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Abstract
We analyze a family of portfolio management problems

under relative performance criteria, for fund managers hav-

ing CARA or CRRA utilities and trading in a common

investment horizon in log-normal markets. We construct

explicit constant equilibrium strategies for both the finite

population games and the corresponding mean field games,

which we show are unique in the class of constant equilib-

ria. In the CARA case, competition drives agents to invest

more in the risky asset than they would otherwise, while in

the CRRA case competitive agents may over- or underin-

vest, depending on their levels of risk tolerance.

1 INTRODUCTION

This paper is a contribution to both the theory of finite population and mean field games and to opti-
mal portfolio management under competition and relative performance criteria. For the former, we
construct explicit solutions for both 𝑛-player and mean field games (MFGs), providing a new family
of tractable solutions. For the latter, we formulate a new class of competition and relative performance
optimal investment problems for agents having exponential (CARA) and power (CRRA) utilities, for
both a finite number and a continuum of agents.

The finite-population case consists of n fund managers (or agents) trading between a common risk-
less bond and an individual stock. The price of each stock is modeled as a log-normal process driven by
two independent Brownian motions. The first Brownian motion is the same for all prices, representing
a common market noise, while the second is idiosyncratic, specific to each individual stock. Precisely,
the 𝑖th fund specializes in stock 𝑖 whose price (𝑆𝑖

𝑡 )𝑡≥0 is given by

𝑑𝑆𝑖
𝑡

𝑆𝑖
𝑡

= 𝜇𝑖d𝑡 + 𝜈𝑖d𝑊 𝑖
𝑡 + 𝜎𝑖d𝐵𝑡, (1)
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with constant market parameters 𝜇𝑖 > 0, 𝜎𝑖 ≥ 0, and 𝜈𝑖 ≥ 0, with 𝜎𝑖 + 𝜈𝑖 > 0. The (one-dimensional)
standard Brownian motions 𝐵,𝑊 1,𝑊 2,… ,𝑊 𝑛 are independent. When 𝜎𝑖 > 0, the process 𝐵 induces
a correlation between the stocks, and thus we call 𝐵 the common noise and 𝑊 𝑖 an idiosyncratic noise.

Our setup covers the important special case in which all funds trade in the same stock; that is, 𝜇𝑖 = 𝜇,
𝜈𝑖 = 0, and 𝜎𝑖 = 𝜎 for all 𝑖 = 1,… , 𝑛, for some 𝜇, 𝜎 > 0 independent of 𝑖. In this setting, all stocks are
identical and the model is to be interpreted as 𝑛 agents investing in a single common stock. These 𝑛

agents differ in their risk preferences but otherwise face the same market opportunities. We choose to
work with one-dimensional stocks 𝑆𝑖 for mere simplicity, but our analysis would adapt with purely
notational changes to cover the case where each 𝑆𝑖 is a vector of stocks available to agent 𝑖. In this
multidimensional setting, the “single stock” case would model the realistic situation of a large number
of agents trading in the same vector of stocks.

All fund managers share a common time horizon, 𝑇 > 0, and aim to maximize their expected utility
at 𝑇 . The utility functions 𝑈1,… , 𝑈𝑛 are agent-specific functions of both terminal wealth, 𝑋𝑖

𝑇
, and

a “competition component,” 𝑋𝑇 , which depends on the terminal wealths of all agents. We study two
representative cases, related to the popular exponential and power utilities.

For the exponential case, we assume that competition affects the wealth additively and is modeled
through the arithmetic average wealth of all agents,

𝑈𝑖

(
𝑋𝑖

𝑇
,𝑋𝑇

)
= −𝑒−

1
𝛿𝑖

(
𝑋𝑖
𝑇
−𝜃𝑖𝑋𝑇

)
, where 𝑋𝑇 = 1

𝑛

𝑛∑
𝑘=1

𝑋𝑘
𝑇
. (2)

The parameters 𝛿𝑖 > 0 and 𝜃𝑖 ∈ [0, 1] represent the 𝑖th agent's absolute risk tolerance and absolute
competition weight, with small (resp. high) values of 𝜃𝑖 denoting low (resp. high) relative performance
concern. This model is similar to and largely inspired by that of Espinosa and Touzi Espinosa and
Touzi (2015).

