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Abstract Using elements from the theory of ergodic backward stochastic differen-
tial equations (BSDEs), we study the behavior of forward entropic risk measures in
stochastic factor models. We derive general representation results (via both BSDEs
and convex duality) and examine their asymptotic behavior for risk positions of large
maturities. We also compare them with their classical counterparts and provide a par-
ity result.
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1 Introduction

Risk measures constitute one of the most active areas of research in financial math-
ematics, for they provide a general axiomatic framework to assess risks. Their uni-
versality and wide applicability, together with the wealth of related interesting math-
ematical questions, have led to considerable theoretical and applied developments;
see, among others, [1, 11] and [10, Chap. 4] with more references therein, and
[3, 6, 21, 34] for dynamic convex risk measures.

A number of popular risk measures are defined in relation to investment oppor-
tunities in a financial market like, for example, VaR, CVaR, indifference prices, etc.
However, such measures are directly tied to a specific trading horizon, for it is implic-
itly assumed that every risk position will be introduced and mature at times (random
or not) up to this pre-chosen horizon. We refer the reader to [36, Sect. 3.3] for motiva-
tional examples and detailed discussions. Such issues motivated the authors of [36] to
introduce the so-called maturity-independent risk measures (Definition 3.1 therein).
These measures were defined axiomatically, in relation to a general semimartingale
market, via four fundamental properties: anti-positivity, convexity, cash translativity
and replication invariance.

An important class of maturity-independent risk measures are the forward en-
tropic risk measures, which were constructed as (negative) indifference prices under
exponential forward performance criteria (see Definition 3.1). Forward performance
criteria are quite appropriate to define dynamic risk measures that do not depend on a
specific horizon or maturity, since the underlying forward performance processes are
defined for all times. As a result, they can be suitably used to assess the performance
of investment strategies with and without the (arbitrary) risk positions, no matter
when these positions are introduced or mature. For general semimartingale models,
an implicit form for forward entropic risk measures was derived in [36] (cf. (4.14)
therein) via the solution of a forward stochastic optimization problem.

Herein, we build on the work of [36], focusing on incomplete market models with
multiple stocks and multiple stochastic factors, and working with forward perfor-
mance processes that are deterministic functions of these factors. This is a rich class
of criteria that not only offer tractability in constructing and further studying the for-
ward risk measures, but also enable us to make interesting connections with ergodic
backward stochastic differential equations (BSDEs).

Markovian forward performance criteria in stochastic factor models were studied
in [32], where the multi-stock/multi-factor complete market case was solved. The
incomplete market case with a single stock/single factor was examined in [33] and in
[35] for a model with slow and fast stochastic factors, and more recently in [23].
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While we look at a smaller class of market models than those considered in [36],
our setting is more general in two directions. Firstly, we incorporate trading con-
straints. This not only makes the analysis more involved but, more importantly, re-
sults in violation of the replication invariance property (see discussions after Corol-
lary 3.6). Secondly, we consider and analyze in detail the forward risk measure pro-
cess, while the authors of [36] only provided the risk measure at a single time, through
an implicit forward optimization problem.

Our contribution is multifold. Firstly, we study the explicit representation of the
forward entropic risk measure process in Theorem 3.2. To obtain it, we need to solve
two forward stochastic optimization problems, with and without the risk position for
an arbitrary trading horizon associated with the maturity of the (arbitrary) risk posi-
tion. The solution of the latter problem is given directly by the exponential forward
performance process itself, but it is not a priori clear how to solve the former, even
if we interpret it as a classical expected utility problem with random endowment.
This is due to the presence of additional terms that violate standard boundedness or
integrability conditions. As a consequence, classical results in expected utility the-
ory do not apply (see discussions after Definition 3.1). Instead, we use an alternative
approach, based on the recent work of [23] on the construction of homothetic (ex-
ponential, power and logarithmic) forward performance processes using ergodic BS-
DEs. This method bypasses a number of technical difficulties associated with solving
an underlying ill-posed stochastic partial differential equation (SPDE) that the for-
ward performance process is expected to satisfy; see [7] and [31] for discussions on
this forward SPDE.

For the exponential family we consider herein, the approach in [23] yields a unique
representation of the forward performance criterion in a factor form (Proposition 2.6).
Based on this result, we establish in Theorem 3.2 that the forward entropic risk mea-
sure satisfies a BSDE whose driver depends on the solution of the ergodic BSDE for
the forward performance process.

From this BSDE representation, we establish the following results. Firstly, using
the convexity property of its driver, we derive a convex dual representation of the
forward entropic risk measure (Theorem 3.5). Specifically, we show that the forward
entropic risk measure is the minimal, among all equivalent probability measures, ex-
pected value of the risk position plus a penalty term. The penalty term has the follow-
ing properties: it is independent of both the risk position and its maturity. Rather, it
depends exclusively on the stochastic factors and the solution to the aforementioned
ergodic BSDE.

The dual representation result readily yields that the three properties—anti-
positivity, convexity and cash translativity—that were introduced in [36] indeed hold.
It also demonstrates that because of trading constraints, the replication invariance
property fails. If the constraints are removed, this property naturally holds; this can
also be seen in the example in Sect. 4, where the equivalent probability measures turn
out to be equivalent martingale measures.

In a different direction, we derive a parity result between the forward and classical
entropic risk measures. We show that the former can be constructed as the difference
of two classical entropic risk measures applied, respectively, to a modified risk po-
sition and a normalizing factor related to the solution of the ergodic BSDE for the
forward performance process.
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We also study the asymptotic behavior of the forward entropic risk measures when
their maturity is long (Theorem 3.10). For risk positions given by deterministic func-
tions of the stochastic factor processes, we show that their risk measures converge
to a constant which is independent of the initial state of the stochastic factors, and
furthermore, the convergence is exponentially fast. We also derive an explicit expo-
nential bound of the associated hedging strategies, which in turn yields that as the
maturity goes to infinity, no trading occurs in any finite time to hedge the underlying
risks.

We conclude with an example cast in the single stock/single stochastic factor case.
Using the ergodic BSDE approach, we derive a closed form representation of the
forward entropic risk measure and its convex dual representation. We also derive a
representation of its classical analogue, and in turn compute numerically the long-
term limits of the two measures for specific risk positions.

The paper is organized as follows. In Sect. 2, we introduce the stochastic factor
market model and provide background results on exponential forward performance
processes. In Sect. 3, we provide the definition of the forward entropic risk measures,
derive their representation results and also establish the parity with their classical
counterparts. We also study the long-maturity behavior. We present an example in
Sect. 4 and conclude in Sect. 6. For the reader’s convenience, the proofs of the main
results are presented separately in Sect. 5.

2 The investment model and the performance criterion

Let W be a d-dimensional Brownian motion on a probability space (�,F ,P). Denote
by F = (Ft )t≥0 the augmented filtration generated by W . We consider a market with
a risk-free bond offering zero interest rate and n risky stocks, with n ≤ d .

The stock price processes Si , i = 1, . . . , n, solve

dSi
t

Si
t

= bi(Vt )dt + σ i(Vt )dWt ,

with bi :Rd →R, σ i : Rd →R
1×d and Si

0 = si
0 > 0.

The stochastic factor process V is d-dimensional and solves

dVt = η(Vt )dt + κdWt, (2.1)

with η : Rd → R
d, κ ∈ R

d×d and V0 = v, v ∈R
d .

We introduce the following model assumptions. Throughout, we use Atr for the
transpose of a matrix A, and whenever needed, the self-evident notation V v for the
stochastic factor process V starting from V0 = v.

Assumption 2.1 (i) The drift and volatility coefficients bi(v) and σ i(v), v ∈ R
d , are

uniformly bounded.
(ii) The volatility matrix σ(v) := (σ 1(v), . . . , σ n(v))tr, v ∈ R

d , has full row
rank n.
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(iii) The market price of risk

θ(v) := σ(v)tr(σ(v)σ (v)tr)−1
b(v), (2.2)

v ∈R
d , is uniformly bounded and Lipschitz-continuous.

Assumption 2.2 (i) The coefficient η(v) satisfies a dissipativity condition, namely,
there exists a large enough constant Cη > 0 such that for v, v̄ ∈ R

d ,

(
η(v) − η(v̄)

)tr
(v − v̄) ≤ −Cη|v − v̄|2. (2.3)

(ii) The matrix κ is positive definite and normalized to |κ| = 1.

The “large enough” property of Cη in Assumption 2.2(i) will be quantified in the
sequel when it is assumed that Cη > Cv > 0, where Cv appears in the properties of
the driver of an upcoming ergodic BSDE (see inequality (5.1)).

The assumption that the matrix κ is constant is without loss of generality as long
as the more general case κ = κ(v) satisfies the uniform ellipticity condition. This
condition is crucial for establishing the coupling estimate (2.5) that will be frequently
used. The case where κ(v) is degenerate is far more challenging and left for future
research.

Proposition 2.3 Under Assumption 2.2, the following assertions hold:
(i) The stochastic factor process satisfies, for v, v̄ ∈ R

d , t ≥ 0,

|V v
t − V v̄

t |2 ≤ e−2Cη t |v − v̄|2.
(ii) Assume that the process V v follows

dV v
t = (

η(V v
t ) + H(V v

t )
)
dt + κdWH

t ,

where H :Rd →R
d is a bounded measurable function, QH is a probability measure

equivalent to P, and WH is a Q
H -Brownian motion. Then there exists a constant

C > 0 such that

EQH

[|V v
t |p] ≤ C(1 + |v|p) (2.4)

for any p ≥ 1. Furthermore, for any measurable function φ : Rd → R with polyno-
mial growth rate μ > 0 and v, v̄ ∈R

d ,

|EQH [φ(V v
t ) − φ(V v̄

t )]| ≤ C(1 + |v|1+μ + |v̄|1+μ)e−Ĉη t . (2.5)

The constants C and Ĉη depend on the function H(·) only through supv∈Rd |H(v)|.
The proof of (i) follows from Gronwall’s inequality. Inequality (2.4) is an appli-

cation of a Lyapunov argument (see [9, Lemma 3.1]), while inequality (2.5) follows
from the coupling estimate in [19, Lemma 3.4].

