merton value function, but with λ(z), the current Sharpe ratio, instead of the averaged quantity λ.

We recall notation introduced in Section 2.1, adapted here for the slow scale analysis:

Lt,x(λ(z)) =
∂

∂t
+

1

2
λ(z)2D2 + λ(z)2D1, (44)

Dk = R(t, x; λ(z))k ∂
k

∂xk
, k = 1, 2, · · · , (45)

R(t, x; λ(z)) = −v
(0)
x (t, x, z)

v
(0)
xx (t, x, z)

. (46)

With this notation, we can re-write (42) as

Lt,x(λ(z))v(0)
= 0, v(0)(T, x, z) = U(x).

Taking the order
√
δ terms after inserting the expansion (41) into the PDE (39) leads to

Lt,x(λ(z))v(1)
= ρ2λ(z)g(z)


v

(0)
x v

(0)
xz

v
(0)
xx

 , v(1)(T, x, z) = 0. (47)
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3.1.1 “Vega-Gamma” Relation

The following Lemma enables us to construct the solution to (47).

Lemma 3.2. The Merton value function M(t, x; λ) introduced in Section 2.1 satisfies the “Vega-Gamma”

relation
∂M

∂λ
= −(T − t)λR2∂

2M

∂x2
, (48)

where R denotes the risk-tolerance function R = −Mx/Mxx.

Proof. Recall the notation Lt,x and Dk introduced in (13) and (12). We have that Lt,x(λ)M = 0. Differenti-

ating this PDE with respect to λ gives

Lt,x(λ)Mλ = −
1

2

[
∂

∂λ
(λR)2

]
Mxx −

[
∂

∂λ
(λ2R)

]
Mx

= −λD2M − 2λD1M − [RMxx + Mx] λ2Rλ

= −λD2M − 2λD1M = λD2M. (49)

By differentiating the terminal condition M(T, x; λ) = U(x) with respect to λ, we have Mλ(T, x; λ) = 0.

Using Lemma 2.5, we see that the solution to the PDE (49) with zero terminal condition is given by Mλ =

−(T − t)λD2M, which gives (48). �

Expression (48) is similar to the Vega-Gamma relationship for European option prices in the Black-

Scholes model (see, for instance [Fouque et al., 2011, Section 1.3.5]), which says the following. The Black-

Scholes European option price when volatility is a constant σ, PBS (t, S ;σ) in the notation of Section 2.4,

satisfies
∂

∂σ
PBS = (T − t)σS 2 ∂

2

∂S 2
PBS .

This relationship is used to connect convex payoffs (positive Gamma) to long volatility positions (positive

Vega). The signs of the terms on each side of (48) are consistent because the “Vega” on the left is positive

(value increases with Sharpe ratio) and the “Gamma” on the right is negative because M is concave in x.

3.1.2 Explicit Expression for Slow Scale Value Function Correction

We can now give an explicit expression for v(1) in terms of v(0) using the previous Lemma 3.2, from which

we obtain

v
(0)
z = −(T − t)λλ′D2v(0). (50)

We first re-write the equation (47) for v(1)(t, x, z) as:

Lt,x(λ(z))v(1)
= −ρ2λ(z)g(z)D1v

(0)
z . (51)

Proposition 3.3. The slow scale correction is given by

v(1)(t, x, z) =
1

2
(T − t)ρ2λ(z)g(z)D1v

(0)
z . (52)

Proof. Using the “Vega-Gamma” relation (50) to convert the v
(0)
z term in (51) to a D2v(0), we see that v(1)

solves

Lt,x(λ(z))v(1)
= −ρ2λ(z)g(z)D1

(
−(T − t)λ(z)λ′(z)D2v(0)

)
= −(T − t)ρ2λ

2(z)g(z)λ′(z)D2
1v(0).
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Now, similar to Proposition 2.7, we see the solution with zero terminal condition is

v(1)
=

1

2
(T − t)2ρ2λ

2gλ′D2
1v(0)

= −1

2
(T − t)2ρ2λ

2gλ′D1D2v(0), (53)

because Lt,xD2
1
v(0)
= 0 by Lemma 2.6. Finally, we use the “Vega-Gamma” relation (50) again to convert

the D2v(0) term in (53) back into a v
(0)
z term to obtain (52). �

The benefit of the formula (52) is that the correction v(1), which quantifies the principal effect of stochas-

tic volatility when the correlation ρ2 , 0, can be computed from derivatives of v(0). In the slow scale case

the appropriate derivative is D1v
(0)
z . The expression in (53) appears, up to the pre-factors, very similar to the

formula (34) for the correction in the fast asymptotics, except for the additional (T − t) factor. This is quite

intuitive: in terms of the value function, closer to maturity the slow volatility factor is less important than

the fast factor.

3.2 Optimal Portfolio

The optimal strategy in feedback form is given by

π∗(t, x, z) = − λ(z)

σ(z)

Vδx

Vδxx

−
√
δ
ρ2g(z)

σ(z)

Vδxz

Vδxx

. (54)

Inserting the expressions for v(0) and v(1) in the expansion for Vδ into (54) gives an approximation for π∗.

3.2.1 Zeroth Order Strategy

First we insert the zeroth order term v(0) in the expansion for Vδ, which we found in (42). This gives the

zeroth order strategy

π(0)(t, x, z) :=
λ(z)

σ(z)
R(t, x; λ(z)).

In this case π(0) is the moving Merton strategy π(0)
= π(MM), meaning as we discussed in Section 2.5.1, it is

the Merton strategy updated with the moving level z of the factor process Z.

We demonstrate in Appendix B that using our zeroth order suboptimal strategy π(0) results in the optimal

value not only up to the principal term v(0), but also up to first order
√
δ correction v(0)

+
√
δ v(1). This is

in line with the findings of Chacko and Viceira [2005], who find the intertemporal hedging terms in their

model and optimization problem are relatively small.

3.2.2 First Order Correction to Optimal Portfolio

Our approximation to the optimal strategy can be made more accurate by going to the next order terms. In-

serting the expansion for the value function Vδ up to the
√
δ terms into (54) gives π∗ = π̃δ+higher order terms,

where we define

π̃δ =
λ(z)

σ(z)
R(t, x; λ(z)) +

√
δ ρ2g(z)

σ(z)v
(0)
x

(
1

2
(T − t)λ2(z) (D2 + D1) + I

)
D1v

(0)
z . (55)

The terms multiplying
√
δ in (55) can be thought of as the principal terms hedging the risk from the factor

Z. We will comment more on this in Section 4.2 for the full multiscale model.
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4 Merton Problem under Multiscale Stochastic Volatility

We return to the two-factor multiscale stochastic volatility model (1), introduced in Section 1, where there

is one fast volatility factor, and one slow. We show that the separate fast and slow expansions to first order

(Sections 2 and 3) essentially combine, but with some modification of the averaged parameters involved.

Under our simplifying assumption of zero interest rates, the wealth process X of an investor holding πt

dollars in the stock at time t follows

dXt = πtµ(Yt, Zt) dt + πtσ(Yt, Zt) dW
(0)
t .

The value function

Vε,δ(t, x, y, z) = sup
π

IE {U(XT ) | Xt = x, Yt = y, Zt = z}

has the associated HJB PDE problem


1

ε
L0 +

√
δ

ε
M3 + δM2 +

∂

∂t

 Vε,δ + NLε,δ = 0, Vε,δ(T, x, y, z) = U(x), (56)

where L0 was defined in (6),M2 in (40), and the linear operator M3 comes from the correlation between

the Brownian motions driving the fast and slow factors:

M3 = ρ12a(y)g(z)
∂2

∂y∂z
.