For the power case, the competition affects the wealth multiplicatively and is modeled through the
geometric average wealth of all agents,

𝑈𝑖

(
𝑋𝑖

𝑇
,𝑋𝑇

)
= 1

1 − 1∕𝛿𝑖

(
𝑋𝑖

𝑇
𝑋

−𝜃𝑖
𝑇

)1−1∕𝛿𝑖
, where 𝑋𝑇 =

(
𝑛∏

𝑘=1
𝑋𝑘

𝑇

)1∕𝑛

. (3)

Now, the parameters 𝛿𝑖 > 0 and 𝜃𝑖 ∈ [0, 1] represent the 𝑖th agent's relative risk tolerance and relative
competition weight. The geometric mean is used here largely for its tractability, but it also admits a nat-
ural interpretation: Quantities of the form 𝑒𝑟1 ,… , 𝑒𝑟𝑛 have geometric mean exp( 1

𝑛

∑𝑛
𝑖=1 𝑟𝑖), which indi-

cates that the geometric mean of wealths is simply the exponential of the arithmetic mean of returns. In
this sense, the agents are using returns rather than absolute wealth in measuring relative performance.

The aim is to identify Nash equilibria, namely, to find investment strategies (𝜋1,∗
𝑡 ,… , 𝜋𝑛,∗

𝑡 )𝑡∈[0,𝑇 ]
such that 𝜋𝑖,∗

𝑡 is the optimal stock allocation exercised by the 𝑖th agent in response to the strategy
choices of all other competitors, for 𝑖 = 1,… , 𝑛. As is usually the case for exponential and power risk
preferences, 𝜋𝑖,∗

𝑡 is taken to be the absolute wealth and the fraction of wealth invested in the 𝑖th stock,
respectively. The values 𝜋𝑖,∗

𝑡 may be negative, indicating that the agent shorts the stock.
Competition among fund managers is well documented in investment practice for both mutual and

hedge funds; see, for example, Agarwal, Daniel, and Naik (2003); Basak and Makarov (2015); Brown,
Goetzmann, and Park (2001); Chevalier and Ellison (1997); Ding, Getmansky, Liang, and Wermers
(2008); Gallaher, Kaniel, and Starks (2006); Kempf and Ruenzi (2008); Li and Tiwari (2006); Sirri and
Tufano (1998). As it is argued in these works, competition can stem, for example, from career advance-
ment motives, seeking higher money inflows from their clients, preferential compensation contracts.
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In most of these works, only the case of two managers has been considered and in discrete time (or two
period) models, with variations of criteria involving risk neutrality, relative performance with respect
to an absolute benchmark or a critical threshold, or constraints on the managers' risk aversion parame-
ters. More recently, the authors in Basak and Makarov (2015) proposed a continuous time log-normal
model for two fund managers with power utilities.

Asset specialization is also well documented in the finance literature, starting with Brennan Bren-
nan (1975); Coval and Moskowitz (1999); Merton (1987). Other representative works include Boyle,
Garlappi, Uppal, and Wang (2012); Kacperczyk, Sialm, and Zheng (2005); Liu (2014); Mitton and
Vorkink (2007); Van Nieuwerburgh and Veldkamp (2009, 2010); Uppal and Wang (2003). As it is
argued in these works, a variety of factors prompt managers to specialize in individual stocks or asset
classes, such as familiarity, learning cost reduction, ambiguity aversion, solvency requirements, trading
costs and constraints, liquidation risks, and informational frictions.

For tractability, we search only for Nash equilibria in which the investment strategies are constants
(i.e., chosen at time zero). This restriction is quite natural, given the log-normality of the stock prices,
the scaling properties of the CARA and CRRA utilities, and the form of the associated competition
components. To construct such an equilibrium, we first solve each single agent's optimization problem
given an arbitrary (but fixed) choice of competitors' constant strategies.

Incorporating the competition component 𝑋 as an additional uncontrolled state process leads to
a single Hamilton–Jacobi–Bellman (HJB) equation, which we show has a unique separable smooth
solution. Together with the first-order conditions, this yields the candidate policies in a closed form.
We then construct the equilibrium through a set of compatibility conditions, which also provide criteria
for existence and uniqueness. As an intermediate step, we use arguments from indifference valuation
to obtain verification results for these smooth solutions. Specifically, we interpret each HJB equation
as the one solved by the writer of an individual liability determined by the competition component.

The unique constant Nash equilibrium in each model turns out to be the sum of two components. The
first is the traditional Merton portfolio (see Merton, 1971), which is optimal for the individual expected
utility problem without any relative performance concerns. The second component depends on the
individual competition parameter and on other quantities involving the risk tolerance and competition
parameters of all agents as well as the market parameters of all stocks. Naturally, this second component
disappears when there is no competition.

In the exponential model, it turns out that competition always results in higher investment in the
risky asset. This is not, however, the case for the power model, mainly because the sign of the second
component might not be always fixed. This sign depends on the value of the relative risk tolerance,
particularly whether it is larger or smaller than one; this is to be expected given well-known proper-
ties of CRRA utilities and their optimal portfolios (see, e.g., the so-called “nirvana” cases in Kim &
Omberg, 1996).

In the noteworthy special case of a single stock, common to all agents, the equilibrium strategies
are simpler. For both the exponential and the power cases, the Nash equilibrium is of Merton type but
with a modified risk tolerance, which depends linearly on the individual risk tolerance and competi-
tion parameters, with the coefficients of this linear function depending on the population averages of
these parameters.