Proposition 2.3 implies that the stochastic factor process V admits a unique in-
variant measure and is thus ergodic. Moreover, any two paths converge to each other
exponentially fast.
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2.1 The trading strategies

In this market environment, an investor trades dynamically among the bond and the
stocks. Let π̃ = (π̃1, . . . , π̃n)tr and π0 denote the (discounted by the bond) amounts
in the stocks and bond, respectively. The investor’s total wealth (discounted by the
bond) is given by Xπ̃

t = π0
t + 	n

i=1π̃
i
t , t ≥ 0. The investment strategies are taken to

be self-financing, and thus Xπ̃
t satisfies

dXπ̃
t =

n∑

i=1

π̃ i
t

Si
t

dSi
t = π̃ tr

t σ (Vt )
(
θ(Vt )dt + dWt

)
,

with X0 = x ∈ R and θ defined in (2.2). As in [23], we work with investment strate-
gies rescaled by the volatility, π tr

t := π̃ tr
t σ (Vt ) ∈R

1×d , yielding

dXπ
t = π tr

t

(
θ(Vt )dt + dWt

)
. (2.6)

The investor invests under trading constraints for her strategies, namely, we as-
sume that πt ∈ 
 with 
 being a closed and convex subset in R

d , including the
origin. For each t ≥ 0, we denote by A[0,t] the set of admissible investment strategies
on [0, t], defined as

A[0,t] = {π ∈ L2
BMO[0, t] : πs ∈ 
,s ∈ [0, t]},

where

L2
BMO[0, t] := {

(πs)s∈[0,t] : π is F-progressively measurable and

EP

[ ∫ t

τ
|πs |2ds

∣∣Fτ

] ≤ C P-a.s.

for some constant C and all F-stopping times τ ≤ t
}
.

For each s ∈ [0, t], the admissible set A[s,t] is defined in a similar way. We also
introduce A := ⋃

t≥0 A[0,t], the set of admissible investment strategies for all t ≥ 0.

2.2 The forward performance criterion

The investor uses an exponential forward performance criterion to measure the
performance for her investment strategies. For the reader’s convenience, we start
with some background results about this criterion, first recalling its definition (see
[26–30]). We then focus on the exponential class and review its ergodic BSDE repre-
sentation established in [23].

Definition 2.4 Let D = R× [0,∞). A process U(x, t), (x, t) ∈ D, is a forward per-
formance process if

(i) for each x ∈R, U(x, t) is F-progressively measurable;
(ii) for each t ≥ 0, the mapping x �→ U(x, t) is strictly increasing and strictly

concave;
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(iii) for all π ∈A and 0 ≤ t ≤ s,

U(Xπ
t , t) ≥ EP[U(Xπ

s , s)|Ft ],
and there exists an optimal π∗ ∈ A such that

U(Xπ∗
t , t) = EP[U(Xπ∗

s , s)|Ft ],
with Xπ,Xπ∗

solving (2.6).

Herein, we focus on Markovian exponential forward performance criteria,
namely, processes that are deterministic functions of the stochastic factors,

U(x, t) = −e−γ x+f (Vt ,t), (2.7)

for (x, t) ∈ D and γ > 0 and appropriate function(s) f :Rd × [0,∞) →R.
There are two approaches in specifying the process f (Vt , t). One may try to de-

termine the function(s) f (·, ·) using a (deterministic) PDE that they are expected to
satisfy. The form of this equation follows from imposing on the candidate solutions
(2.7) the supermartingale and martingale conditions in part (iii) above (see [23]; also
[31] and [32]). However, this PDE is ill-posed, and as a consequence, there are vari-
ous difficulties and open questions for its solution(s).

Alternatively, one may specify the process f (Vt , t) directly. This was done in
[23], where the authors developed a probabilistic approach based on ergodic BSDEs
(see [4, 5, 12, 19, 23] for recent developments of ergodic BSDEs). They showed that
the forward performance process of the form (2.7) exists and furthermore derived
its explicit representation using the solution of an ergodic BSDE. For the reader’s
convenience, we briefly review these results next.

Proposition 2.5 ([23, Proposition 4.1]) Suppose that Assumptions 2.1 and 2.2 hold.
Then the ergodic BSDE

dYt = ( − F(Vt ,Zt ) + λ
)
dt + Ztr

t dWt , (2.8)

where the driver F : Rd ×R
d → R is defined as

F(v, z) = 1

2
γ 2dist2

(

,

θ(v) + z

γ

)
− 1

2
|θ(v) + z|2 + 1

2
|z|2, (2.9)

with θ(·) as in (2.2), admits a unique Markovian solution (Yt ,Zt , λ), t ≥ 0. Specif-
ically, there exist a unique λ ∈ R and functions y : Rd → R and z : Rd → R

d such
that

(Yt ,Zt ) = (
y(Vt ), z(Vt )

)
. (2.10)

The function y(·) is unique up to an additive constant, and without loss of generality,
we can set y(0) = 0. Moreover, y(·) has at most linear growth and satisfies

|∇y(v)| ≤ Cv

Cη − Cv

, (2.11)
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and z(·) is bounded with |z(·)| ≤ Cv

Cη−Cv
, where the constants Cη and Cv are as in

Assumption 2.2 and inequality (5.1), respectively.

As shown in [23], the form of the driver F is dictated by the martingale and super-
martingale requirements (see part (iii) in Definition 2.4) that the candidate forward
performance process must satisfy. In Sect. 4, we provide a specific example for this
driver. We also refer the reader to [23, Sect. 3.1.2] for the connection of F with the
ill-posed PDE that the function f (·, ·) in (2.7) solves.

The next result relates the above unique Markovian solution of the ergodic BSDE
(2.8) to the Markovian exponential forward performance process (2.7) and its asso-
ciated optimal policy. For its proof, see [23, Theorem 4.2].

Proposition 2.6 ([23, Theorem 4.2]) Suppose that Assumptions 2.1 and 2.2 hold,
and let (Y,Z,λ) be the unique Markovian solution to the ergodic BSDE (2.8). Then
the process U(x, t), (x, t) ∈D, given by

U(x, t) = −e−γ x+Yt−λt (2.12)

is an exponential forward performance process. It solves

dU(x, t) = −U(x, t)

(
F(Vt ,Zt ) + 1

2
|Zt |2

)
dt + U(x, t)Ztr

t dWt . (2.13)

Furthermore, the associated optimal strategy is given by

π∗
t = Proj


(
θ(Vt ) + Zt

γ

)
. (2.14)

From (2.13), we may identify the process Z with the volatility component of the
forward performance criterion. We also remark that the volatility term in the Itô de-
composition of U(x, t) is not zero, and thus U(x, t) is not monotone with respect to
time.

Remark 2.7 In [23], the solution pair (Y,Z) is constructed by a “vanishing discount
rate” argument, i.e., the components of (Y,Z) are the limiting processes, as ρ ↓ 0, of
the solution to an infinite-horizon BSDE with a discount factor ρ. Furthermore, the
constant λ can be interpreted as the long term growth rate of a classical exponential
utility maximization problem (see [23, Proposition 3.3]).

Remark 2.8 Forward performance processes are not unique. For example, within the
exponential class, a time-monotone forward performance process is given by

U0(x, t) = −e−γ x+ 1
2 At ,

with At > 0 being a nondecreasing process that is path-dependent on the stochastic
factors. Furthermore, an extended class is given by

U
(M,N)
0 (x, t) = −Mt exp

(
−γ x

Nt

+ 1

2
A

(M,N)
t

)
,
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with M,N and A(M,N) representing a market view, a benchmark and a stochastic time
change (see [29, 37]). We stress, however, that the forward performance process in
the stochastic factor form (2.7) cannot be generated using processes like U

(M,N)
0 (x, t)

by merely manipulating the benchmark and market view processes, because once M

and/or N is introduced, the market is no longer the original one. Secondly, even if
M = N = 0, and we are thus in the original market, it is not possible to convert the
path-dependent time-monotone process U0(x, t) to a non-path-dependent process of
the form (2.7). We refer the reader to [23] for a detailed discussion on the above
issues.

3 Forward entropic risk measures

We introduce and study dynamic forward entropic risk measures in relation to the ex-
ponential forward performance process (2.12). We consider risk positions in a general
space L, defined as

L =
⋃

T ≥0

L∞(FT ),

where L∞(FT ) is for each T > 0 the space of uniformly bounded FT -measurable
random variables.

Definition 3.1 Consider the Markovian forward exponential performance process
U(x, t) = −e−γ x+Yt−λt , (x, t) ∈D (cf. (2.12)).

(i) Let T > 0 be an arbitrary horizon and consider a risk position ξ ∈ L∞(FT ). Its
T -normalized forward entropic risk measure, denoted by ρt (ξ ;T ) ∈ Ft , is defined
for t ∈ [0, T ] via

U(x, t) = uξ
(
x + ρt (ξ ;T ), t

)
(3.1)

for all (x, t) ∈ R× [0, T ], where

uξ (x, t) := ess sup
π∈A[t,T ]

EP

[
U

(
x +

∫ T

t

π tr
s

(
θ(Vs)ds + dWs

) + ξ, T

)∣∣∣∣Ft

]
. (3.2)

(ii) Consider an arbitrary risk position ξ ∈ L and define its maturity

T := inf{t ≥ 0 : ξ is Ft -measurable}
so that ξ ∈ L∞(FT ). Then its forward entropic risk measure, denoted by ρt (ξ), is
defined, for t ∈ [0, T ], as

ρt (ξ) := ρt (ξ ;T ). (3.3)

Definition (3.3) highlights the independence of the risk measure operator ρt (·)
on both the maturity and the trading horizon. Obviously, for each risk position ξ ,
ρt (ξ) depends on the size of ξ and T . But the operator per se is constructed through
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(3.1) and (3.2), which are defined for any maturity T since the underlying forward
performance criterion is defined for all times t ≥ 0.