The nonlinear term is given by

NLε,δ = max
π

(
1

2
π2σ2Vε,δxx + π

[
µVε,δx +

1
√
ε
ρ1aσVε,δxy +

√
δρ2gσVε,δxz

])

= −

(
λV
ε,δ
x +

1√
ε
ρ1aV

ε,δ
xy +

√
δρ2gV

ε,δ
xz

)2

2V
ε,δ
xx

,

where the Sharpe ratio is

λ(y, z) =
µ(y, z)

σ(y, z)
. (57)

The optimal strategy in feedback form is given by:

π∗(t, x, y, z) = −

(
λV
ε,δ
x +

1√
ε
ρ1aV

ε,δ
xy +

√
δρ2gV

ε,δ
xz

)

σV
ε,δ
xx

. (58)

Assumption 4.1. The value function Vε,δ(t, x, y, z) is smooth on [0, T ]× IR+× IR× IR, and is strictly increasing

and strictly concave in the wealth argument x for each (y, z) ∈ IR2 and t ∈ [0, T ). Moreover, it is the unique

solution in this class of the HJB PDE problem (56).

4.1 Combined Expansion in Slow and Fast Scales

First we construct an expansion in powers of
√
δ:

Vε,δ = Vε,0 +
√
δVε,1 + · · · , (59)
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so that Vε,0 is obtained by setting δ = 0 in the equation for Vε,δ:

(
1

ε
L0 +

∂

∂t

)
Vε,0 −

(
λ(y, z)Vε,0x +

ρ1a(y)√
ε

V
ε,0
xy

)2

2V
ε,0
xx

= 0, (60)

with terminal condition Vε,0(T, x, y, z) = U(x). This is the same HJB problem (8) as for the value function

Vε except that the Sharpe ratio depends on the current level z of the slow volatility factor, which enters as a

parameter in the PDE (60). It is clear then that when we construct an expansion of Vε,0 in powers of
√
ε:

Vε,0 = v(0)
+
√
ε v(1,0)

+ · · · ,

we will obtain, as in Section 2, that v(0)(t, x, z) is the Merton value function with constant Sharpe ratio λ(z):

v(0)(t, x, z) = M(t, x; λ(z)), (61)

where λ
2
(z) = 〈λ2(·, z)〉. That is, the Sharpe ratio is square-averaged over the fast factor with respect to its

invariant distribution, and evaluated at the current level of the slow factor.

The appropriate modifications for the risk-tolerance functions and our usual operators are:

R(t, x; λ(z)) = −v
(0)
x (t, x, z)

v
(0)
xx (t, x, z)

, Dk = R(t, x; λ(z))k ∂
k

∂xk
, Lt,x(λ(z)) =

∂

∂t
+

1

2
λ(z)2D2 + λ(z)2D1,

and so v(0)(t, x, z) solves

Lt,x(λ(z))v(0)
= 0, v(0)(T, x, z) = U(x).

Following Proposition 2.7, the correction term v(1,0) is given by

v(1,0)(t, x, z) = (T − t)
1

2
ρ1B(z)D1D2v(0)(t, x, z),

where

B(z) =

〈
λ(·, z)a(·)∂θ

∂y
(·, z)

〉
, (62)

and θ(y, z) is a solution of the ODE (in y)

L0θ = λ
2(y, z) − λ2

(z). (63)

Next we return to the slow scale expansion (59) and extract the order
√
δ terms in (56) to obtain the

following equation for Vε,1:

1

ε
L0Vε,1 +

1
√
ε
M3Vε,0 +

∂

∂t
Vε,1 + NL(1)

= 0, (64)

where

NL(1)
= − 1

V
ε,0
xx

(
λVε,0x +

ρ1a
√
ε

Vε,0xy

) (
ρ2gVε,0xz + λV

ε,1
x +

ρ1a
√
ε

Vε,1xy

)
+

1

2


λV
ε,0
x +

ρ1a√
ε
V
ε,0
xy

V
ε,0
xx



2

Vε,1xx .

The terminal condition is Vε,1(T, x, y, z) = 0.
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We look for an expansion

Vε,1 = v(0,1)
+
√
ε v(1,1)

+ ε v(2,1)
+ · · · ,

where we are only interested here in the first term which will give the principal slow scale correction to the

value function. We observe that as the first two terms in Vε,0 do not depend on y andM3 takes a derivative

in y, then the term ε−1/2M3Vε,0 in the PDE (64) is of order
√
ε. Similarly, the terms in NL(1) involving V

ε,0
xy

are also order
√
ε and will not play a role in finding v(0,1).

The order ε−1 terms in (64) give L0v(0,1)
= 0 and we take v(0,1)

= v(0,1)(t, x, z), independent of y. At

order ε−1/2, we have L0v(1,1)
= 0 and so again v(1,1)

= v(1,1)(t, x, z). At order one:

L0v(2,1)
+ v

(0,1)
t − ρ2gλ

v
(0)
xz v

(0)
x

v
(0)
xx

+
1

2
λ2 (v

(0)
x )2

(v
(0)
xx )2

v
(0,1)
xx − λ2 v

(0)
x

v
(0)
xx

v
(0,1)
x = 0.

Viewed as a Poisson equation for v(2,1), this yields the following solvability condition for v(0,1):

Lt,x(λ(z))v(0,1)
= ρ2λ̂(z)g(z)

v
(0)
xz v

(0)
x

v
(0)
xx

,

where λ̂(z) = 〈λ(·, z)〉. With zero terminal condition, this is the same PDE problem (47) as for the slow scale

correction in Section 3, except with λ(z) on the right side replaced by λ̂(z). This change in constant does not

affect the argument of Proposition 3.3, and so we conclude that

v(0,1)(t, x, z) =
1

2
(T − t)ρ2λ̂(z)g(z)D1v

(0)
z = −

1

2
(T − t)2ρ2λ̂(z)λ(z)λ

′
(z)g(z)D1D2v(0),

where in the second expression we have used Lemma 3.2 to convert the v
(0)
z Vega term to a D2v(0) Gamma

term.

In summary, the first-order multiscale correction is given by Vε,δ(t, x, y, z) = Ṽε,δ(t, x, z)+higher order terms,

where

Ṽε,δ(t, x, z) :=v(0)(t, x, z) +

(
1

2
ρ1

√
ε(T − t)B(z) − 1

2

√
δ(T − t)2ρ2λ̂(z)λ(z)λ

′
(z)g(z)

)
D1D2v(0)(t, x, z), (65)

which depends on the square-averaged Sharpe ratio λ(z) as well as the straight average λ̂(z), and the group

parameter B(z) defined in (62). This expression highlights that the principal stochastic volatility corrections

to the Merton value function are proportional to the correlations between volatility factors and returns shocks

(measured by ρ1 and ρ2). It also shows that given a numerical solution v(0), which solves a PDE in (t, x)

only, with z as a parameter, the correction terms are obtained simply by computing the derivative D1D2v(0).

4.2 Multiscale Optimal Portfolio

The optimal portfolio up to orders
√
ε and

√
δ for the multiscale model is obtained by inserting the value

function approximation (65) into the optimal strategy feedback function (58), which leads to π∗ = π̃ε,δ +
higher order terms, where

π̃ε,δ =
λ(y, z)

σ(y, z)
R(t, x; λ(z)) +

√
ε ρ1

2σ(y, z)v
(0)
x

(
B(z)λ(y, z)(T − t) (D1 + D2) − a(y)θy(y, z) I

)
D1D2v(0)

+

√
δ ρ2g(z)

σ(y, z)v
(0)
x

(
1

2
(T − t)λ(y, z)

(66)
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Here v(0)(t, x, z) is the Merton value function in (61), and R(t, x; λ(z)) is its corresponding risk-tolerance

function. The coefficient σ(y, z) is the volatility function in (1), λ(y, z) is the multifactor Sharpe ratio in (57),

θ(y, z) is defined in (63), and the formula for B(z) is given in (62).

The principal (zero order) strategy

π(0)(t, x, y, z) :=
λ(y, z)

σ(y, z)
R(t, x; λ(z)) (67)

is a moving Merton strategy with respect to the slow factor Z, as in the slow-only case (Section 3.2.1).

In terms of the fast factor Y , it is a hybrid of naive Merton in the R component where the fast factor is

averaged out, and moving Merton in the pre-factor λ/σ, as we found in the fast-only case in Section 2.5.1.