The expressions for the equilibrium strategies simplify when the number of agents 𝑛 tends to infin-
ity. The limiting expressions depend solely on the limit of the empirical distribution of the type vectors
𝜁𝑖 = (𝑥𝑖0, 𝛿𝑖, 𝜃𝑖, 𝜇𝑖, 𝜈𝑖, 𝜎𝑖), for 𝑖 = 1,… , 𝑛. We show that these limiting strategies can be derived intrin-
sically, as equilibria of suitable MFGs. Intuitively, the finite set of agents becomes a continuum, with
each individual trading between the common bond and her individual stock while also competing with
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the rest of the (infinite) population through a relative performance functional affecting her expected
terminal utility.

Although explicit solutions are available for our 𝑛-agent games, the MFG framework is worth intro-
ducing in this context in part because it extends naturally to more complex models, such as those
involving portfolio constraints or general utility functions. In such models, we expect the MFG frame-
work to be more tractable than the 𝑛-agent games. For instance, Bielagk, Lionnet, and Dos Reis (2017),
Espinosa and Touzi (2015), and Frei and Dos Reis (2011) study 𝑛-agent models similar to our CARA
utility model but notably including equilibrium pricing and portfolio constraints, leading to difficult
𝑛-dimensional quadratic backward stochastic differential equations (BSDE) systems. An MFG formu-
lation would likely be more tractable, at least reducing the dimensionality of the problem, though we
do not tackle such an analysis in this paper.

The MFG is defined in terms of a representative agent who is assigned a random-type vector 𝜁 =
(𝜉, 𝛿, 𝜃, 𝜇, 𝜈, 𝜎) at time zero, determining her initial wealth 𝜉, preference parameters (𝛿, 𝜃), and market
parameters (𝜇, 𝜈, 𝜎). The randomness of the type vector encodes the distribution of the (continuum of)
agents' types.

For the exponential case, the MFG problem is to find a pair (𝜋∗, 𝑋) with the following properties.
The investment strategy 𝜋∗ optimizes, in analogy to (2),

sup
𝜋

𝔼
[
−𝑒−

1
𝛿

(
𝑋𝑇−𝑋

)]
, (4)

where𝑋𝑇 is the wealth of the representative agent and𝑋 the average wealth of the continuum of agents.
Furthermore, at this optimum, the consistency condition 𝑋 = 𝔼[𝑋∗

𝑇
|𝐵

𝑇
] must hold, where (𝐵

𝑡 )𝑡∈[0,𝑇 ]
is the filtration generated by the common noise 𝐵, and 𝑋∗ is the optimal wealth determined by 𝜋∗.

For the power case, the aggregate wealth 𝑋 must be consistent with its 𝑛-agent form in (3). With this
in mind, note that the geometric mean of a positive random variable 𝑌 can be written as exp𝔼[log 𝑌 ],
whether or not the distribution of 𝑌 is discrete. This points to the MFG problem of finding a pair
(𝜋∗, 𝑋), such that 𝜋∗ optimizes

sup
𝜋

𝔼
[

1
1 − 1∕𝛿

(
𝑋𝑇𝑋

−𝜃)1−1∕𝛿]
, (5)

and, furthermore, the consistency condition 𝑋 = exp𝔼[log𝑋∗
𝑇
|𝐵

𝑇
] holds. While its use in MFG the-

ory appears to be new, this notion of geometric mean of a measure is essentially a special case of the
well-studied concept of generalized mean (see Hardy, Littlewood, & Pólya, 1952, chapter III).

As in the finite population CARA and CRRA cases, we focus on the tractable class of equilibria
in which the strategy 𝜋∗ is constant in time. Such strategies are still random, measurable with respect
to the (time-zero-measurable) random-type vector. We solve the MFG problems directly, constructing
equilibria that agree with the limiting expressions from the 𝑛-agent games. In each model, the solu-
tion technique is analogous to the 𝑛-agent setting, in that, we treat the aggregate wealth term as an
uncontrolled state process, find a smooth separable solution of a single HJB equation, and then enforce
the consistency condition. The resulting MFG strategies take similar but notably simpler forms than
their 𝑛-agent counterparts and exhibit the same qualitative behavior and two-component structure dis-
cussed above.