The next task is to calculate the forward entropic risk measure from the
“indifference-type” condition (3.1). The left-hand side is already known from (2.12).
Using the form in (2.12), we can also view (3.2) as a classical expected utility maxi-
mization problem with random endowment ξ̄T := ξ − YT −λT

γ
, namely

uξ (x, t) = ess sup
π∈A[t,T ]

EP

[
− e−γ (x+∫ T

t π tr
s (θ(Vs)ds+dWs)+ξ̄T )

∣∣∣∣Ft

]
.

Note, however, that the random variable ξ̄T is in general neither bounded nor ex-
ponentially integrable and hence classical results on exponential utility optimization
(see for example [16, 18]) may not apply. This motivated the development of an al-
ternative solution approach, presented next.

3.1 BSDE representation of forward entropic risk measures

We provide here the first main result, which is the representation of the forward en-
tropic risk measure process using finite horizon BSDEs and ergodic BSDEs. We show
that the risk measure process of an arbitrary maturity, say T > 0, can be constructed
as the solution of a BSDE on [0, T ], with its driver depending on the process Z of
the solution to the ergodic BSDE (2.8). This dependence emerges because the ergodic
BSDE (2.8) was used to construct the forward performance criterion (2.12) appearing
in (3.1) of Definition 3.1.

Theorem 3.2 Consider an arbitrary risk position ξ ∈ L with maturity T . Suppose
that Assumptions 2.1 and 2.2 hold. Introduce for t ∈ [0, T ] the BSDE

Y
ξ
t = ξ +

∫ T

t

G(Vu,Zu,Z
ξ
u)du −

∫ T

t

(Zξ
u)trdWu, (3.4)

with the driver G :Rd ×R
d ×R

d →R defined as

G(v, z, z̄) = 1

γ

(
F(v, z + γ z̄) − F(v, z)

)
, (3.5)

where F is as in (2.9) and the process Z is the second component of the solution
(2.10) of the ergodic BSDE (2.8). Then the following assertions hold:

i) The BSDE (3.4) has a unique solution (Y
ξ
t ,Z

ξ
t ), t ∈ [0, T ], with Y ξ being uni-

formly bounded and Zξ ∈ L2
BMO[0, T ].

ii) The forward entropic risk measure of ξ is given, for t ∈ [0, T ], by

ρt (ξ) = Y
−ξ
t . (3.6)

An immediate consequence of the above representation is the dynamic consistency
property of the forward entropic risk measures.
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Corollary 3.3 Consider an arbitrary risk position ξ ∈ L with maturity T . Suppose
that Assumptions 2.1 and 2.2 hold. Then for 0 ≤ t ≤ s ≤ T , its forward entropic risk
measure satisfies

ρt (ξ) = ρt

( − ρs(ξ)
)
.

The above property follows directly from (3.6) and the fact that the solution of

(3.4) satisfies Y
−ξ
t = Y

Y
−ξ
s

t = Y
ρs(ξ)
t , for 0 ≤ t ≤ s ≤ T .

The fact that the forward entropic risk measure is represented as the solution
of a finite horizon BSDE is not surprising since given an arbitrary maturity, the
“indifference-type” condition (3.1) is by nature set “backwards” in time. There are,
however, two fundamental differences between the BSDEs for classical and forward
entropic risk measures. Firstly, the BSDE (3.4) differs from its classical counterpart
since its driver G depends on the process Z related to the solution of the ergodic
BSDE. Thus the two BSDEs do not coincide, and as a result, they produce different
solutions within the common horizon [0, T ]. This is, for example, reflected below
in the parity result (3.13) between the forward and classical entropic risk measures.
Secondly, the BSDE for the classical entropic risk measure is defined only for a pre-
set investment horizon [0, T ], for some single, fixed T . In contrast, in the forward
setting, the BSDE (3.4) is set for any arbitrary interval [0, T ], associated with the
maturity T of the arbitrary risk position ξ .

Besides defining the forward entropic risk measure of a risk position, one may
also introduce the associated forward hedging strategies. As in the classical case,
they are defined as the difference between the optimal strategies with and without
the risk position. The former is the optimal strategy for (3.2), provided in the sequel
(see (5.5)), while the latter was derived in (2.14).

Corollary 3.4 Consider an arbitrary risk position ξ ∈ L with maturity T . Suppose
that Assumptions 2.1 and 2.2 hold. Then the associated hedging strategy αt,T for
t ∈ [0, T ] is given by

αt,T := π
∗,ξ
t − π∗

t

= Proj


(
Z

−ξ
t + θ(Vt ) + Zt

γ

)
− Proj


(
θ(Vt ) + Zt

γ

)
.

Observe that the hedging strategy naturally depends on the maturity of the risk po-
sition in consideration only through the first term π

∗,ξ
t , and in particular through the

process Z−ξ . The second term, the optimal policy of U(x, t), t ≥ 0, is independent
of both the claim and its maturity. This is not the case in the classical setting, where
both terms depend on the investment horizon of the underlying exponential utility
maximization problems (see for instance [16]).

3.2 Convex dual representation of forward entropic risk measures

The second main result is an alternative representation of the forward entropic risk
measure using convex duality arguments. Using that the set of portfolio constraints
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 is convex and a distance function to a convex set is also convex, it follows that the
driver G(v, z, z̄) defined in (3.5) is convex in z̄, for any (v, z) ∈ R

d × R
d . We can

therefore introduce the convex dual of G(v, z, ·),
Ĝ(v, z,p) := sup

z̄∈Rd

(
z̄trp − G(v, z, z̄)

)
, (3.7)

for p ∈ R
d . Note that Ĝ is valued in R ∪ {∞}. Then the Fenchel–Moreau theorem

yields that for z̄ ∈R
d ,

G(v, z, z̄) = sup
p∈Rd

(
z̄trp − Ĝ(v, z,p)

)
. (3.8)

Moreover, the maximizer in (3.8) exists, i.e., there exists p∗ ∈ ∂Gz̄(v, z, z̄), the sub-
differential of z̄ �→ G(v, z, z̄) at z̄ ∈ R

d , such that

G(v, z, z̄) = z̄trp∗ − Ĝ(v, z,p∗). (3.9)

Let ξ ∈ L be an arbitrary risk position with maturity T . For this (arbitrary) T ,
consider the set of density processes q ∈ L2

BMO[0, T ]. For each such q , the stochastic
exponential E(

∫ ·
0 q tr

s dWs) is a uniformly integrable martingale since
∫ ·

0 q tr
s dWs is a

BMO-martingale. We define by dQq

dP
|FT

= E(
∫ ·

0 q tr
s dWs)T a probability measure Q

q

on FT and introduce for each t ∈ [0, T ] the set of admissible density processes,

A′[t,T ] :=
{
q ∈ L2

BMO[t, T ] : EQq

[∫ T

t

|Ĝ(Vu,Zu, qu)|du

∣∣∣∣Ft

]
< ∞

}
, (3.10)

with V solving (2.1) and Z as in (2.10) for the ergodic BSDE (2.8).

Theorem 3.5 Consider an arbitrary risk position ξ ∈ L with maturity T . Suppose
that Assumptions 2.1 and 2.2 hold. Then for t ∈ [0, T ], the following assertions hold:

(i) The forward entropic risk measure ρt (ξ) admits the convex dual representation

ρt (ξ) = − ess inf
q∈A′[t,T ]

EQq

[
ξ +

∫ T

t

Ĝ(Vs,Zs, qs)ds

∣∣
∣∣Ft

]
, (3.11)

where Ĝ : Rd × R
d × R

d → R ∪ {∞}, the convex dual of the driver G, is defined
in (3.7), and the process Z is the second component in the solution of the ergodic
BSDE (2.8).

(ii) There exists an optimal density process q∗,ξ ∈ A′[t,T ], and thus

ρt (ξ) = −EQq∗,ξ

[
ξ +

∫ T

t

Ĝ(Vs,Zs, q
∗,ξ
s )ds

∣∣∣∣Ft

]
.

In the above representation formula, the convex dual Ĝ yields the “penalty” pro-
cess Ĝ(Vs,Zs, ·), s ∈ [0, T ], which is added to the original risk position. However, it
is per se common for all claims and independent of all maturities.

From the representation (3.11) and the properties of Ĝ, we have the following
result.



An ergodic BSDE approach to forward entropic risk measures

Corollary 3.6 Consider an arbitrary risk position ξ ∈ L with maturity T . Suppose
that Assumptions 2.1 and 2.2 hold. Then for t ∈ [0, T ], the following properties hold:

(i) (Anti-positivity) ρt (ξ) ≤ 0 for ξ ≥ 0.
(ii) (Convexity) For any ξ̄ ∈ L∞(FT ) and α ∈ L∞(Ft ) with α ∈ [0,1], we have

ρt (αξ + (1 − α)ξ̄ ) ≤ αρt (ξ) + (1 − α)ρt (ξ̄ ).
(iii) (Cash translativity) For any m ∈ L∞(Ft ), we have ρt (ξ − m) = ρt (ξ) + m.

It is immediate to see from (3.11) that due to the trading constraints, the replication
invariance property in general fails, i.e.,

ρt

(
ξ +

∫ s

t

n∑

i=1

π̃ i
u

Si
u

dSi
u

)
= ρt

(
ξ +

∫ s

t

π tr
t

(
θ(Vt )dt + dWt

)) = ρt (ξ),

for s ∈ (t, T ]. This is because Qq is not necessarily an equivalent martingale measure,
and therefore EQq [∫ s

t
π tr

t (θ(Vt )dt + dWt)|Ft ] = 0 in general.

3.3 A parity result between forward and classical entropic risk measures

The third result quantifies the difference between the forward and the classical en-
tropic measures. For a specific investment horizon [0, T ], we consider the exponential
utility at maturity T ,

UT (x) = −e−γ x,

x ∈ R, γ > 0. For the reader’s convenience, we recall the definition of classical
entropic risk measures associated with this horizon and utility (see among others
[2, 8, 13–16, 24, 25]).