Furthermore, combining the results in Appendices A and B, one finds that using π(0) in (67) recovers the

optimal value function up to orders
√
ε and

√
δ. Note that this strategy requires tracking both fast and slow

factors.

The formula (66) for the approximate optimal portfolio up to orders
√
ε and

√
δ highlights the contribu-

tion from the volatility factor-returns correlations. It can also be interpreted as an expression in terms of the

Merton strategy and the sensitivities (or “Greeks”) of the Merton value function with respect to the wealth

x and slow volatility factor level z. The specific Greeks involved are identified by the asymptotic analysis.

These terms then comprise the principal parts of the hedging terms against volatility risk.

5 Practical Strategy

Tracking the fast factor Y requires high-frequency data and dealing with microstructure issues requiring

sophisticated econometric techniques (see, among others, the book by Aı̈t-Sahalia and Jacod [2014] for a

detailed analysis of the difficulties). Many investors will not tackle these issues and will look for a practical

(or lazy) strategy whose principal terms do not depend on tracking the fast moving volatility factor Y , but

they do track the slow factor Z. In addition, ignoring the fast factor will likely lead to strategies that require

less frequent rebalancing. For the multiscale stochastic volatility model (1), we propose such a strategy and

quantify its loss of utility.

Naively, an investor ignoring the fast factor would use a one (slow) factor model of the form

dS t = µ̄(Zt)S t dt + σ̄(Zt)S t dW
(0)
t ,

with Z as in (1), and then use a moving Merton strategy of the (feedback) form

π̄(0)(t, x, z) =
µ̄(z)

σ̄(z)2
R

(
t, x;
µ̄(z)

σ̄(z)

)
. (68)

The key question is how should the coefficients µ̄(z) and σ̄(z) relate to the full model coefficients µ(y, z) and

σ(y, z) in (1) to account for the presence of the fast volatility factor.

In Appendix C we derive the leading order term in the small (ε, δ) regime of the optimal Y-independent

strategy. We find it is of the form (68), where the appropriate coefficients are

σ̄(z)2
= 〈σ(·, z)2〉, µ̄(z) = 〈µ(·, z)〉,

the averages of the growth rate function µ(y, z) and the squared volatility σ2(y, z) with respect to the invariant

distribution of Y . We also derive the leading order term v̄(0) of the value function of following this strategy,

and we now use it to quantify the suboptimality of the practical strategy.

From (68), we observe that the practical strategy is the constant Sharpe ratio Merton strategy using the

fast-scale averaged growth rate and volatility parameters µ̄(z) and σ̄(z) respectively, evaluated at the current
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level of the slow factor. Indeed, it may happen that for some level z of the slow factor, µ̄(z) = 0, which

implies the practical strategy is to hold no stock at that instant, even while the current Sharpe ratio may be

positive, thus giving up some utility from the risky asset. To assess the suboptimality, we compare with

the value function approximation derived in Section 4 for the multiscale model, when the fast factor is

assumed observable, and the principal term v(0)(t, x, z) is given by (61). As v̄(0)(t, x, z) = M(t, x;
µ̄(z)

σ̄(z)
), the

suboptimality of the practical strategy is, to principal order,

v(0)(t, x, z) − v̄(0)(t, x, z) = M(t, x; λ(z)) − M

(
t, x;
µ̄(z)

σ̄(z)

)
,

and is governed by the Cauchy-Schwarz gap

λ
2
=

〈
µ2

σ2

〉
≥ 〈µ

2〉
σ̄2
≥ µ̄

2

σ̄2
.

In other words, as ε ↓ 0, using the optimal strategy (observing both the fast factor Y and the slow factor Z)

the value function converges to the Merton value with Sharpe ratio λ(z), while using the practical strategy,

the expected utility converges to the smaller Merton value with Sharpe ratio
µ̄(z)

σ̄(z)
.

In the case that µ is constant, we have that λ
2
(z) = µ2/σ2

⋆(z), where σ⋆(z) is the harmonically square-

averaged volatility defined by
1

σ2
⋆(z)
=

〈
1

σ2(·, z)

〉
.

Then the limit value function v(0) is the Merton value as if the volatility was the averaged quantity σ⋆(z),

whereas the limit value of the practical strategy is the Merton value as if the volatility was the higher

σ̄(z) ≥ σ⋆(z) (where equality holds only if the fast volatility factor was actually constant).

6 Examples, Numerical Solutions and Accuracy of Approximation

We first present the common family of power utilities, for which there are explicit solutions in the constant

Sharpe ratio case. Then, in Section 6.2, we introduce a family of mixture of power utility functions that allow

for declining risk-aversion with increasing wealth. We demonstrate that the asymptotic approximation can

be computed numerically in an efficient manner even when there is no explicit solution for the zeroth order

problem, and show the effects of fast stochastic volatility at differing wealth and risk tolerance levels. In

Section 6.3, we give a proof of accuracy in the case of power utility and one volatility factor (in Section

6.3.1 with a fast factor and in Section 6.3.2 with a slow factor), where the HJB equation can be reduced to

a linear PDE problem by a distortion transformation, as recalled at the beginning of Section 6.3. Finally, in

Section 6.4, we quantify the accuracy of our slow scale approximation in a one-factor stochastic volatility

model for which there is an explicit solution under power utility, using parameter values obtained from data

by Chacko and Viceira [2005].

6.1 Power Utility Case

The canonical example of a utility function on IR+ is the power (or CRRA) utility:

U(x) = c
x1−γ

1 − γ , c, γ > 0, γ , 1 (69)

where γ is the coefficient of risk-aversion, and c is a weight for use later. Then its Arrow-Pratt measure of

relative risk aversion is:

AP[U] := −x
U′′(x)

U′(x)
= γ,
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and the risk-tolerance function at the terminal time T is

R(T, x) = − U′

U′′
=

1

γ
x. (70)

It is well-known that the constant Sharpe ratio value function is given by

M(t, x; λ) = c
x1−γ

1 − γg(t; λ), g(t; λ) = exp

(
1

2
λ2

(
1 − γ
γ

)
(T − t)

)
, (71)

and, the risk-tolerance function −Mx/Mxx = x/γ is independent of λ.

From (61), v(0) in the multiscale volatility approximation is given by v(0)(t, x, z) = M(t, x; λ(z)). In the

special power case, the solution of Black’s equation (29) with terminal condition (70) is given by R(t, x; λ) =

x/γ, which is independent of t and λ. Therefore, we have Dk = (x/γ)k ∂k

∂xk . Consequently, the order (
√
ε,
√
δ)

approximation Ṽε,δ in (65) is explicitly given by

Ṽε,δ(t, x, z) =

(
1 − 1

2
ρ1

√
ε(T − t)B(z) +

1

2

√
δ(T − t)2ρ2λ̂(z)λ(z)λ

′
(z)g(z)

) (
1 − γ
γ

)2

v(0)(t, x, z).

Moreover, because for power utility we have Rxx = 0, we see from (32) that D1 and D2 commute, and

therefore the terms in (66) with (D1 + D2) in them are zero because D2v(0)
= −D1v(0). The portfolio policy

approximation (66) is thus given in this case by

π̃ε,δ =


λ(y, z)

σ(y, z)
+

1

2

√
ε ρ1

(
1 − γ
γ

)2 a(y)θy(y, z)

σ(y, z)
+

√
δ ρ2

(
1 − γ
γ

)
g(z)

σ(y, z)
(T − t)λ(z)λ

′
(z)


(

x

γ

)
.

The first term is the moving Merton strategy following both the fast and slow factors. In the power utility

case, the risk-tolerance function R does not depend on the Sharpe ratio, and so the average λ(z) does not

show up in this term as it would in the case of more general utilities. The second and third correction

terms come from the fast and slow factors respectively, they are proportional to ρ1 and ρ2 respectively, they

highlight the component of “intertemporal hedging” from the correlated piece of those factors, and they

affect the value function only at the next order in ε and δ as in the general case presented in Section 4.2.