MFGs, first introduced in Lasry and Lions (2007) and Huang, Malhamé, and Caines (2006), have
by now found numerous applications in economics and finance, notably including models of income
inequality (Gabaix, Lasry, Lions, & Moll, 2016), economic growth (Lucas Jr & Moll, 2014), limit order
book formation (Gayduk & Nadtochiy, 2016), systemic risk (Carmona, Fouque, & Sun, 2015), optimal



LACKER AND ZARIPHOPOULOU 1007

execution (Huang, Jaimungal, & Nourian, 2017; Cardaliaguet & Lehalle, 2016), and oligopoly market
models (Chan & Sircar, 2015), to name but a few. The closest works to ours are the static model of
Guéant, Lasry, and Lions (2011, Section 6), which is a competitive variant of the Markowitz model,
and the stochastic growth model of Huang and Nguyen (2016), which has some mathematical features
in common with our power utility model. That said, our work appears to be the first application of
MFG theory to portfolio optimization.

Our results add two new examples of explicitly solvable MFG models. Beyond the linear quadratic
models of Bensoussan, Sung, Yam, and Yung (2016), Carmona, Delarue, and Lachapelle (2013), and
Carmona et al. (2015), such examples are scarce, especially in the presence of common noise. The
only other examples we know of are those in Guéant et al. (2011, Sections 5 and 7) as well as the more
recent (Sun, 2016), which is linear-quadratic aside from a square root diffusion term. In fact, our models
permit an explicit solution of the so-called master equation (cf. Carmona & Delarue, 2014). Moreover,
we wish to emphasize the manner in which we incorporate different types of agents, by randomizing
𝜁 = (𝜉, 𝛿, 𝜃, 𝜇, 𝜈, 𝜎) as described above. Several previous works on MFGs (e.g., Huang et al., 2006)
incorporated finitely many types by tracking a vector of mean field interactions, one for each type,
but our approach has the advantage of seamlessly incorporating (uncountably) infinitely many types.
While randomizing types is a standard technique in static games with a continuum of agents, the idea
has scarcely appeared in the (dynamic) MFG literature; to the best of our knowledge, it has appeared
only in Cardaliaguet and Lehalle (2016).

The paper is organized as follows. In Section 2, we present the exponential model and study both the
𝑛-agent game and the MFG. In Section 3, we present the analogous results for power and logarithmic
utilities. For both classes, we provide qualitative comments on the Nash equilibrium and mean field
equilibrium (MFE), in Sections 2.3 and 3.3, respectively. We conclude in Section 4 with a discussion
of open questions and future research directions.

2 CARA RISK PREFERENCES

We consider fund managers (henceforth, agents) with exponential risk preferences with constant indi-
vidual (absolute) risk tolerances. Agents are also concerned with how their performance is measured in
relation to the performances of their competitors. This is modeled as an additive penalty term depend-
ing on the average wealth, and weighted by an investor-specific comparison parameter.

We begin our analysis with the exponential class because of its additive scaling properties, which
allow for substantial tractability. Furthermore, the exponential class provides a direct connection with
indifference valuation, used in solving the underlying HJB equation.

2.1 The 𝒏-agent game
We introduce a game of 𝑛 agents who trade in a common investment horizon [0, 𝑇 ]. Each agent trades
between an “individual” stock and a riskless bond. The latter is common to all agents, serves as the
numeraire, and offers zero interest rate.

Stock prices are taken to be log-normal, as described in the Introduction, each driven by two inde-
pendent Brownian motions. Precisely, the price (𝑆𝑖

𝑡 )𝑡∈[0,𝑇 ] of the stock 𝑖 traded by the 𝑖th agent solves
(1), with given market parameters 𝜇𝑖 > 0, 𝜎𝑖 ≥ 0, and 𝜈𝑖 ≥ 0, with 𝜎𝑖 + 𝜈𝑖 > 0. The independent Brow-
nian motions 𝐵,𝑊 1,… ,𝑊 𝑛 are defined on a probability space (Ω, ,ℙ), which we endow with the
natural filtration (𝑡)𝑡∈[0,𝑇 ] generated by these 𝑛 + 1 Brownian motions. Recall that the single stock
case is when

(𝜇𝑖, 𝜎𝑖) = (𝜇, 𝜎), and 𝜈𝑖 = 0, for 𝑖 = 1,… , 𝑛,
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for some 𝜇, 𝜎 > 0 independent of 𝑖. Notably, the single stock case was studied in Espinosa and Touzi
(2015) and Frei and Dos Reis (2011) in greater generality, incorporating portfolio constraints and more
general stock price dynamics.

Each agent 𝑖 = 1,… , 𝑛 trades using a self-financing strategy, (𝜋𝑖
𝑡)𝑡∈[0,𝑇 ], which represents the (dis-

counted by the bond) amount invested in the 𝑖th stock. The 𝑖th agent's wealth (𝑋𝑖
𝑡 )𝑡∈[0,𝑇 ] then solves

d𝑋𝑖
𝑡 = 𝜋𝑖

𝑡

(
𝜇𝑖d𝑡 + 𝜈𝑖d𝑊 𝑖

𝑡 + 𝜎𝑖d𝐵𝑡

)
, (6)

with 𝑋𝑖
0 = 𝑥𝑖0 ∈ ℝ. A portfolio strategy is deemed admissible if it belongs to the set , which

consists of self-financing 𝔽 -progressively measurable real-valued processes (𝜋𝑡)𝑡∈[0,𝑇 ] satisfying

𝔼 ∫ 𝑇
0 |𝜋𝑡|2𝑑𝑡 < ∞.
The 𝑖th agent's utility is a function 𝑈𝑖 ∶ ℝ2 → ℝ of both her individual wealth, 𝑥, and the average

wealth of all agents, 𝑚. It is of the form

𝑈𝑖(𝑥, 𝑚) ∶= − exp
(
− 1
𝛿𝑖

(
𝑥 − 𝜃𝑖𝑚

))
.