Definition 3.7 Let T > 0 be fixed, and consider a risk position ξ maturing at T , with
ξ ∈ FT . Its classical entropic risk measure, denoted by ρt,T (ξ) ∈ Ft , is defined for
t ∈ [0, T ] via

w0(x, t) = wξ
(
x + ρt,T (ξ), t

)
,

for all (x, t) ∈ R× [0, T ], where

wξ(x, t) := ess sup
π∈A[t,T ]

EP

[
UT

(
x +

∫ T

t

π tr
u

(
θ(Vu)du + dWu

) + ξ

)∣∣∣∣Ft

]
. (3.12)

The decomposition formula below shows that the forward entropic measure can be
constructed as the difference of two classical entropic measures applied, respectively,
to the modified risk position ξ − YT −λT

γ
and to a normalizing factor −YT −λT

γ
.

Proposition 3.8 Consider an arbitrary risk position ξ ∈ L with maturity T . Suppose
that Assumptions 2.1 and 2.2 hold. Then for t ∈ [0, T ], the forward and classical
entropic risk measures satisfy

ρt (ξ) = ρt,T

(
ξ − YT − λT

γ

)
− ρt,T

(
−YT − λT

γ

)
, (3.13)
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where (Y,λ) is the unique Markovian solution to the ergodic BSDE (2.8) (cf. Propo-
sition 2.5).

3.4 Risk positions with long maturity

We examine the behavior of the forward entropic risk measure and the hedging strat-
egy of risk positions with long maturity. For tractability, we focus on European-type
positions written on the stochastic factor process V , namely, we consider risk posi-
tions with arbitrary maturity T of the form

ξ = −g(VT ). (3.14)

Assumption 3.9 The function g : Rd → R is uniformly bounded and Lipschitz-
continuous, with Lipschitz constant Cg .

We are interested in the behavior of ρt (ξ) and its associated hedging strategy αt,T

if T is large. We first recall from part (ii) of Theorem 3.2 that the forward entropic risk
measure is represented as ρt (ξ) = Y

−ξ
t , t ∈ [0, T ], where Y

−ξ
t solves the BSDE (3.4).

Under the above Markovian assumption (3.14), we further deduce that the solution
(Y

−ξ
t ,Z

−ξ
t ) of (3.4) can be actually represented in the form

(Y
−ξ
t ,Z

−ξ
t ) = (

yT,g(Vt , t), z
T ,g(Vt , t)

)
,

for some measurable functions yT,g(·, ·), zT ,g(·, ·), and in turn,

ρt (ξ) = yT,g(Vt , t), (3.15)

where V solves (2.1) with V0 = v. Therefore, taking (without loss of generality)
t = 0, we study the limit limT ↑∞ ρ0(ξ) = limT ↑∞ yT,g(v,0).

We establish that as T ↑ ∞, ρ0(ξ) converges to a constant which is independent
of the initial value of the stochastic factor and moreover, we prove the rate of con-
vergence. We also study the limiting behavior of the hedging strategies and establish
appropriate exponential bounds. These yield that as T ↑ ∞, the optimal strategies
with and without the risk position coincide, and thus at all times, no additional stock
trading to hedge the risk position takes place.

Theorem 3.10 Consider an arbitrary risk position ξ as in (3.14) with maturity T ,
and the function yT,g(·, ·) as in (3.15). Suppose that Assumptions 2.1, 2.2 and 3.9
hold. Then the following assertions hold:

(i) For any v ∈ R
d and V0 = v, there exists a constant Lg ∈ R, independent of v,

such that

lim
T ↑∞ρ0(ξ) = lim

T ↑∞yT,g(v,0) = Lg.

In particular, for any T > 0,

|yT,g(v,0) − Lg| ≤ C(1 + |v|2)e−ĈηT (3.16)

for some constant C, where the constant Ĉη is given in Proposition 2.3.
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(ii) The hedging strategy satisfies for any T > 0 and s ∈ [0, T ) that

EP

[∫ s

0
|αt,T |2dt

]
≤ C(1 + |v|4)e−2Ĉη(T −s). (3.17)

Therefore, for any s ≥ 0,

lim
T ↑∞EP

[∫ s

0
|αt,T |2dt

]
= 0. (3.18)

Remark 3.11 In order to study the long-maturity behavior of the solution Y
−ξ
0 to the

BSDE (3.4), it is natural to try to relate (3.4) with an ergodic BSDE, given below, and
investigate the proximity of their solutions. Specifically, we may consider the ergodic
BSDE

Pt = Ps +
∫ s

t

(
G(Vu,Zu,Qu) − λ̂

)
ds −

∫ s

t

Qtr
udWu, (3.19)

for 0 ≤ t ≤ s < ∞, and examine the approximation of Y
−ξ
0 by P0 + λ̂T for large T .

However, the driver of the ergodic BSDE (3.19) depends on the solution Z of
the ergodic BSDE (2.8) of the forward performance process, and this causes various
technical issues. Indeed, the driver G(v, z(v), z̄) of the ergodic BSDE (3.19) depends
on the function z(·) in (2.10). Although, due to the boundedness of the function z(·),
the driver G satisfies the local Lipschitz estimate (5.2) in z̄, it need not satisfy the
local Lipschitz estimate (5.1) in v, and hence the existence and uniqueness result in
[23] might not apply. Moreover, it is not even clear whether the ergodic BSDE (3.19)
is well-posed. For these reasons, we establish the above results working directly with
the function yT,g(·, ·) in (3.15).

4 An example

We present an example for which we derive explicit formulae for both the forward and
classical entropic risk measures, and also provide numerical results for their large-
maturity limits.

The market consists of a bond and a stock. The stock’s coefficients depend on a
single stochastic factor driven by a 2-dimensional Brownian motion, namely,

dSt = b(Vt )Stdt + σ(Vt )StdW 1
t ,

dVt = η(Vt )dt + κ1dW 1
t + κ2dW 2

t ,

for some positive constants κ1, κ2. We assume that |κ1|2 + |κ2|2 = 1, the functions
b(·) and σ(·) are uniformly bounded with σ(·) > 0, and η(·) satisfies the dissipativity
condition (2.3) in Assumption 2.2. We choose the set of constraints 
 ≡ R× {0} (so
that π1,t = π̃t σ (Vt ) ∈ R and π2,t ≡ 0). Therefore, the wealth equation (2.6) becomes

dX
π1
t = π1,t

(
θ(Vt )dt + dW 1

t

)
,
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with θ(Vt ) = b(Vt )
σ (Vt )

. We consider a risk position as in (3.14), ξ = −g(VT ), for some
function g(·) satisfying Assumption 3.9.

4.1 Forward entropic risk measure

The drivers F and G in (2.9) and (3.5) take the forms

F
(
v, (z1, z2)

tr) = −θ(v)z1 − 1

2
|θ(v)|2 + 1

2
|z2|2,

G
(
v, (z1, z2)

tr, (z̄1, z̄2)
tr) = −θ (v) z̄1 + z2z̄2 + γ

2
|z̄2|2,

for z = (z1, z2)
tr ∈ R

2 and z̄ = (z̄1, z̄2)
tr ∈ R

2. The convex dual of G (cf. (3.7)) is
then given, for v ∈ R, z = (z1, z2)

tr ∈ R
2 and p = (p1,p2)

tr ∈ R
2, by

Ĝ
(
v, (z1, z2)

tr, (p1,p2)
tr) = |p2 − z2|2

2γ
1{p1+θ(v)=0} + ∞1{p1+θ(v)=0}. (4.1)

To solve the BSDE (3.4), we first introduce the auxiliary quadratic BSDE

dY
−ξ
t = −

((−κ1θ(Vt ) + κ2Z2,t

)
Z

−ξ
t + γ |κ2|2

2
|Z−ξ

t |2
)

dt

+Z
−ξ
t (κ1dW 1

t + κ2dW 2
t ) (4.2)

with Y
−ξ
T = −ξ = g(VT ), and show that it admits a unique solution, say (Y−ξ ,Z−ξ ).

It then follows that the processes (Y−ξ , (Z
−ξ
1 ,Z

−ξ
2 )tr), with Z

−ξ
1,t := κ1Z

−ξ
t and

Z
−ξ
2,t := κ2Z

−ξ
t , solve (uniquely) the original BSDE (3.4). To solve (4.2), we define

Ỹ
−ξ
t = eγ |κ2|2Y−ξ

t and Z̃
−ξ
t = γ |κ2|2Ỹ−ξ

t Z
−ξ
t , (4.3)

and deduce from (4.2) that they satisfy

dỸ
−ξ
t = Z̃

−ξ
t

((
κ1θ(Vt ) − κ2Z2,t

)
dt + κ1dW 1

t + κ2dW 2
t

)

with Ỹ
−ξ
T = eγ |κ2|2g(VT ). Because θ(·) and Z2 are uniformly bounded, the process

Bt := ∫ t

0 (κ1θ(Vs) − κ2Z2,s)ds + κ1W
1
t + κ2W

2
t , t ∈ [0, T ], is a Brownian motion

under the probability measure Q defined by

dQ

dP

∣∣∣∣
FT

= E
(

−
∫ ·

0

(
κ1θ(Vs) − κ2Z2,s

)
(κ1dW 1

s + κ2dW 2
s )

)

T

. (4.4)

Hence, dỸ
−ξ
t = Z̃

−ξ
t dBt and thus Ỹ

−ξ
t = EQ[eγ |κ2|2g(VT )|Ft ]. We then readily de-

duce, using (4.3) and (3.6), the closed-form expression

ρt (ξ) = Y
−ξ
t = 1

γ |κ2|2 lnEQ[eγ |κ2|2g(VT )|Ft ]. (4.5)



An ergodic BSDE approach to forward entropic risk measures

For the convex dual representation, (3.11) gives

ρt (ξ) = − ess inf
q∈A′[t,T ]

EQq

[
−g(VT ) +

∫ T

t

Ĝ
(
Vs, (Z1,s ,Z2,s)

tr, (q1,s , q2,s)
tr)ds

∣∣∣∣Ft

]
,

for q = (q1, q2)
tr and A′[t,T ] as in (3.10). It is clear from (4.1) that the optimal density

process must satisfy q1,s = −θ(Vs), s ∈ [0, T ], and thus

ρt (ξ) = − ess inf
q∈A′[t,T ], q1=−θ(V )

EQq

[
−g (VT ) + 1

2γ

∫ T

t

|q2,s − Z2,s |2ds

∣∣∣∣Ft

]
.