6.2 Mixture of Power Utilities

We now introduce a family of utility functions that allows for nonlinear risk tolerance (or, equivalently,

non-constant relative risk aversion). These are described by

U(x) = c1

x1−γ1

1 − γ1

+ c2

x1−γ2

1 − γ2

, c1, c2 ≥ 0, γ1 ≥ γ2 > 0, γ1,2 , 1.

Then we have the Arrow-Pratt measure of relative risk aversion:

AP[U] =
c1γ1x−(γ1−γ2)

+ c2γ2

c1x−(γ1−γ2) + c2

,

and its risk-tolerance function at time T is

R(T, x) =

(
c1x−(γ1−γ2)

+ c2

c1γ1x−(γ1−γ2) + c2γ2

)
x ∼


1
γ2

x as x→ ∞
1
γ1

x as x→ 0.
(72)

The mixture of two powers allows to mix unbounded above positive utilities (fractional powers with γ < 1)

with unbounded below negative utilities (γ > 1). See Figures 1 and 2. How relative risk aversion varies
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Figure 1: Mixture of power utilities with γ1 = 1.2 and γ2 = 0.25.

with wealth is a subject of active empirical study, and we refer to Brunnermeier and Nagel [2008] and Liu

et al. [2012] for some recent findings and debate. The mixture of two power utilities models declining

risk aversion with increasing wealth, which one would naturally expect, and is supported by some of the

empirical studies.

In the next subsection, we discuss how to solve the constant Sharpe ratio Merton problem numerically

when there is no explicit solution.

6.2.1 Numerical Solution of Constant Sharpe Ratio Merton Problem

The first term in the approximations for the value function under either fast or slow or multifactor stochastic

volatility is the Merton value function with a specific constant Sharpe ratio. Instead of solving the Merton

PDE problem (10), we solve for the risk tolerance function R(t, x; λ). In other words, we solve numerically

the fast diffusion equation (29). Then we have

Mx(t, x; λ) = Mx(t, xmax; λ) exp

(∫ xmax

x

1

R(t, ξ; λ)
dξ

)
, (73)

and

M(t, x; λ) = M(t, xmax; λ) −
∫ xmax

x

Mx(t, s; λ) ds, (74)

where xmax is large so that we can use large wealth asymptotics to insert Mx(t, xmax; λ) and M(t, xmax; λ).

We solve the fast diffusion equation (29) with terminal condition (72) using implicit finite differences,

viewing the PDE as linear with the diffusion coefficient frozen at the previous time step. On a N × J grid

{(tn, x j) : tn = T − n∆t, x j = j∆x} with ∆t =
T

N
,∆x =

xmax

J
,

let Rn
j
≈ R(tn, x j; λ). The numerical scheme is

Rn
j
− Rn+1

j

∆t
+

1

2
λ2

(
Rn

j

)2 Rn+1
j+1
− 2Rn+1

j
+ Rn+1

j−1

(∆x)2
= 0.
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Figure 2: Mixture of power utilities with γ1 = 0.85 and γ2 = 0.15.

Following (72) for the mixture of two power utilities, we use boundary conditions R(t, 0) = 0 and Rx(t, xmax) =
1
γ2

. Then we integrate according to (73) and (74) to find v
(0)
x and v(0). For large wealth x, the investor behaves

as if his risk-aversion is γ2 and follows the corresponding Merton fixed-mix policy. As a consequence,

M ∼ c1
x1−γ1

1 − γ1

g12(t) + c2
x1−γ2

1 − γ2

g2(t), as x→∞,

where

g2(t) = exp

(
1

2
λ2

(
1 − γ2

γ2

)
(T − t)

)
, g12(t) = exp


λ2

γ2
2

(1 − γ1)

(
γ2 −

1

2
γ1

)
(T − t)

 .

Differentiating, gives Mx ∼ c1x−γ1 g12(t) + c2x−γ2 g2(t), as x → ∞. These are used at large xmax in (73) and

(74) to find Mx and M, which are plotted in Figures 3 and 4, and we observe that solving the fast diffusion

equation numerically is tractable and efficient. These can then be used with the appropriate Sharpe ratio, λ

for the fast, or λ(z) for the slow or λ(z) for the multiscale case, to compute the zeroth order term v(0), as well

as its partial derivatives which are needed in the higher order approximations.

6.2.2 Effect of Fast Stochastic Volatility Correction

We look at the effect of a fast volatility factor. Given the numerical solution of v(0)(t, x) for the mixture of

power utilities with Sharpe ratio λ, we numerically differentiate to find the fast scale correction (34) using

the equivalent representation

v(1)(t, x) = (T − t)
1

2
ρ1B(1 − Rx(t, x; λ))R(t, x; λ)v

(0)
x (t, x).

The approximations to the value function at order zero and up to order
√
ε are plotted in Figures 5(a) and

6(a). We can also represent the approximate indirect utilities v(0)(0, x) or v(0)(0, x) +
√
ε v(1)(0, x) by their

certainty equivalents (CEs) U−1(v(0)) and U−1(v(0)
+
√
ε v(1)), and these are shown in Figures 5(b) and 6(b).

Notice, as expected, accounting for the stochastic volatility correction lowers value functions and cer-

tainty equivalents. With the mixture of power utilities the impact of stochastic volatility is more at larger

wealth levels where the investor’s risk aversion is smaller.
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Figure 3: Constant parameter Merton value and risk tolerance functions for the mixture of power utilities

with γ1 = 1.2 and γ2 = 0.25. Here λ = 0.4 and T = 1.
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Figure 4: Constant parameter Merton value and risk tolerance functions for the mixture of power utilities

with γ1 = 0.85 and γ2 = 0.15. Here λ = 0.4 and T = 1.
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Figure 5: Value function and certainty equivalents for the mixture of power utilities with γ1 = 1.2 and

γ2 = 0.25, showing the zeroth order and the first two orders in the fast factor approximation. Here λ = 0.4

and T = 1, and we plot the correction with
√
ε 1

2
ρ1B = 0.01.
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Figure 6: Value function and certainty equivalents for the mixture of power utilities with γ1 = 0.85 and

γ2 = 0.15. Here λ = 0.4 and T = 1, and we plot the correction with
√
ε 1

2
ρ1B = 0.005.
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6.3 Accuracy of One-Factor Approximations under Power Utility

As is well-known, in models with only one stochastic volatility factor and when the utility function is of

power type, the HJB equation can be reduced to a linear PDE by a distortion transformation. In this case, we

give the proof of accuracy of our approximations to the value function in the fast and slow cases separately.

However the linearization does not generalize to several volatility factors.

Specifically, we consider the one-factor model

dS t = µ(ξt)S t dt + σ(ξt)S t dW
(0)
t (75)

dξt = k(ξt) dt + h(ξt) dW
(ξ)
t , (76)

where W (0) and W (ξ) are Brownian motions with instantaneous correlation coefficient between volatility and

stock price shocks ρ ∈ (−1, 1). The volatility factor ξ (driven by coefficients h and k) stands for either Y or

Z with their corresponding coefficients. As derived in Zariphopoulou [2001], the value function at wealth

level x under power utility (equation (69) with c = 1) is given by

V(t, x, ξ) =
x1−γ

1 − γΨ(t, ξ)q, (77)

where the distortion coefficient q is given by

q =
γ

γ + (1 − γ)ρ2
, (78)

and Ψ solves the linear PDE problem

Ψt +

(
Lξ +

(1 − γ)
γ
λ(ξ)ρh(ξ)

∂

∂ξ

)
Ψ +

1

2

(1 − γ)
qγ

λ(ξ)2
Ψ = 0, Ψ(T, ξ) = 1. (79)

Here λ(ξ) = µ(ξ)/σ(ξ), and Lξ is the generator of the process ξ:

Lξ =
1

2
h(ξ)2 ∂

2

∂ξ2
+ k(ξ)

∂

∂ξ
.

We prove the accuracy of our approximation in this case of power utility, when the volatility factor is fast

(Section 6.3.1) or slow (Section 6.3.2).