We will refer to the constants 𝛿𝑖 > 0 and 𝜃𝑖 ∈ [0, 1] as the personal risk tolerance and competition
weight parameters, respectively.1 If agents 𝑖 = 1,… , 𝑛 choose admissible strategies 𝜋1,… , 𝜋𝑛, the
payoff for agent 𝑖 is given by

𝐽𝑖(𝜋1,… , 𝜋𝑛) ∶= 𝔼
[
−exp

(
− 1
𝛿𝑖

(
𝑋𝑖

𝑇
− 𝜃𝑖𝑋𝑇

))]
, with 𝑋𝑇 = 1

𝑛

𝑛∑
𝑘=1

𝑋𝑘
𝑇
, (7)

where the dynamics of (𝑋𝑖
𝑡 )𝑡∈[0,𝑇 ] are as in (6). Alternatively, we may express the above as

𝐽𝑖(𝜋1,… , 𝜋𝑛) = 𝔼
[
−exp

(
− 1
𝛿𝑖

(
(1 − 𝜃𝑖)𝑋𝑖

𝑇
+ 𝜃𝑖

(
𝑋𝑖

𝑇
−𝑋𝑇

)))]
,

which highlights how the competition weight 𝜃𝑖 determines the 𝑖th agent's risk preference for absolute
wealth versus relative wealth. An agent with large 𝜃𝑖 (close to one) is thus more concerned with relative
wealth than absolute wealth.

These interdependent optimization problems are resolved competitively, applying the concept of
Nash equilibrium in the above investment setting.

Definition 2.1. A vector (𝜋1,∗,… , 𝜋𝑛,∗) of admissible strategies is a (Nash) equilibrium if, for all
𝜋𝑖 ∈  and 𝑖 = 1,… , 𝑛,

𝐽𝑖(𝜋1,∗,… , 𝜋𝑖,∗,… , 𝜋𝑛,∗) ≥ 𝐽𝑖(𝜋1,∗,… , 𝜋𝑖−1,∗, 𝜋𝑖, 𝜋𝑖+1,∗,… , 𝜋𝑛,∗). (8)

A constant (Nash) equilibrium is one in which, for each 𝑖, 𝜋𝑖,∗ is constant in time, i.e., 𝜋𝑖,∗
𝑡 = 𝜋𝑖,∗

0 for
all 𝑡 ∈ [0, 𝑇 ].2

Remark 2.2. Because the filtration 𝔽 is Brownian, it holds for any admissible strategy 𝜋 ∈  that
𝜋0 is nonrandom. With this in mind, a constant Nash equilibrium will be identified with a vector
(𝜋1,∗,… , 𝜋𝑛,∗) ∈ ℝ𝑛. Note also that the definition of a constant Nash equilibrium still requires that
the optimality condition (8) holds for every choice of alternative strategy, not just constant ones.

Our first main finding provides conditions for existence and uniqueness of a constant Nash equilib-
rium and also constructs it explicitly.



LACKER AND ZARIPHOPOULOU 1009

Theorem 2.3. Assume that for all 𝑖 = 1,… , 𝑛 we have 𝛿𝑖 > 0, 𝜃𝑖 ∈ [0, 1], 𝜇𝑖 > 0, 𝜎𝑖 ≥ 0, 𝜈𝑖 ≥ 0, and
𝜎𝑖 + 𝜈𝑖 > 0. Define the constants

𝜑𝑛 ∶=
1
𝑛

𝑛∑
𝑘=1

𝛿𝑘
𝜇𝑘𝜎𝑘

𝜎2
𝑘
+ 𝜈2

𝑘
(1 − 𝜃𝑘∕𝑛)

and 𝜓𝑛 ∶=
1
𝑛

𝑛∑
𝑘=1

𝜃𝑘
𝜎2
𝑘

𝜎2
𝑘
+ 𝜈2

𝑘
(1 − 𝜃𝑘∕𝑛)

. (9)

There are two cases:

(i) If 𝜓𝑛 < 1, there exists a unique constant equilibrium, given by

𝜋𝑖,∗ = 𝛿𝑖
𝜇𝑖

𝜎2𝑖 + 𝜈2𝑖 (1 − 𝜃𝑖∕𝑛)
+ 𝜃𝑖

𝜎𝑖

𝜎2𝑖 + 𝜈2𝑖 (1 − 𝜃𝑖∕𝑛)
𝜑𝑛

1 − 𝜓𝑛

. (10)

Moreover, we have the identity

1
𝑛

𝑛∑
𝑘=1

𝜎𝑘𝜋
𝑘,∗ =

𝜑𝑛

1 − 𝜓𝑛

.