Furthermore, under Qq , the stock price process S follows

dSt = σ(Vt )StdW
q,1
t ,

where Wq,1 = W 1 + ∫ ·
0 θ(Vs)ds is a Brownian motion under Qq . Therefore, Qq is

an equivalent martingale measure.
Note that in such a case without portfolio constraints, the above convex dual rep-

resentation implies that the forward entropic risk measure indeed satisfies the repli-
cation invariance property, namely,

ρt

(
ξ +

∫ s

t

π̃u

Su

dSu

)
= ρt

(
ξ +

∫ s

t

π1
udW

q,1
u

)
= ρt (ξ),

for any s ∈ [t, T ], as it follows from the martingale property of
∫

π1
udW

q,1
u under the

equivalent martingale measure Q
q .

4.2 Classical entropic risk measure

We have the representation

ρt,T (ξ) = P
−ξ
t − P 0

t ,

where P
−ξ
t , t ∈ [0, T ], is the unique solution to the quadratic BSDE

P
−ξ
t = −ξ + 1

γ

∫ T

t

F (Vs, γQ−ξ
s )ds −

∫ T

t

(Q−ξ
s )trdWs (4.6)

= g(VT ) + 1

2γ

∫ T

t

(
γ 2|Q−ξ

2,s |2 − |θ(Vs)|2 − 2γ θ(Vs)Q
−ξ
1,s

)
ds

−
∫ T

t

(Q−ξ
s )trdWs;

see for example [16, Sect. 3]. Direct calculations then yield the closed-form repre-
sentation

ρt,T (ξ) = P
−ξ
t − P 0

t = 1

γ |κ2|2 lnEQT [eγ |κ2|2g(VT )|Ft ], (4.7)
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Fig. 1 Forward and classical
entropic risk measures against
the maturity T , with γ = 1,
α = 0.1, K1 = K2 = 10,
κ1 = 0.9, κ2 = 0.1; blue
upward-pointing triangle for
v0 = 5, red circle for v0 = 7.5,
green asterisk for v0 = 10, black
cross for v0 = 12.5, and
magenta square for v0 = 15

where the measure Q
T equivalent to P is defined by

dQT

dP

∣∣∣∣
FT

= E
(

−
∫ ·

0

(
κ1θ(Vs) − κ2γQ0

2,s

)
(κ1dW 1

s + κ2dW 2
s )

)

T

. (4.8)

In this single stock/single factor example, the only difference in the expressions
(4.5) and (4.7) for the forward and classical entropic risk measures is in the respec-
tive measures Q and Q

T (cf. (4.4) and (4.8)). In the forward case, Q is determined by
the component Z2 appearing in the ergodic BSDE representation of the forward per-
formance process (2.12). The corresponding density process is naturally independent
of the maturity T . In the classical setting, however, the measure Q

T is determined
by the component Q0

2 coming from the exponential utility maximization (3.12) with
zero risk position (cf. (4.6) with ξ = 0), which depends critically on the maturity T .
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Fig. 2 Forward and classical
entropic risk measures against
the maturity T , with γ = 1,
α = 0.1, K1 = K2 = 10,
κ1 = 0.5, κ2 = 0.5; blue
upward-pointing triangle for
v0 = 5, red circle for v0 = 7.5,
green asterisk for v0 = 10, black
cross for v0 = 12.5, and
magenta square for v0 = 15

Finally, (4.4) and (4.8) yield

dQT

dQ

∣∣∣
∣
FT

= e
∫ t

0 κ1θ(Vs)κ2(γQ0
2,s−Z2,s )ds

× E
(∫ ·

0
κ2(γQ0

2,s − Z2,s)(κ1dW 1
s + κ2dW 2

s )

)

T

.

4.3 Numerical results

We conclude with numerical results for the forward and the classical entropic risk
measures, ρ0(ξ) and ρ0,T (ξ), respectively, taking T to be large, with η(v) = −αv,
θ(v) = (K2 − |v|)+ and g(v) = (K1 − |v|)+, with K1,K2 > 0. Thus, the stochastic
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Fig. 3 Forward and classical
entropic risk measures against
the maturity T , with γ = 1,
α = 0.1, K1 = K2 = 10,
κ1 = 0.0, κ2 = 1.0; blue
upward-pointing triangle for
v0 = 5, red circle for v0 = 7.5,
green asterisk for v0 = 10, black
cross for v0 = 12.5, and
magenta square for v0 = 15

factor process follows the Vasiček model

dVt = −αVtdt + κ1dW 1
t + κ2dW 2

t ,

and the risk position is ξ = −(K1 − |VT |)+. Figures 1–3 provide the values of both
the forward and classical entropic risk measures, with different starting points of V0

and different values of (κ1, κ2). The graphs confirm the large-maturity behavior of
both measures as well as that the limiting constants are indeed independent of the
initial value V0 of the stochastic factor process.

Note that κ1 is the correlation between the stochastic factor V and the stock S.
The larger κ1, the more likely the investor is able to hedge the underlying risks via
trading the stock. The numerical results in Figs. 1 and 3 show that in both extreme
cases, κ1 ≈ 1 or κ1 ≈ 0, both the forward and classical entropic risk measures con-
verge to constants more quickly, in comparison to the intermediate case κ = 0.5. This
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implies that in these two extreme situations, the investor will implement earlier the
“no trading in the stock” strategy.

On the other hand, Fig. 2 illustrates that when κ2 = 0.5, in which case the stock
can be used to partially hedge the underlying risks, the forward entropic risk measure
will converge to a constant faster than its classical counterpart. As a consequence,
if the investor chooses to use the forward entropic risk measure to assess the risk
position, she will implement the “no-trading in the stock” strategy earlier.

We should, however, like to mention that it is not yet clear how the two limiting
constants compare to each other. This open question is left for future research.

5 Proofs of the main results

5.1 Proof of Theorem 3.2

We recall that in the proof of [23, Proposition 4.1], two key inequalities were used,
which follow from Assumption 2.1 and the Lipschitz property of the distance func-
tion. Specifically, it was established that there exist constants Cv,Cz > 0 such that
for any v, v1, v2, z, z1, z2 ∈R

d , the driver F in (2.9) satisfies

|F(v1, z) − F(v2, z)| ≤ Cv(1 + |z|)|v1 − v2|, (5.1)

|F(v, z1) − F(v, z2)| ≤ Cz(1 + |z1| + |z2|)|z1 − z2|. (5.2)

Proof of (i) First note that for t ∈ [0, T ], G(v,Zt , z̄) is locally Lipschitz-continuous
in z̄, since

|G(v,Zt , z̄1) − G(v,Zt , z̄2)| ≤ Cz(1 + 2|Zt | + γ |z̄1| + γ |z̄2|)|z̄1 − z̄2| a.s.

and Z is uniformly bounded. Using in addition that ξ ∈ L∞(FT ), the assertion fol-
lows from [22, Theorems 2.3 and 2.6] and [16, Theorem 7]. �

Proof of (ii) As mentioned in the discussions before Sect. 3.1, it might not be possi-
ble to solve (3.2) within the standard framework of exponential utility maximization
because the modified risk position ξ − YT −λT

γ
is possibly neither bounded nor ex-

ponentially integrable. Instead, we provide an alternative approach, claiming directly
that its solution uξ (x, t) admits the representation

uξ (x, t) = U(x, t)eγY
−ξ
t , (5.3)

with U(x, t) as in (2.12) and Y
−ξ
t solving (3.4).

If (5.3) holds, we deduce from (2.12) that for t ∈ [0, T ],

uξ
(
x + ρt (ξ), t

) = U
(
x + ρt (ξ), t

)
eγY

−ξ
t = U(x, t)e−γρt (ξ)eγ Y

−ξ
t ,

and in turn, the representation (3.6) follows directly from (3.1).
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To verify (5.3), it suffices to establish that the process U(X
t,x;π
s , s)eγY

−ξ
s for

s ∈ [t, T ] is a supermartingale for any x ∈ R and π ∈ A[t,T ], and that there exists

an optimal π∗ ∈A[t,T ] such that U(X
t,x;π∗
s , s)eγY

−ξ
s becomes a martingale, where

Xt,x;π
s := x +

∫ s

t

π tr
u

(
θ(Vu)du + dWu

)
(5.4)

and analogously for Xt,x;π∗
. Indeed, using (5.4) together with (2.12), (2.8) and (3.4),

we deduce that for s ∈ [t, T ],
U(Xt,x;π

s , s)eγY
−ξ
s = −e−γX

t,x;π
s eYs−λseγY

−ξ
s = U(x, t)eγY

−ξ
t Aπ

t,s ,

with

Aπ
t,s := e

∫ s
t (Zu+γZ

−ξ
u −γπu)trdWu−∫ s

t (γ π tr
u θ(Vu)+F(Vu,Zu+γZ

−ξ
u ))du.

Following arguments similar to those in the proof of [23, Theorem 3.2], we obtain
that for s ∈ [t, T ] and any π ∈ A[t,T ], we have EP[Aπ

t,s |Ft ] ≥ 1, while we obtain
EP[Aπ∗

t,s |Ft ] = 1 for

π∗,ξ
s = Proj


(
Z−ξ

s + θ(Vs) + Zs

γ

)
. (5.5)

Hence, we obtain that

EP[U(X
t,x;π
T + ξ, T )|Ft ] = EP[U(X

t,x;π
T , T )eγY

−ξ
T |Ft ] ≤ U(x, t)eγY

−ξ
t = uξ (x, t)

for any π ∈ A[t,T ], where we also used that Y
−ξ
T = −ξ (cf. (3.4)). Similarly, with π∗

as in (5.5), we obtain that

EP[U(X
t,x;π∗
T + ξ, T )|Ft ] = uξ (x, t),

and (5.3) follows. �

5.2 Proof of Theorem 3.5

We first derive some auxiliary bounds for the driver G and its convex dual Ĝ.