6.3.1 Fast Factor Accuracy

In the fast factor case where we replace ξt by Yt in (3), we have k(y) = 1
ε
b(y) and h(y) = 1√

ε
a(y). From (19),

(71), and Proposition 2.7, the fast volatility approximation to the value function for this case is given by:

Vε(t, x, y) ≈ v(0)(t, x)+
√
εv(1)(t, x) =

x1−γ

1 − γ

1 −
√
ε(T − t)

1

2
ρ1B

(
1 − γ
γ

)2
 exp

(
1

2
λ

2
(
1 − γ
γ

)
(T − t)

)
, (80)

with the effective Sharpe ratio λ defined in (17), and the constant B defined in (27).

In this section we provide a proof of accuracy of this approximation. The linear PDE (79) for Ψ(t, y)

becomes (
1

ε
L0 +

1
√
ε
L1 +L2

)
Ψ = 0, Ψ(T, y) = 1, (81)

where L0 was defined in (6), and we define

L1 = −Γρ1λ(y)a(y)
∂

∂y
, L2 =

∂

∂t
− Γ

2q
λ(y)2·, Γ =

γ − 1

γ
, (82)
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and so from (78), we have q = 1/(1 − Γρ2) with Γ < 1.

This problem is now in the form of a singular perturbation problem of the type treated in Fouque et al.

[2011], and the proof of accuracy follows the lines of the proof given there in Chapter 4, Section 5 in the

case of a smooth terminal condition, which is what we have here with Ψ(T, y) = 1. We shall first show in

Theorem 6.2 the accuracy of the approximation Ψ(t, y) = Ψ0(t) +
√
εΨ1(t) + O(ε), where

Ψ0(t) = exp

−
Γλ

2

2q
(T − t)

 , Ψ1(t) = −(T − t)

(
ρ1Γ

2B

2q

)
Ψ0(t). (83)

Then, in Corollary 6.4, this is converted into a convergence result for the value function expansion.

The method consists of expanding

(
1
ε
L0 +

1√
ε
L1 + L2

) (
Ψ0 +

√
εΨ1 + εΨ2 + ε

3/2
Ψ3 + · · ·

)
and choos-

ing Ψi(i = 0, 1, 2, 3) so that Equations (88)–(89) below are satisfied in order to cancel terms of order

ε−1, ε−1/2, ε0, and ε1/2. This leads to the choices (83) above for Ψ0 and Ψ1, and (85) and (86) below for Ψ2

and Ψ3 respectively.

Assumption 6.1. We list here and comment on the assumptions we make on the class of models we are

considering.

1. We assume γ > 1 corresponding to Γ > 0 in (82). We comment further on the case γ < 1 in Remark

6.3.

2. The second order linear differential operator L0 introduced in (6) is the infinitesimal generator of

a one-dimensional diffusion process (in particular the coefficients a(y) and b(y) are at most linearly

growing) which has a unique invariant distribution denoted by Φ in (4), is ergodic and has a spectral

gap. This is as in Fouque et al. [2011], Chapter 3, Section 3, where it is also shown that this is the

case for the commonly used OU and CIR processes.

3. The ergodic process with infinitesimal generator L0 admits moments of all order uniformly bounded

in t (which is the case for OU and CIR processes).

4. Furthermore, we assume that λ(y) is bounded, so that by Lemma 4.9 in Fouque et al. [2011], the

diffusion process Yεt with infinitesimal generator 1
ε
L0 +

1√
ε
L1, has moments of all order uniformly

bounded in ε, that is, for any k ∈ IN, we have IE{|Yεt |k} ≤ Ck(t, y) where Ck(t, y) may depend on

(k, t < T, y) but not on ε ≤ 1.

5. The source terms in the Poisson equations (24) and (87) being centered with respect to the invariant

distribution Φ, by the Fredhlom alternative, solutions θ(y) for (24) and θ1(y) for (87) exist and are

characterized up to an additive constant (chosen freely). We further assume that θ(y) and θ1(y) are at

most polynomially growing. This is a weak assumption on the spectral properties of the operator L0

which is satisfied for OU and CIR processes as shown in Lemma 3.1 and Lemma 3.2 respectively in

Fouque et al. [2011].

Theorem 6.2. Under the assumptions listed above, for fixed t < T and y, there is a constant C (which may

depend on t and y) such that for any ε ≤ 1:

∣∣∣∣Ψ(t, y) −
(
Ψ0(t) +

√
εΨ1(t)

)∣∣∣∣ ≤ Cε, (84)

where the functions Ψ0 and Ψ1 are given in (83).
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Proof. We define the functions Ψi, i = 2, 3 as follows:

Ψ2(t, y) =

(
Γ

2q

)
θ(y)Ψ0(t), (85)

where θ(y) is a solution to the Poisson equation (24) and the choice of θ(y) is up to a constant (in y) which

does not play a role at this order of accuracy; and

Ψ3(t, y) =

(
ρ1Γ

2

2q

)
θ1(y)Ψ0(t) − (T − t)

(
ρ1Γ

3B

4q2

)
θ(y)Ψ0(t), (86)

where θ1(y) is a solution to the Poisson equation

L0θ1 = λ(y)a(y)θ′(y) − 〈λaθ′〉, (87)

defined up to a constant (in y) which does not play a role at this order of accuracy.

With this choice of functions Ψi, i = 0, 1, 2, 3, the following equations are satisfied:

L0Ψ0 = 0, (88)

L0Ψ1 +L1Ψ0 = 0,

〈L1Ψ1 +L2Ψ0〉 = 〈L2〉Ψ0 = 0,

L0Ψ2 +L1Ψ1 +L2Ψ0 = 0,

〈L1Ψ2 +L2Ψ1〉 = 〈L2〉Ψ1 + 〈L1Ψ2〉 = 0,

L0Ψ3 +L1Ψ2 +L2Ψ1 = 0. (89)

Defining the residual

Rε = Ψ − (Ψ0 +
√
εΨ1 + εΨ2 + ε

3/2
Ψ3), (90)

and using equation (81) satisfied by Ψ(t, y) and equations (88)-(89), one obtains

(
1

ε
L0 +

1
√
ε
L1 +L2

)
Rε = −ε(L1Ψ3 +L2Ψ2) − ε3/2L2Ψ3 ≡ εS ε(t, y), (91)

where the source term S ε(t, y) can easily be computed using the expressions for L1,L2,Ψ2, and Ψ3. Using

the terminal condition for Ψ in (81), and the terminal values for Ψi, i = 0, 1, 2, 3 found by setting t = T in

(83), (85), and (86), one obtains that the residual function Rε satisfies the terminal condition

Rε(T, y) = −ε
(
Γ

2q

)
θ(y) + ε3/2

(
ρ1Γ

2

2q

)
θ1(y) ≡ εTε(y). (92)

Denoting by Yεt the diffusion process with infinitesimal generator 1
ε
L0 +

1√
ε
L1, the residual Rε, solution of

the PDE problem (91)-(92), is given by the Feynman-Kac formula:

Rε(t, y) = εIE

{
e
− Γ

2q

∫ T

t
λ2(Yεs )ds

Tε(Y
ε
T ) +

∫ T

t

e
− Γ

2q

∫ s

t
λ2(Yεu )du

S ε(s, Yεs )ds | Yεt = y

}
. (93)

Under our assumptions, one sees by direct computation that Tε and S ε are at most polynomially growing

in y, and with Γ > 0, one obtains |Rε(t, y)| ≤ εC. Combined with (90), one deduces the desired accuracy

estimate (84). �
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Remark 6.3. Under the assumption λ(y) bounded, the condition Γ > 0 (or equivalently γ > 1) is not really

needed as the exponential “discount” factors in (93) are uniformly bounded in ε. The assumption on λ(y)

can easily be relaxed for instance by assuming polynomial growth. In that case, either one assumes Γ > 0

and the exponential factors are still bounded (by 1), or else, if Γ < 0, a uniform bound for exponential

moments of additive functionals of λ2(Yεs ) is needed. They are satisfied for instance in the case of an OU

process and λ(y) = y or in the case of a CIR process with λ(y) =
√

y.