(ii) If 𝜓𝑛 = 1, there is no constant equilibrium.

An important corollary covers the special case of a single stock.

Corollary 2.4 (Single stock). Assume that for all 𝑖 = 1,… , 𝑛 we have 𝜇𝑖 = 𝜇 > 0, 𝜎𝑖 = 𝜎 > 0, and
𝜈𝑖 = 0. Define the constants

𝛿 ∶= 1
𝑛

𝑛∑
𝑘=1

𝛿𝑘 and 𝜃 ∶= 1
𝑛

𝑛∑
𝑘=1

𝜃𝑘.

There are two cases:

(i) If 𝜃 < 1, there exists a unique constant equilibrium, given by

𝜋𝑖,∗ =
(
𝛿𝑖 + 𝜃𝑖

𝛿

1 − 𝜃

)
𝜇

𝜎2
.

(ii) If 𝜃 = 1, there is no constant equilibrium.

Proof. Apply Theorem 2.3, taking note of the simplifications 𝜑𝑛 = 𝛿𝜇∕𝜎 and 𝜓𝑛 = 𝜃. □

Remark 2.5. For a given agent 𝑖, it is arguably more natural to replace the average wealth 𝑋𝑇 in the
payoff functional 𝐽𝑖 defined in (7) with the average over all other agents, not including herself, i.e.,

𝑋
(−𝑖)
𝑇 = 1

𝑛−1
∑

𝑘≠𝑖 𝑋𝑘
𝑇

. Fortunately, there is a one-to-one mapping between the two formulations, so
there is no need to solve both separately. Indeed, suppose the 𝑖th agent's payoff is

𝔼

[
−exp

(
− 1
𝛿′𝑖

(
𝑋𝑖

𝑇
− 𝜃′𝑖𝑋

(−𝑖)
𝑇

))]
,

for some parameters 𝜃′𝑖 ∈ [0, 1] and 𝛿′𝑖 > 0. By matching coefficients it is straightforward to show that

1
𝛿′𝑖

(
𝑋𝑖

𝑇
− 𝜃′𝑖𝑋

(−𝑖)
𝑇

)
= 1

𝛿𝑖

(
𝑋𝑖

𝑇
− 𝜃𝑖𝑋𝑇

)
,
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when 𝜃𝑖 ∈ [0, 1] and 𝛿𝑖 > 0 are defined by

𝛿𝑖 =
𝛿′𝑖

1 + 1
𝑛−1𝜃

′
𝑖

and 𝜃𝑖 =
𝜃′𝑖

𝑛−1
𝑛

+ 1
𝑛
𝜃′𝑖

.

We prefer our original formulation mainly because it results in simpler formulas for the equilibrium
strategies in Theorem 2.3 and Corollary 2.4. Moreover, for large 𝑛, this choice has negligible effect on
the strategy 𝜋𝑖,∗, as the differences |𝛿𝑖 − 𝛿′𝑖 | and |𝜃𝑖 − 𝜃′𝑖 | vanish.

Remark 2.6. Even in the absence of competition, there are well-known technical issues with exponen-
tial preferences in expected utility optimization, in that, the wealth may become arbitrarily negative.
This has been studied and partially addressed, essentially by carefully redefining the class of admissible
controls. In particular, one can define admissible strategies such that wealth processes are supermartin-
gales under all martingale measures with finite entropy. One must then solve the dual problem, but some
technical issues may still remain; see Delbaen et al. (2002) and Schachermayer (2001). On the other
hand, more recent work has identified financially meaningful admissibility classes, which often (but
not always) contain the desired optimizer; see Biagini and Černỳ (2011) and Biagini and Sîrbu (2014).

Proof of Theorem 2.3. Let 𝑖 be fixed. Assume that all other agents, 𝑘 ≠ 𝑖, follow constant investment
strategies, denoted by 𝛼𝑘 ∈ ℝ. Let (𝑋𝑘

𝑡 )𝑡∈[0,𝑇 ] be the associated wealth processes,

𝑋𝑘
𝑡 = 𝑥𝑘0 + 𝛼𝑘

(
𝜇𝑘𝑡 + 𝜈𝑘𝑊

𝑘
𝑡 + 𝜎𝑘𝐵𝑡

)
,

and also define

𝑌𝑡 ∶=
1
𝑛

∑
𝑘≠𝑖

𝑋𝑘
𝑡 .