Lemma 5.1 The driver G(v, z, z̄) and its convex dual Ĝ(v, z,p) (cf. (3.5) and (3.7),
respectively) have the following properties:

(i) For (v, z, z̄) ∈R
d ×R

d ×R
d ,

−γ |z̄|2 − 2

γ
(|θ(v)|2 + |z|2) ≤ G(v, z, z̄) ≤ γ |z̄|2 + 2

γ
(|θ(v)|2 + |z|2). (5.6)

(ii) For (v, z) ∈R
d ×R

d , Ĝ(v, z,p) is convex in p.
(iii) For (v, z,p) ∈ R

d ×R
d ×R

d ,

Ĝ(v, z,p) ≥ max

(
0,

|p|2
4γ

− 2

γ
(|θ(v)|2 + |z|2)

)
. (5.7)
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Proof The convexity of Ĝ(v, z,p) in p is immediate, so we only prove (i) and (iii).

Since 0 ∈ 
, we have that dist2(
,
θ(v)+z

γ
) ≤ |θ(v)+z|2

γ 2 and thus F(v, z) ≤ 1
2 |z|2.

On the other hand, F(v, z) ≥ −ztrθ(v) − 1
2 |θ(v)|2. Therefore, (3.5) gives

G(v, z, z̄) = 1

γ

(
F(v, z + γ z̄) − F(v, z)

)

≤ 1

2γ
|z + γ z̄|2 + 1

γ

(
ztrθ(v) + 1

2
|θ(v)|2

)

≤ γ |z̄|2 + 2

γ

(|z|2 + |θ(v)|2).

In turn, using the definition (3.7) of Ĝ and the above inequality, we deduce that for
any z̄ ∈ R

d ,

Ĝ(v, z,p) ≥ z̄trp − G(v, z, z̄) ≥ z̄trp − γ |z̄|2 − 2

γ

(|θ(v)|2 + |z|2 )
.

Taking z̄ = p/2γ yields

Ĝ(v, z,p) ≥ |p|2
4γ

− 2

γ

(|z|2 + |θ(v)|2).

Moreover, since G(v, z,0) = 0, we have by taking z̄ = 0 that Ĝ(v, z,p) ≥ 0, and we
conclude. The lower bound in (5.6) is derived by using similar arguments. �

Proof of Theorem 3.5 (i) Let T > 0 be the maturity of the arbitrary risk position ξ .
For any q ∈A′[0,T ] and with Q

q defined via dQq

dP
|FT

= E(
∫ .

0 q tr
s dWs)T , let

Y
−ξ,q
t := EQq

[
−ξ −

∫ T

t

Ĝ(Vs,Zs, qs)ds

∣∣∣∣Ft

]

for t ∈ [0, T ]. Then Y
−ξ,q
t is finite due to the integrability condition on Ĝ in the

admissible set A′[0,T ].
Next, observe that the process Y

−ξ,q
t − ∫ t

0 Ĝ(Vs,Zs, qs)ds, t ∈ [0, T ], is a uni-
formly integrable martingale under Qq . Thus, the martingale representation theorem
(see for example [20, Chap. 5.8]) gives

Y
−ξ,q
t −

∫ t

0
Ĝ(Vs,Zs, qs)ds =

(
−ξ −

∫ T

0
Ĝ(Vs,Zs, qs)ds

)

−
∫ T

t

(Z
−ξ,q
s )trdW

q
s (5.8)
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for some predictable process Z−ξ,q , where W
q
t = Wt − ∫ t

0 qsds, t ∈ [0, T ], is a
d-dimensional Brownian motion under Qq . On the other hand, the BSDE (3.4) takes
under Qq the form

Y
−ξ
t = −ξ +

∫ T

t

(
G(Vs,Zs,Z

−ξ
s ) − (Z−ξ

s )trqs

)
ds −

∫ T

t

(Z−ξ
s )trdW

q
s . (5.9)

Combining (5.8) and (5.9) gives

Y
−ξ
t − Y

−ξ,q
t = EQq

[∫ T

t

(
G(Vs,Zs,Z

−ξ
s ) − (Z−ξ

s )trqs + Ĝ(Vs,Zs, qs)
)
ds

∣∣
∣∣Ft

]
.

Using (3.8), we deduce that for any q ∈ A′[0,T ],

G(Vs,Zs,Z
−ξ
s ) − (Z−ξ

s )trqs + Ĝ(Vs,Zs, qs) ≥ 0,

and thus Y
−ξ
t ≥ Y

−ξ,q
t . Next, setting q

∗,ξ
s := ∂Gz̄(Vs,Zs,Z

−ξ
s ), we further obtain

from (3.9) that

G(Vs,Zs,Z
−ξ
s ) − (Z−ξ

s )trq∗,ξ
s + Ĝ(Vs,Zs, q

∗,ξ
s ) = 0, (5.10)

from which we conclude that Y
−ξ
t = Y

−ξ,q∗
t for t ∈ [0, T ].

(ii) We now show that for s ∈ [0, T ], q
∗,ξ
s is indeed in the admissible set A′[0,T ].

To this end, using the lower bound of Ĝ in (5.7), we deduce from (5.10) that

G(Vs,Zs,Z
−ξ
s ) = (Z−ξ

s )trq∗,ξ
s − Ĝ(Vs,Zs, q

∗,ξ
s )

≤ (Z−ξ
s )trq∗,ξ

s − |q∗,ξ
s |2
4γ

+ 2

γ

(|θ(Vs)|2 + |Zs |2
)

≤ 2γ |Z−ξ
s |2 + |q∗,ξ

s |2
8γ

− |q∗,ξ
s |2
4γ

+ 2

γ

(|θ(Vs)|2 + |Zs |2
)
,

where the last inequality used that ab ≤ 2γ |a|2 + |b|2
8γ

. Combining the above inequal-
ity and the lower bound of G in (5.6) gives

1

8γ
|q∗,ξ

s |2 ≤ 2γ |Z−ξ
s |2 + 2

γ

(|θ(Vs)|2 + |Zs |2
) − G(Vs,Zs,Z

−ξ
s )

≤ 3γ |Z−ξ
s |2 + 4

γ

(|θ(Vs)|2 + |Zs |2
)
.

Furthermore, since Z−ξ ∈ L2
BMO[0, T ] and both Z and θ(·) are bounded, we obtain

that q∗,ξ ∈ L2
BMO[0, T ]. Finally, using (5.10) and the bounds of G in (5.6), we deduce
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that

E
Qq∗,ξ

[∫ T

0
|Ĝ(Vs,Zs, q

∗,ξ
s )|ds

]

= E
Qq∗,ξ

[∫ T

0
|(Z−ξ

s )trq∗,ξ
s − G(Vs,Zs,Z

−ξ
s )|ds

]

≤
(

1

2
+ γ

)
E
Qq∗,ξ

[∫ T

0
|Z−ξ

s |2ds

]
+ 1

2
E
Qq∗,ξ

[∫ T

0
|q∗,ξ

s |2ds

]

+ 2

γ
E
Qq∗,ξ

[∫ T

0

(|θ(Vs)|2 + |Zs |2
)
ds

]
.

Moreover, since Z−ξ , q∗,ξ ∈ L2
BMO[0, T ] under P and P ∼ Q

q∗,ξ
and more-

over, the density process for Q
q∗,ξ

is E(
∫ ·

0(q
∗,ξ
s )trdWs) with q∗,ξ ∈ L2

BMO[0, T ],
we deduce that Z−ξ , q∗,ξ ∈ L2

BMO[0, T ] under Q
q∗,ξ

as well (see for example

[17, Sect. 5.2]). Thus E
Qq∗,ξ [∫ T

0 |G∗(Vs,Zs, q
∗,ξ
s )|ds] < ∞, and we easily conclude

that q∗,ξ ∈A′[0,T ]. �

5.3 Proof of Proposition 3.8

Let ξ̄T := ξ − YT −λT
γ

∈ FT , with YT and λ as in Proposition 2.5. Therefore, the

classical utility maximization problem (3.12) with risk position ξ̄T coincides with
(3.2) with risk position ξ , namely,

wξ̄T (x, t) = uξ (x, t).

It then follows from (5.3) in the proof of Theorem 3.2 that

wξ̄T
(
x + ρt,T (ξ̄T ), t

) = U(x, t)e−γρt,T (ξ̄T )eγ Y
−ξ
t .

In turn, Definition 3.7 implies that

w0(x, t) = U(x, t)e−γρt,T (ξ̄T )eγ Y
−ξ
t . (5.11)

Taking ξ = 0 in (5.11) further yields that

w0(x, t) = U(x, t)e
−γρt,T (− YT −λT

γ
)
eγ Y 0

t . (5.12)

Therefore, combining (5.11) and (5.12) gives

Y
−ξ
t − Y 0

t = ρt,T (ξ̄T ) − ρt,T

(
−YT − λT

γ

)
.

However, by Theorem 3.2, we know that Y
−ξ
t = ρt (ξ), and if ξ = 0 in the BSDE

(3.4), it is obvious that its solution is Y 0
t = 0, from which we conclude. �
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5.4 Proof of Theorem 3.10

We first establish some auxiliary estimates for the function yT,g : Rd × [0, T ] → R

appearing in (3.15).

Lemma 5.2 Consider an arbitrary risk position ξ as in (3.14) with maturity T and
the function yT,g(·, ·) as in (3.15). Suppose that Assumptions 2.1, 2.2 and 3.9 hold.
Then for (v, t) ∈R

d × [0, T ], the function yT,g(·, ·) has the following properties:
(i) There exists a constant C > 0 such that

|yT,g(v, t)| ≤ C(1 + |v|).
(ii) With the constants K as in (A.3), Cv in (5.1) and Cη in Assumption 2.2(i),

|∇yT,g(v, t)| ≤ K + Cv

γ (Cη − Cv)
.

(iii) There exists a constant C > 0 such that for v, v̄ ∈R
d ,

|yT,g(v, t) − yT,g(v̄, t)| ≤ C(1 + |v|2 + |v̄|2)e−Ĉη(T −t),

with the constant Ĉη given in Proposition 2.3.