Now we can undo the distortion transformation.

Corollary 6.4. Under the assumptions of Theorem 6.2, for fixed (t, x, y), one has

Vε(t, x, y) = v(0)(t, x) +
√
εv(1)(t, x) + O(ε),

where v(0)(t, x) and v(1)(t, x) are given explicitly in (80).

Proof. Using (77), (84), and the explicit formulas for Ψ0 and Ψ1 in (83), one obtains

Vε(t, x, y) =
x1−γ

1 − γ
(
Ψ0(t) +

√
εΨ1(t) + O(ε)

)q

=
x1−γ

1 − γ
(
Ψ0(t)q

+ q
√
εΨ1(t)Ψ0(t)q−1

+ O(ε)
)

=
x1−γ

1 − γe−
Γλ

2

2
(T−t)

(
1 − 1

2

√
ε(T − t)ρ1Γ

2B

)
+ O(ε),

which is (80) when taking into account that Γ =
γ−1

γ
by (82). �

6.3.2 Slow Factor Accuracy

In the slow factor case where we replace ξt by Zt in (38), we have k(z) = δc(z) and h(z) =
√
δg(z). In this

case, from (43) and Proposition 3.3, we have Vδ ≈ v(0)
+
√
δv(1), where

v(0)(t, x, z) =
x1−γ

1 − γe−
Γλ(z)2

2
(T−t), (94)

v(1)(t, x, z) =
1

2
(T − t)2ρ2Γ

2λ(z)2λ′(z)g(z)v(0)(t, x). (95)

In this section we provide a proof of accuracy of this approximation. The linear PDE (79) forΨ(t, z) becomes

(
δM2 +

√
δM1 +L2

)
Ψ = 0, Ψ(T, z) = 1, (96)

whereM2 was defined in (40), and we define

M1 = −Γρ2λ(z)ρ2g(z)
∂

∂z
, L2 =

∂

∂t
− Γ

2q
λ(z)2·,

with the notation Γ introduced in (82).

This problem is now in the form of a regular perturbation problem of the type treated in Fouque et al.

[2011], and the proof of accuracy follows the lines of the proof given there in Chapter 4, Section 5. We shall

first show in Theorem 6.6 the accuracy of the approximation Ψ(t, z) = Ψ0(t, z) +
√
δΨ1(t, z) + O(δ), where

Ψ0(t, z) = exp

(
−Γλ(z)2

2q
(T − t)

)
, Ψ1(t, z) =

(
ρ2Γ

2

2q

)
(T − t)2λ(z)2λ′(z)g(z)Ψ0(t). (97)

Then in Corollary 6.8, this is converted into a convergence result for the value function expansion.
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Assumption 6.5. We list here and comment on the assumptions we make on the class of models we are

considering.

1. We assume that Γ > 0 (or equivalently γ > 1), and comment further on this assumption in Remark

6.7.

2. The second order linear differential operator M2 introduced in (40) is the infinitesimal generator of

a one-dimensional diffusion process (in particular the coefficients c(z) and g(z) are at most linearly

growing) which admits moments of all order uniformly bounded in t ≤ T . Note that ergodicity for the

slow factor Z is not required even though OU and CIR processes are commonly used in that case too.

3. We assume that λ(z) is bounded and differentiable. In particular, by Lemma 4.9 in Fouque et al.

[2011], the diffusion process Zδt with infinitesimal generator δM2 +
√
δM1 has moments of all order

uniformly bounded in δ for t ≤ T , that is, for any k ∈ IN, we have supt≤T IE{|Zδt |k} ≤ Ck(T, z) where

Ck(T, z) may depend on (k, T, z) but not on δ ≤ 1.

Theorem 6.6. Under the assumptions listed above, for fixed t < T and z, there is a constant C (which may

depend on t and z) such that for any δ ≤ 1:

∣∣∣∣Ψ(t, z) −
(
Ψ0(t, z) +

√
δΨ1(t, z)

)∣∣∣∣ ≤ Cδ, (98)

where the functions Ψ0 and Ψ1 are given in (97).

Proof. With this choice of functions Ψi, i = 0, 1, the following equations are satisfied:

L2Ψ0 = 0, (99)

L2Ψ1 +M1Ψ0 = 0. (100)

Defining the residual

Rδ = Ψ − (Ψ0 +

√
δΨ1), (101)

and using equation (96) satisfied by Ψ(t, z) and equations (99)-(100), one obtains

(
δM2 +

√
δM1 +L2

)
Rδ = −δM2Ψ0 − δ3/2M1Ψ1 − δ2M2Ψ1 ≡ δS δ(t, z), (102)

where the source term S δ(t, z) can easily be computed using the expressions forM1,M2,Ψ0, and Ψ1. Using

the terminal condition for Ψ in (96), and the terminal values for Ψi, i = 0, 1 given in (97), one obtains that

the residual function Rδ satisfies the terminal condition

Rδ(T, z) = 0. (103)

Denoting by Zδt the diffusion process with infinitesimal generator δM2 +
√
δM1, the residual Rδ, solution

of the PDE problem (102)-(103), is given by the Feynman-Kac formula:

Rδ(t, z) = δIE

{∫ T

t

e
− Γ

2q

∫ s

t
λ2(Zδu)du

S δ(s, Zδs )ds | Zδt = z

}
. (104)

Under our assumptions, one sees by direct computation that S δ is at most polynomially growing in z, and

with Γ > 0, one obtains |Rδ(t, y)| ≤ δC, which, by (101), is the desired accuracy estimate (98). �
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Remark 6.7. As in the case of fast scale (Remark 6.3), under the assumption λ(z) bounded, the condition

Γ > 0 (or equivalently γ > 1) is not really needed as the exponential “discount” factor in (104) is uniformly

bounded in δ. The assumption on λ(z) can easily be relaxed for instance by assuming polynomial growth.

In that case, either one assumes Γ > 0 and the exponential factor is still bounded (by 1), or else, if Γ < 0,

a uniform bound for exponential moments of additive functionals of λ2(Zδs ) is needed. It is satisfied for

instance in the case of an OU process and λ(z) = z or in the case of a CIR process with λ(z) =
√

z, which is

precisely the model discussed in Section 6.4.

Undoing the distortion transformation, we obtain:

Corollary 6.8. Under the assumptions of Theorem 6.6, for fixed (t, x, z), one has

Vδ(t, x, z) = v(0)(t, x, z) +
√
δv(1)(t, x, z) + O(δ), (105)

where v(0)(t, x) and v(1)(t, x) are given explicitly below in (94) and (95) respectively.

Proof. Using (77), (98), and the explicit formulas in (97) for Ψ0 and Ψ1, one obtains

Vδ(t, x, z) =
x1−γ

1 − γ
(
Ψ0(t, z) +

√
δΨ1(t, z) + O(δ)

)q

=
x1−γ

1 − γ
(
Ψ0(t, z)q

+ q
√
δΨ1(t, z)Ψ0(t, z)q−1

+ O(δ)
)

=
x1−γ

1 − γe−
Γλ(z)2

2
(T−t)

(
1 − 1

2

√
δ(T − t)2ρ2Γ

2λ(z)2λ′(z)g(z)

)
+ O(δ),

which establishes (105) with v(0) and v(1) identified by the formulas (94) and (95). �

6.4 Comparison with an Explicit Solution

Staying within the one-factor stochastic volatility models (75)-(76), and under power utility, the coefficients

µ(ξ) and σ(ξ) in (75), and h(ξ) and k(ξ) in (76) can be chosen so that the linear PDE problem (79) admits

an explicit solution. This can be achieved for instance by making the coefficients of the PDE (79) affine in

ξ, in which case the PDE reduces to ODEs of Riccati-type. Kraft [2005] takes ξt to be a CIR process and

µ(ξ) ∝ ξ, σ(ξ) ∝
√
ξ, so that λ(ξ) ∝

√
ξ, that is the Heston stochastic volatility model.