Then, the 𝑖th agent solves the optimization problem

sup
𝜋𝑖∈

𝔼
[
−exp

(
− 1
𝛿𝑖

((
1 −

𝜃𝑖
𝑛

)
𝑋𝑖

𝑇
− 𝜃𝑖𝑌𝑇

))]
, (11)

where (𝑋𝑖
𝑡 )𝑡∈[0,𝑇 ] and (𝑌𝑡)𝑡∈[0,𝑇 ] have dynamics (cf. (6))

d𝑋𝑖
𝑡 = 𝜋𝑖

𝑡

(
𝜇𝑖d𝑡 + 𝜈𝑖d𝑊 𝑖

𝑡 + 𝜎𝑖d𝐵𝑡

)
, 𝑋𝑖

0 = 𝑥𝑖0,

d𝑌 𝑡 = 𝜇𝛼d𝑡 + 𝜎𝛼d𝐵𝑡 +
1
𝑛

∑
𝑘≠𝑖

𝜈𝑘𝛼𝑘d𝑊 𝑘
𝑡 , 𝑌0 =

1
𝑛

∑
𝑘≠𝑖

𝑥𝑘0 ,

and where we have abbreviated

𝜇𝛼 ∶= 1
𝑛

∑
𝑘≠𝑖

𝜇𝑘𝛼𝑘 and 𝜎𝛼 ∶= 1
𝑛

∑
𝑘≠𝑖

𝜎𝑘𝛼𝑘.

In the sequel, we will also use the abbreviation

(̂𝜈𝛼)2 ∶= 1
𝑛

∑
𝑘≠𝑖

𝜈2𝑘𝛼
2
𝑘.
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The value of the supremum in (11) is equal to 𝑣(𝑋𝑖
0, 𝑌0, 0), where 𝑣(𝑥, 𝑦, 𝑡) solves the HJB equation

𝑣𝑡 + max
𝜋∈ℝ

(1
2
(𝜎2𝑖 + 𝜈2𝑖 )𝜋

2𝑣𝑥𝑥 + 𝜋
(
𝜇𝑖𝑣𝑥 + 𝜎𝑖𝜎𝛼𝑣𝑥𝑦

))
+ 1

2

(
𝜎𝛼2 + 1

𝑛
(̂𝜈𝛼)2

)
𝑣𝑦𝑦 + 𝜇𝛼𝑣𝑦 = 0, (12)

for (𝑥, 𝑦, 𝑡) ∈ ℝ ×ℝ × [0, 𝑇 ], with terminal condition

𝑣(𝑥, 𝑦, 𝑇 ) = −𝑒−𝛾𝑖(𝑥−𝐺(𝑦)) = − exp
(
− 1
𝛿𝑖

((
1 −

𝜃𝑖
𝑛

)
𝑥 − 𝜃𝑖𝑦

))
.

Applying the first-order conditions, Equation 12 reduces to

𝑣𝑡 −
1
2

(
𝜇𝑖𝑣𝑥 + 𝜎𝑖𝜎𝛼𝑣x𝑦

)2(
𝜎2𝑖 + 𝜈2𝑖

)
𝑣𝑥𝑥

+ 1
2

(
𝜎𝛼2 + 1

𝑛
(̂𝜈𝛼)2

)
𝑣𝑦𝑦 + 𝜇𝛼𝑣𝑦 = 0.

Making the ansatz 𝑣(𝑥, 𝑦, 𝑡) = −𝑓 (𝑡) exp(− 1
𝛿𝑖
((1 − 𝜃𝑖

𝑛
)𝑥 − 𝜃𝑖𝑦)) yields, for 𝑡 ∈ [0, 𝑇 ],

𝑓 ′(𝑡) − 𝜌𝑓 (𝑡) = 0.

with 𝑓 (𝑇 ) = 1 and

𝜌 ∶=
(
𝜇𝑖 + 𝜃𝑖𝛿

−1
𝑖 𝜎𝑖𝜎𝛼

)2
2
(
𝜎2𝑖 + 𝜈2𝑖

) −
𝜃𝑖
𝛿𝑖
𝜇𝛼 −

𝜃2𝑖

2𝛿2𝑖

(
𝜎𝛼2 + 1

𝑛
(̂𝜈𝛼)2

)
. (13)

Therefore, 𝑓 (𝑡) = 𝑒−𝜌(𝑇−𝑡) and, in turn,

𝑣(𝑥, 𝑦, 𝑡) = − exp
(
− 1
𝛿𝑖

((
1 −

𝜃𝑖
𝑛

)
𝑥 − 𝜃𝑖𝑦

)
− 𝜌(𝑇 − 𝑡)

)
. (14)

The maximum in (12) is achieved at

𝜋𝑖,∗(𝑥, 𝑦, 𝑡) ∶= −
𝜇𝑖𝑣𝑥(𝑥, 𝑦, 𝑡) + 𝜎𝑖𝜎𝛼𝑣𝑥𝑦(𝑥, 𝑦, 𝑡)

(𝜎2𝑖 + 𝜈2𝑖 )𝑣𝑥𝑥(𝑥, 𝑦, 𝑡)
.