Proof Fix t ∈ [0, T ], and let the stochastic factor process start at Vt = v. We use
the self-evident notation V

t,v
s for s ∈ [t, T ]. Recall from Proposition 2.5 the solu-

tion (Ys,Zs) = (y(V
t,v
s ), z(V

t,v
s )). Furthermore, for s ∈ [t, T ], we also have for the

solution (Y
−ξ
s ,Z

−ξ
s ) of (3.4) that

(Y−ξ
s ,Z−ξ

s ) = (
yT,g(V t,v

s , s), zT ,g(V t,v
s , s)

)
,

where

Y−ξ
s = g(V

t,v
T ) +

∫ T

s

1

γ

(
F

(
V t,v

u , γ ẑ(V t,v
u , u)

) − F(V t,v
u ,Zu)

)
du

−
∫ T

s

(
ẑ(V t,v

u , u) − Zu

γ

)tr

dWu, (5.13)

with

ẑ(V t,v
s , s) := Z−ξ

s + Zs

γ
= zT ,g(V t,v

s , s) + z(V
t,v
s )

γ
. (5.14)

In Lemma A.1 of the Appendix, we show that |ẑ(·, ·)| ≤ K for a constant K given in
(A.3). Therefore, the process Z−ξ is uniformly bounded since

|Z−ξ
s | =

∣∣
∣∣ẑ(V

t,v
s , s) − Zs

γ

∣∣
∣∣ ≤ K + Cv

γ (Cη − Cv)
.
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In turn, the estimate ii) for yT,g(v, t) follows from κ tr∇yT,g(V
t,v
s , s) = Z

−ξ
s for

s ∈ [t, T ] and the conditions on the matrix κ .
To prove (i), we introduce the process

H(V t,v
s ) := (F (V

t,v
s , γ ẑ(V

t,v
s , s)) − F(V

t,v
s ,Zs))(ẑ(V

t,v
s , s) − Zs

γ
)

γ |ẑ(V t,v
s , s) − Zs

γ
|2

× 1{ẑ(V t,v
s ,s)− Zs

γ
=0} (5.15)

and observe that it is uniformly bounded due to (5.2) and the boundedness of ẑ(·, ·)
and Z. Next, define a probability measure QH by dQH

dP
|FT

= E(
∫ ·
t
(H(V

t,v
s ))trdWs)T .

Then (5.13) can be written as

Y
−ξ
t = yT,g(v, t)

= g(V
t,v
T ) −

∫ T

t

(
ẑ(V t,v

s , s) − Zs

γ

)tr (
dWs − H(V t,v

s )ds
)

= EQH [g(V
t,v
T )|Ft ], (5.16)

and the assertion follows from the linear growth property of g(·) and the first assertion
of part (ii) in Proposition 2.3.

Finally, for v, v̄ ∈R
d , by the second assertion of (ii) in Proposition 2.3,

|yT,g(v, t) − yT,g(v̄, t)| = ∣∣EQH [g(V
t,v
T ) − g(V

t,v̄
T )|Ft ]

∣∣

= ∣∣EQH [g(V
0,v
T −t ) − g(V

0,v̄
T −t )]

∣∣

≤ C(1 + |v|2 + |v̄|2)e−Ĉη(T −t),

and we conclude. �

Proof of Theorem 3.10 (i) Using estimate (i) in Lemma 5.2, we first construct—
applying a standard diagonal procedure—a sequence (Ti)

∞
i=1 such that Ti ↑ ∞ and

limTi↑∞ yTi ,g(v,0) = Lg(v), v ∈ D, for some function Lg(v) and a dense subset D

of Rd . Moreover, estimate (ii) in Lemma 5.2 implies that for any v, v̄ ∈ R
d ,

|yT,g(v,0) − yT,g(v̄,0)| ≤
(

K + Cv

γ (Cη − Cv)

)
|v − v̄|. (5.17)

Therefore, the limit function Lg(v) can be extended to a Lipschitz-continuous func-
tion defined for all v ∈R

d . Furthermore, we claim that

lim
Ti↑∞yTi ,g(v,0) = Lg(v), v ∈ R

d .



W.F. Chong et al.

Indeed, for v ∈ R
d\D, there exists a sequence (vj )

∞
j=1 ⊆ D such that vj → v. For

v ∈ R
d\D, then define Lg(v) = limj↑∞ Lg(vj ). Using (5.17), we have

|yTi ,g(v,0) − yTi ,g(vj ,0)| ≤
(

K + Cv

γ (Cη − Cv)

)
|v − vj |.

Taking Ti ↑ ∞ and since limTi↑∞ yTi ,g(vj ,0) = Lg(vj ), we obtain
∣∣∣∣ lim
Ti↑∞yTi ,g(v,0) − Lg(vj )

∣∣∣∣ ≤
(

K + Cv

γ (Cη − Cv)

)
|v − vj |.

Sending j ↑ ∞, we deduce that for any v ∈R
d , limTi↑∞ yTi ,g(v,0) = Lg(v).

Next, we show that for any v ∈ R
d , the limit Lg(v) actually satisfies Lg(v) ≡ Lg ,

with Lg being a constant. To this end, by estimate (iii) in Lemma 5.2, we have for
any v, v̄ ∈R

d that

|yTi ,g(v,0) − yTi ,g(v̄,0)| ≤ C(1 + |v|2 + |v̄|2)e−ĈηTi .

Letting Ti ↑ ∞ yields that limTi↑∞ yTi ,g(v,0) = limTi↑∞ yTi ,g(v̄,0), which implies
that the limit function Lg(v) is independent of v. Thus, it is a constant, denoted by Lg .
Moreover, such a constant Lg is independent of the choice of the sequence (Ti)

∞
i=1

(see for example [19, Theorem 4.4] for a proof).
To prove the convergence rate (3.16), we argue as follows. For v ∈ R

d and T > 0,
we have from (5.16) in the proof of Lemma 5.2(i) that

|yT,g(v,0) − Lg| = lim
T ′↑∞

|yT,g(v,0) − yT ′,g(v,0)|

= lim
T ′↑∞

|yT,g(v,0) − EQH [g(V
0,v
T ′ )]|.

For T ′ > T , we then have from the tower property of conditional expectations that

|yT,g(v,0) − EQH [g(V
0,v
T ′ )]| = ∣∣yT,g(v,0) − EQH

[
EQH [g(V

0,v
T ′ )|FT ′−T ]]∣∣

= |yT,g(v,0) − EQH [yT ′,g(V 0,v
T ′−T

, T ′ − T )]|
= |yT,g(v,0) − EQH [yT,g(V

0,v
T ′−T

,0)]|
= |EQH [yT,g(v,0) − yT,g(V

0,v
T ′−T

,0)]|.
Therefore,

|yT,g(v,0) − Lg| = lim
T ′↑∞

|EQH [yT,g(v,0) − yT,g(V
0,v
T ′−T

,0)]|

≤ lim
T ′↑∞

CEQH [1 + |v|2 + |V 0,v
T ′−T

|2]e−ĈηT

≤ C(1 + |v|2)e−ĈηT ,

where in the last two inequalities, we used part (ii) of Proposition 2.3 and part (iii) of
Lemma 5.2.
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(ii) We only establish the exponential bound (3.17), since the asymptotic behavior
of αt,T in (3.18) will then follow by letting T ↑ ∞.

From Corollary 3.4 and the Lipschitz-continuity of the projection operator on the
convex set 
, we deduce that for any s ∈ [0, T ),

EP

[∫ s

0
|αu,T |2du

]

= EP

[∫ s

0

∣∣
∣∣Proj


(
Z−ξ

u + θ(Vu) + Zu

γ

)
− Proj


(
θ(Vu) + Zu

γ

)∣∣
∣∣

2

du

]

≤ CEP

[∫ s

0
|Z−ξ

u |2du

]

for some constant C independent of T . Thus, we only need to establish the expo-
nential bound of Z

−ξ
u = zT ,g(V v

u ,u) with the stochastic factor process starting from
V v

0 = v. To this end, we easily deduce, using (iii) in Lemma 5.2, that for t ∈ [0, T ),

|yT,g(v, t) − Lg| ≤ C(1 + |v|2)e−Ĉη(T −t). (5.18)

Applying Itô’s formula to |yT,g(V v
s , s) − Lg|2 and using (5.13), we in turn have

|yT,g(v,0) − Lg|2 + EP

[∫ s

0
|Z−ξ

u |2du

]

= EP[|yT,g(V v
s , s) − Lg|2]

+ 2EP

[∫ s

0
|yT,g(V v

u ,u) − Lg|F(V v
u , γ ẑ(V v

u ,u)) − F(V v
u ,Zu)

γ
du

]

= EP[|yT,g(V v
s , s) − Lg|2] + 2EP

[∫ s

0
(Z−ξ

u )trH(V v
u )|yT,g(V v

u ,u) − Lg|du

]
,

where ẑ(·, ·) is given in (5.14) and the process H(V v
u ), introduced in (5.15), is uni-

formly bounded. Using the elementary inequality ab ≤ 1
4 |a|2 +|b|2, we further obtain

EP

[∫ s

0
(Z−ξ

u )trH(V v
u )|yT,g(V v

u ,u) − Lg|du

]

≤ 1

4
EP

[∫ s

0
|Z−ξ

u |2du

]
+ CEP

[∫ s

0
|yT,g(V v

u ,u) − Lg|2du

]
.

Hence, (5.18) yields that

1

2
EP

[∫ s

0
|Z−ξT

u |2du

]

≤ EP[|yT,g(V v
s , s) − Lg|2] + CEP

[∫ s

0
|yT,g(V v

u ,u) − Lg|2du

]

≤ Ce−2ĈηT

(
e2ĈηsEP[(1 + |V v

s |2)2] +
∫ s

0
e2ĈηuEP[(1 + |V v

u |2)2]du

)
,
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from which we conclude that EP[∫ s

0 |Z−ξ
u |2du] ≤ C(1 + |v|4)e−2Ĉη(T −s), using the

first assertion of part (ii) in Proposition 2.3. �

6 Conclusions and extensions

We have studied forward entropic risk measures for stochastic factor models and in
the presence of trading constraints. Using the ergodic BSDE representation of the
involved exponential forward performance processes, we have established two rep-
resentation results, working with the primal and the dual domains, respectively. We
have also derived a parity result between the forward entropic risk measures and their
classical counterparts, and moreover investigated their asymptotic behavior for large
maturities.