Here, as another example, to illustrate the performance of our approximation, we work with a model

considered in Chacko and Viceira [2005] where the volatility factor is slowly varying according to their fit

to low frequency data, as described in the quote from their paper in our Section 1. Accordingly, we will now

denote ξ by Z and use our notation for the slow factor in (38). The model studied in Chacko and Viceira

[2005] has

µ(z) = µ, σ(z) = z−1/2, c(z) = m − z, g(z) = β
√

z,

that is

dS t

S t

= µ dt +

√
1

Zt

dW
(0)
t

dZt = δ(m − Zt) dt +
√
δβ

√
Zt dW

(2)
t . (106)

They assume the standard Feller condition β2 < 2m, which does not involve the time scale parameter δ. The

process Z is referred to as the “instantaneous precision”, and the Sharpe ratio is λ(Zt) = µ
√

Zt.

In the paper Chacko and Viceira [2005], the authors derive explicit solutions for infinite horizon con-

sumption problems, rather than the expected utility of terminal wealth problem we analyze here. However,
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we derive the explicit formula for their model for this problem as follows. The equation (79) for Ψ(t, z)

becomes

Ψt +
1

2
β2δzΨzz +

(
δ(m − z) +

√
δ

(1 − γ)
γ
βµρ2z

)
Ψz +

1

2

(1 − γ)
qγ

µ2zΨ = 0, Ψ(T, z) = 1.

This admits a solution

Ψ(t, z) = eA(T−t)z+B̃(T−t),

where the function A satisfies the Riccati ODE

A′ =
1

2
δβ2A2

+

√
δ

(1 − γ)
γ
βµρ2A − δA + 1

2

(1 − γ)
qγ

µ2, A(0) = 0, (107)

and the function B̃ solves B̃′ = δmA, with B̃(0) = 0. For γ > 1, which we shall assume here, the quadratic

right side of the Riccati equation has two real roots, which we denote by a±, and we have

A(τ) = a−
1 − e−ατ

1 − a−
a+

e−ατ
, B̃(τ) = δm

a−τ −
2

δβ2
log


1 − a−

a+
e−ατ

1 − a−
a+


 ,

where α is the square root of the discriminant of the quadratic.

Therefore, we have the explicit solution

Vδ(t, x, y, z) =
x1−γ

1 − γeqA(T−t)z+qB̃(T−t),

where, as in (78), q = γ/
(
γ + (1 − γ)ρ2

2

)
. The principal asymptotic approximation term can be obtained by

setting δ = 0 in (107):

v(0)(t, x, z) =
x1−γ

1 − γe
(1−γ)

2γ
µ2(T−t)z

.

Then we have from (52),

v(1)(t, x, z) =
1

2
(T − t)ρ2µβzD1v

(0)
z = (T − t)2ρ2β

(1 − γ)2

4γ2
µ3zv(0)(t, x, z).

In Figure 7, we show the exact and approximate value function over a range of the time scale parameter δ

up to the value estimated from monthly data in Chacko and Viceira [2005], δ = 0.3374. At that value of

δ, the relative absolute error in the approximation is 4.1 × 10−4, which shows the approximation performs

extremely well using real parameters from data. The figure also shows the portfolio weights (the fraction of

wealth in the stock) using the exact formula and the order
√
δ approximation. At the largest value of δ, the

relative absolute error in the approximation is 4.2%, which confirms the approximation error is small even

at the level of the portfolio.

7 Conclusion

The impact of stochastic volatility on the problem of portfolio optimization can be studied and quantified

through asymptotic approximations, which are tractable to compute. We have derived the first two terms of

the approximations for the Merton value function, when volatility is driven by a single fast or slow factor,

and Section 4 shows how these can be combined to incorporate both long and short time scales of volatility

fluctuations. The methodology demonstrates progress that can be made in stochastic control problems in
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Figure 7: Exact and approximate value functions (left) and portfolio weights (right) in the slow scale volatil-

ity model (106) for a range of δ, and using the parameters estimated from data in Chacko and Viceira [2005]:

m = 27.9345, ρ2 = 0.5241, µ = 0.0811, β = 1.12. We choose γ = 3, z = Z0 = m and T = 2. The last value

of δ is the value estimated from data: δ = 0.3374.

incomplete markets by viewing them as a perturbation around a complete markets problem which is well-

understood.

There are a number of directions where similar techniques may play an effective role and we mention a

few. First, the theory of forward utilities pioneered in Musiela and Zariphopoulou [2010] and related papers,

where Black’s fast-diffusion equation characterizes the evolution of utilities when volatility is constant.

Second, problems where risk aversion is stochastic and correlated with market fluctuations is a natural issue

when risk aversion and panic increases in market downturns.

The analysis here pertains to stochastic Sharpe ratio, which also includes stochastic predictability of

asset returns, that is stochastic µ and constant volatility, as discussed for instance in Kim and Omberg

[1996] and Wachter [2002]. Here, we have focused on the stochastic volatility interpretation because in the

case µ constant, the asymptotic formulas can be related to quantities estimated from the implied volatility

skew of option prices. A third direction would be to incorporate filtering of the stochastic predictability

factor in a multiscale setting using asymptotic methods.

Finally, there is a long literature on the Merton problem under transaction costs, where asymptotic

expansion in the cost parameter have been effective. We refer to the survey Guasoni and Muhle-Karbe

[2013] for modern developments and background. The joint asymptotics to study the impact on portfolio

choice of friction from both transaction costs and stochastic volatility is clearly of interest and a challenge.

A Using the Zeroth-Order Strategy in the Fast Factor Model

We have

π(0)(t, x, y) =
λ(y)

σ(y)
R(t, x; λ),

where R was defined in (11), and where now the wealth process X follows:

dXt = π
(0)
t µ(Yt) dt + π

(0)
t σ(Yt) dW

(0)
t .
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The value of this strategy is Ṽε(t, x, y) = IE {U(XT ) | Xt = x, Yt = y}, which solves the linear PDE

Ṽεt +
1

ε
L0Ṽε +

1

2
σ(y)2(π(0))2Ṽεxx + π

(0)

(
µ(y)Ṽεx +

ρ1a(y)σ(y)
√
ε

Ṽεxy

)
= 0,

where L0 was defined in (6), and with terminal condition Ṽε(T, x, y) = U(x).

The PDE can be re-written as:

1

ε
L0Ṽε +

1
√
ε
L1Ṽε +Lt,x(λ(y))Ṽε = 0,

where Lt,x was defined in (13), and L1 = ρ1a(y)λ(y)D1
∂
∂y

, with Dk as in (20).

Next we expand

Ṽε(t, x, y) = ṽ(0)(t, x, y) +
√
ε ṽ(1)(t, x, y) + εṽ(2)(t, x, y) + ε3/2ṽ(3)(t, x, y) · · · ,

and we will show that ṽ(0) ≡ v(0) and ṽ(1) ≡ v(1), and so Ṽε coincides with Vε up to and including order
√
ε.

Inserting the expansion and comparing powers of ε, we find at order ε−1: L0ṽ(0)
= 0, and we satisfy this

equation with ṽ(0)
= ṽ(0)(t, x), independent of y. At order ε−1/2: L0ṽ(1)

+ L1ṽ(0)
= 0, and as L1ṽ(0)

= 0, we

again choose ṽ(1)
= ṽ(1)(t, x), independent of y, to satisfy this equation. At the next order:

L0ṽ(2)
+L1ṽ(1)

+Lt,x(λ(y))ṽ(0)
= 0.

As L1ṽ(1)
= 0, this is a Poisson equation for ṽ(2) whose solvability condition is 〈Lt,x(λ(y))ṽ(0)〉 = 0, where

the averaging 〈·〉 was defined in (4). As ṽ(0) doesn’t depend on y, we have

〈Lt,x(λ(y))ṽ(0)〉 = 〈Lt,x(λ(y))〉ṽ(0)
= Lt,x(λ)ṽ(0).