The approach and the results herein may be extended in several directions. Firstly,
one may allow stochastically evolving set of constraints. This is undoubtedly a very
important extension, for trading constraints in many applications are affected by up-
coming (and frequently, non-anticipated) market changes, past performance and other
features that the forward performance criteria may accommodate. To the best of our
knowledge, this generalization has not been considered so far in the context of for-
ward performance criteria.

Another important issue is the relative valuation and risk management of incom-
ing projects. Herein, we consider the measurement of risk positions with arbitrary
maturities, but in isolation from each other. In various applications, however, one
needs to price incoming projects in relation to existing ones, and work with rela-
tive risk assessment. In order to do this, one first needs to define properly “rela-
tive” forward performance processes, which will naturally depend on the evolving
risks associated with the existing projects. Such extensions are left for future re-
search.
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Appendix: Estimates for the auxiliary function ẑ(·, ·) in (5.14)

Recall that (Ys,Zs) = (y(Vs), z(Vs)) and (Y
−ξ
s ,Z

−ξ
s ) = (yT ,g(Vs, s), z

T ,g(Vs, s))

for s ∈ [0, T ]. Hence, the pair (ŷ(Vs, s), ẑ(Vs, s)) with

(
ŷ(Vs, s), ẑ(Vs, s)

) :=
(

Y−ξ
s + Ys − λs

γ
,Z−ξ

s + Zs

γ

)
(A.1)

solves the finite-horizon quadratic BSDE
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P −ξ̄T
s = g(VT ) + y(VT ) − λT

γ
+

∫ T

s

1

γ
F(Vu, γQ−ξ̄T )du −

∫ T

s

(Q−ξ̄T
u )trdWu,

(A.2)
with the driver F as in (2.9) and −ξ̄T = g(VT ) + y(VT )−λT

γ
.

From the boundedness of Y−ξ and the linear growth of y(·), we deduce that the
process ŷ(Vs, s), s ∈ [0, T ], is square-integrable since

sup
s∈[0,T ]

EP[|ŷ(Vs, s)|2] ≤ C

(
1 + sup

s∈[0,T ]
EP[|Vs |2]

)
< ∞.

In addition, since Z−ξ ∈ L2
BMO[0, T ] and Z is bounded, we obtain that for s ∈ [0, T ],

ẑ(Vs, s) ∈ L2
BMO[0, T ].

Lemma A.1 Consider an arbitrary risk position ξ as in (3.14) with maturity T .
Suppose that Assumptions 2.1, 2.2 and 3.9 hold. Then the following assertions hold:

(i) There exists a unique solution (P −ξ̄T ,Q−ξ̄T ) to the BSDE (A.2) where P −ξ̄T is

square-integrable, i.e., sups∈[0,T ] EP[|P −ξ̄T
s |2] < ∞, and Q−ξ̄T ∈ L2

BMO[0, T ].
(ii) The solution Q−ξ̄T is uniformly bounded, namely,

|Q−ξ̄T
s | ≤ K with K := γCηCg + Cv

γ (Cη − Cv)
+ CηCv

γ (Cη − Cv)2
, (A.3)

where Cv is given in (5.1) and Cη and Cg in Assumptions 2.2 and (3.14), respectively.
Hence, the process ẑ(Vs, s), s ∈ [0, T ], in (A.1) is also uniformly bounded by K .

Proof (i) The existence of solutions to (A.2) follows from (A.1). We next establish
uniqueness. To this end, assume that (P −ξ̄T ,Q−ξ̄T ) and (P̄ −ξ̄T , Q̄−ξ̄T ) are two solu-

tions of (A.2). Let �P
−ξ̄T
s := P

−ξ̄T
s − P̄

−ξ̄T
s and �Q

−ξ̄T
s := Q

−ξ̄T
s − Q̄

−ξ̄T
s . Then the

pair (�P −ξ̄T ,�Q−ξ̄T ) solves

�P −ξ̄T
s =

∫ T

s

1

γ

(
F(Vu, γQ−ξ̄T

u ) − F(Vu, γ Q̄−ξ̄T
u )

)
du −

∫ T

s

(�Q−ξ̄T
u )trdWu

= −
∫ T

s

(�Q−ξ̄T
u )tr(dWu − M̄udu),

where

M̄s := (F (Vs, γQ
−ξ̄T
s ) − F(Vs, γ Q̄

−ξ̄T
s ))�Q

−ξ̄T
s

γ |�Q
−ξ̄T
s |2

1{�Q
−ξ̄T
s =0}.

Since |M̄s | ≤ C(1 + |Q−ξ̄T
s | + |Q̄−ξ̄T

s |) and Q−ξ̄T , Q̄−ξ̄T ∈ L2
BMO[0, T ], we deduce

that
∫ ·

0(M̄s)
trdWs is a BMO-martingale. We can therefore introduce the process

WM̄
s := Ws − ∫ s

0 M̄udu which is a Brownian motion under the probability measure
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Q
M̄ equivalent to P, defined via dQM̄

dP
|FT

= E(
∫ ·

0 M̄ tr
s dWs)T . Hence,

�P −ξ̄T
s = −

∫ T

s

(�Q−ξ̄T
u )trdWQM̄

u .

Since
∫ ·

0(�Q
−ξ̄T
u )trdWu is a BMO-martingale under P and P ∼ Q

M̄ , it follows that
∫ ·

0(�Q
−ξ̄T
u )trdWM̄

u is a BMO-martingale under QM̄ (see for example [17, Sect. 5.2]),

which in turn implies that �P −ξ̄T is a martingale under QM̄ . The uniqueness of the

solution to (A.2) then follows by noting that �P
−ξ̄T

T = 0.
(ii) For a fixed t ∈ [0, T ], we consider the stochastic factor process starting from

V
t,v
t = v. With a slight abuse of notation, we introduce the truncation function

K :Rd →R
d ,

K(z) := min(|z|,K)

|z| z1{z =0}, (A.4)

as well as the truncated version of (A.2),

P
−ξ̄T
t = g(V

t,v
T ) + y(V

t,v
T ) − λT

γ
+

∫ T

t

1

γ
F

(
V t,v

s , γK(Q−ξ̄T
s )

)
ds

−
∫ T

t

(Q−ξ̄T
s )trdWs. (A.5)

We denote its solution by (ȳ(V
t,v
s , s), z̄(V

t,v
s , s)), s ∈ [t, T ].

From the form of the driver (2.9) and (A.4), we deduce the inequalities
∣∣F

(
v, γK(z)

) − F
(
v̄, γK(z)

)∣∣ ≤ Cv(1 + γK)|v − v̄|, (A.6)
∣∣F

(
v, γK(z)

) − F
(
v, γK(z̄)

)∣∣ ≤ Cz(1 + 2γK)γ |z − z̄|, (A.7)

for v, v̄, z, z̄ ∈ R
d . Next, we consider the above truncated equation (A.5) with differ-

ent starting points V
t,v
t = v and V

t,v̄
t = v̄ and compute

ȳ(V
t,v
t , t) − ȳ(V

t,v̄
t , t)

= g(V
t,v
T ) − g(V

t,v̄
T ) + 1

γ

(
y(V

t,v
T ) − y(V

t,v̄
T )

)

+
∫ T

t

F (V
t,v
s , γK(z̄(V

t,v
s , s))) − F(V

t,v̄
s , γK(z̄(V

t,v̄
s , s)))

γ
ds

−
∫ T

t

(
z̄(V t,v

s , s) − z̄(V t,v̄
s , s)

)tr
dWs.

For s ∈ [t, T ], define Ms as

(F (V
t,v̄
s , γK(z̄(V

t,v
s , s))) − F(V

t,v̄
s , γK(z̄(V

t,v̄
s , s))))(z̄(V

t,v
s , s) − z̄(V

t,v̄
s , s))

γ |z̄(V t,v
s , s) − z̄(V

t,v̄
s , s)|2
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whenever z̄(V
t,v
s , s) − z̄(V

t,v̄
s , s) = 0, and 0 otherwise. In turn,

ȳ(V
t,v
t , t) − ȳ(V

t,v̄
t , t)

= g(V
t,v
T ) − g(V

t,v̄
T ) + 1

γ

(
y(V

t,v
T ) − y(V

t,v̄
T )

)

+
∫ T

t

F (V
t,v
s , γK(z̄(V

t,v
s , s))) − F(V

t,v̄
s , γK(z̄(V

t,v
s , s)))

γ
ds

−
∫ T

t

(
z̄(V t,v

s , s) − z̄(V t,v̄
s , s)

)tr
(dWs − Msds).

Note that Ms is bounded due to (A.7). Thus, we can define WM
s := Ws − ∫ s

0 Mudu,
which is a Brownian motion under some measure Q

M equivalent to P. In turn,

|ȳ(v, t) − ȳ(v̄, t)|

≤ CgEQM

[|V t,v
T − V

t,v̄
T |∣∣Ft

] + Cv

γ (Cη − Cv)
EQM

[|V t,v
T − V

t,v̄
T |∣∣Ft

]

+ Cv(1 + γK)

γ
EQM

[∫ T

t

|V t,v
s − V t,v̄

s |ds

∣∣∣∣Ft

]

≤
(

Cg + Cv

γ (Cη − Cv)
+ Cv(1 + γK)

γCη

)
|v − v̄|,

where we used the Lipschitz-continuity conditions on g(v), y(v) and F(v, γK(z))

with respect to v (cf. (3.14), (2.11) and (A.6), respectively), and the exponential er-
godicity condition (i) in Proposition 2.3.

From κ tr∇ȳ(V
t,v
s , s) = z̄(V

t,v
s , s), we further obtain K(z̄(V

t,v
s , s)) = z̄(V

t,v
s , s)

and that |z̄(V t,v
s , s)| ≤ K . In other words, the truncation does not play a role, and the

pair (ȳ(V
t,v
s , s), z̄(V

t,v
s , s)), s ∈ [t, T ], also solves (A.2). Therefore, K is the uniform

bound of ẑ(V
t,v
s , s). �
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