Expanding the terminal condition, we have ṽ(0)(T, x) = U(x), which is the same as for v(0) in Section 2.2.

From (21), v(0) satisfies the same PDE and terminal condition, and therefore ṽ(0) ≡ v(0).

Comparing terms of order
√
ε, we have

L0ṽ(3)
+L1ṽ(2)

+Lt,x(λ(y))ṽ(1)
= 0,

which is a Poisson equation for ṽ(3) whose solvability condition is

〈L1ṽ(2)
+Lt,x(λ(y))ṽ(1)〉 = 0. (108)

We know that

L0ṽ(2)
= −Lt,x(λ(y))ṽ(0)

= −Lt,x(λ(y))v(0)
= −

(
Lt,x(λ(y)) − Lt,x(λ)

)
v(0)
= −(λ(y)2 − λ2

)

(
1

2
D2 + D1

)
v(0),

and therefore

ṽ(2)
= −θ(y)

(
1

2
D2 + D1

)
v(0)
+ C̃(t, x),

where θ is a solution of the corrector equation (24), and C̃ is a constant (in y) of integration. Therefore (108)

is Lt,x(λ)ṽ(1)
= −〈L1ṽ(2)〉 = −BD1D2v(0), where B was defined in (27), and we have used (28). The terminal

condition is ṽ(1)(T, x) = 0, and so we have

ṽ(1)(t, x) = (T − t)BD1D2v(0)(t, x) ≡ v(1)(t, x),

from Proposition 2.7.

We conclude that using π
(0)
t recovers the optimal value function up to order

√
ε.
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B Using the Zeroth-Order Strategy in the Slow Factor Model

We demonstrate that using the “moving Merton” zeroth order suboptimal strategy in the slow factor model

π(0)
=
λ(z)
σ(z)

R(t, x; λ(z)) results in the optimal value up to first order
√
δ, and so the corrections to the strategies

impact the value function only at the v(2) term (order δ).

When volatility is slowly fluctuating as in model (38), we have the moving Merton policy

π(0)(t, x, z) =
λ(z)

σ(z)
R(t, x; λ(z)),

where R(t, x; λ(z)) is as in (46) and the wealth process X now follows:

dXt = π
(0)
t µ(Zt) dt + π

(0)
t σ(Zt) dW

(0)
t .

The value of using this strategy is given by Ṽδ(t, x, z) = IE {U(XT ) | Xt = x, Zt = z}. Then Ṽδ(t, x, z) solves

the linear PDE

Ṽδt + δM2Ṽδ +
1

2
σ(z)2(π(0))2Ṽδxx + π

(0)
(
µ(z)Ṽδx +

√
δ ρ2g(z)σ(z)Ṽδxz

)
= 0,

whereM2 was defined in (40), and with terminal condition Ṽδ(T, x, z) = U(x).

The PDE can be re-written:

Lt,x(λ(z))Ṽδ +
√
δM1Ṽδ + δM2Ṽδ = 0,

with Lt,x(λ(z)) given in (44), andM1 = ρ2g(z)λ(z)D1
∂
∂z

, with Dk is as in (45).

Next we expand

Ṽδ(t, x, y) = ṽ(0)(t, x, z) +
√
δ ṽ(1)(t, x, z) + δṽ(2)(t, x, z) + δ3/2ṽ(3)(t, x, z) · · · .

Inserting the expansion and comparing powers of δ gives

Lt,x(λ(z))ṽ(0)
= 0, ṽ(0)(T, x) = U(x),

and so ṽ(0) ≡ v(0) by uniqueness. At the next order,

Lt,x(λ(z))ṽ(1)
= −M1ṽ(0), ṽ(1)(T, x) = 0.

This is the same PDE as (51) for v(1) with the same terminal condition, and so again ṽ(1) ≡ v(1). We conclude

that using π
(0)
t recovers the optimal value function up to order

√
δ.

C Derivation of the Practical Strategy

We start with the HJB equation (56), but label the value function for the constrained optimization V̄ε,δ(t, x, y, z):

V̄
ε,δ
t +


1

ε
L0 +

√
δ

ε
M3 + δM2

 V̄ε,δ + NLε,δ = 0, (109)

with V̄ε,δ(T, x, y, z) = U(x). Here, we have

NLε,δ = max
π̄

[
1

2
σ(y, z)2π̄2V̄ε,δxx + π̄

(
µ(y, z)V̄ε,δx +

1
√
ε
L1V̄ε,δ +

√
δM1V̄ε,δ

)]
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where L1 andM1 are now defined as

L1 = ρ1a(y)σ(y, z)
∂2

∂x∂y
, M1 = ρ2σ(y, z)g(z)

∂2

∂x∂z
.

We look for an expansion of the function V̄ε,δ, first in powers of
√
δ:

V̄ε,δ = V̄ε,0 +
√
δV̄ε,1 + · · · ,

and of the controls: π̄ = π̄(0,ε)
+
√
δ π̄(1,ε)

+ · · · , where the principal terms π̄(0,ε) and π̄(1,ε) will be sought so

as not to depend on y.

The equation for V̄ε,0 is obtained from (109) by setting δ = 0:

V̄
ε,0
t +

1

ε
L0V̄ε,0 +max

π̄(0,ε)

(
1

2
σ(y, z)2(π̄(0,ε))2V̄ε,0xx + π̄

(0,ε)µ(y, z)V̄ε,0x +
1
√
ε
π̄(0,ε)L1V̄ε,0

)
= 0.

Next, we expand V̄ε,0 as V̄ε,0 = v̄(0)
+
√
ε v̄(1,0)

+ εv̄(2,0)
+ · · · , and the control π̄(0,ε)

= π̄(0)
+
√
επ̄(1,0)

+ · · · .
Inserting the expansions and comparing powers of ε gives at order ε−1: L0v̄(0)

= 0, and we choose

v̄(0)
= v̄(0)(t, x, z), independent of y, to satisfy this equation. At order ε−1/2: L0v̄(1,0)

= 0, and we again

choose v̄(1,0)
= v̄(1,0)(t, x, z), independent of y, to satisfy this equation. At order one,

v̄
(0)
t +max

π̄(0)

(
L0v̄(2,0)

+
1

2
σ(y, z)2(π̄(0))2v̄

(0)
xx + π̄

(0)µ(y, z)v̄
(0)
x

)
= 0. (110)

For the maximizer π̄(0) to not depend on y, the quantity being maximized must be y-independent, and so we

choose v̄(2,0) to be a solution of

L0v̄(2,0)
+

(
v̄

(0)
t +

1

2
σ(y, z)2(π̄(0))2v̄

(0)
xx + π̄

(0)µ(y, z)v̄
(0)
x

)
−

(
v̄

(0)
t +

1

2
σ̄(z)2(π̄(0))2v̄

(0)
xx + π̄

(0)µ̄(z)v̄
(0)
x

)
= 0, (111)

where σ̄(z)2
= 〈σ(·, z)2〉, and µ̄(z) = 〈µ(·, z)〉. so that the source of the Poisson equation (111) for v̄(2,0) is

centered and a solution exists.

With this choice of v̄(2,0), (110) becomes

max
π̄(0)

(
v̄

(0)
t +

1

2
σ̄(z)2(π̄(0))2v̄

(0)
xx + π̄

(0)µ̄(z)v̄
(0)
x

)
= 0, (112)

which is just the Merton PDE with separately fast-scale averaged σ2 and µ:

v̄
(0)
t −

1

2

µ̄(z)2

σ̄(z)2


(v̄

(0)
x )2

v̄
(0)
xx

 = 0, v̄(0)(T, x, z) = U(x).

Therefore, v̄(0)(t, x, z) = M
(
t, x;

µ̄(z)

σ̄(z)

)
.

From (112), we have:

π̄(0)(t, x, z) = − µ̄(z)

σ̄(z)2

v̄
(0)
x

v̄
(0)
xx

=
µ̄(z)

σ̄(z)2
R

(
t, x;
µ̄(z)

σ̄(z)

)
.
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