Direct calculations yield that 𝜋𝑖,∗ is constant,

𝜋𝑖,∗ =
𝛿−1𝑖 (1 − 𝜃𝑖∕𝑛)

(
𝜇𝑖 + 𝜃𝑖𝛿

−1
𝑖 𝜎𝑖𝜎𝛼

)(
𝜎2𝑖 + 𝜈2𝑖

)
𝛿−2𝑖 (1 − 𝜃𝑖∕𝑛)2

=
𝛿𝑖𝜇𝑖 + 𝜃𝑖𝜎𝑖𝜎𝛼(

𝜎2𝑖 + 𝜈2𝑖
)
(1 − 𝜃𝑖∕𝑛)

.

We have thus constructed a smooth solution of the HJB equation and calculated its associated feed-
back policy, which is constant and thus admissible. Using the explicit form (14) and the admissibility
of this candidate control, we can establish a verification theorem following well-known arguments in
stochastic optimization (Fleming & Soner, 2006; Pham, 2009; Touzi, 2012).

Alternatively, we note that the stochastic optimization problem (11) can be alternatively viewed as
the one solved by an agent who is the “writer” of a liability 𝐺(𝑌𝑇 ) ∶=

𝜃𝑖
1−𝜃𝑖∕𝑛

𝑌𝑇 , having exponen-

tial preferences with risk aversion 𝛾𝑖 ∶=
1
𝛿𝑖
(1 − 𝜃𝑖

𝑛
). Similar problems have been studied in Henderson
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(2002) and Musiela and Zariphopoulou (2004), to which we refer the reader for more detailed argu-
ments for the specific optimization problem at hand.

Therefore, for a candidate portfolio vector (𝛼1,… , 𝛼𝑛) to be a constant Nash equilibrium, we need
𝜋𝑖,∗ = 𝛼𝑖, for 𝑖 = 1,… , 𝑛. Let

𝜎𝛼 ∶= 1
𝑛

𝑛∑
𝑘=1

𝜎𝑘𝛼𝑘 = 𝜎𝛼 + 1
𝑛
𝜎𝑖𝛼𝑖.

Then, we must have

𝛼𝑖 = 𝜋𝑖,∗ =
𝛿𝑖𝜇𝑖 + 𝜃𝑖𝜎𝑖𝜎𝛼(

𝜎2𝑖 + 𝜈2𝑖
)
(1 − 𝜃𝑖∕𝑛)

−
𝜃𝑖𝜎

2
𝑖

𝑛
(
𝜎2𝑖 + 𝜈2𝑖

)
(1 − 𝜃𝑖∕𝑛)

𝛼𝑖,

which implies that

𝛼𝑖 =
𝛿𝑖𝜇𝑖 + 𝜃𝑖𝜎𝑖𝜎𝛼(

𝜎2𝑖 + 𝜈2𝑖
)
(1 − 𝜃𝑖∕𝑛)

(
1 +

𝜃𝑖𝜎
2
𝑖

𝑛
(
𝜎2𝑖 + 𝜈2𝑖

)
(1 − 𝜃𝑖∕𝑛)

)−1

=
𝛿𝑖𝜇𝑖 + 𝜃𝑖𝜎𝑖𝜎𝛼(

𝜎2𝑖 + 𝜈2𝑖
)
(1 − 𝜃𝑖∕𝑛) + 𝜎2𝑖 𝜃𝑖∕𝑛

=
𝛿𝑖𝜇𝑖 + 𝜃𝑖𝜎𝑖𝜎𝛼

𝜎2𝑖 + 𝜈2𝑖 (1 − 𝜃𝑖∕𝑛)
. (15)

Multiplying both sides by 𝜎𝑖 and then averaging over 𝑖 = 1,… , 𝑛, gives

𝜎𝛼 = 𝜑𝑛 + 𝜓𝑛𝜎𝛼, (16)

with 𝜑𝑛, 𝜓𝑛 as in (9). For equality (15) to hold, equality (16) must hold as well. There are three cases:

(i) If 𝜓𝑛 < 1, then (16) yields 𝜎𝛼 = 𝜑𝑛∕(1 − 𝜓𝑛), and the equilibrium control is well defined and
given by (10).

(ii) If 𝜓𝑛 = 1 and 𝜑𝑛 > 0, then Equation (16) has no solution and thus no constant equilibria exist.

(iii) The remaining case is 𝜓𝑛 = 1 and 𝜑𝑛 = 0, in which case Equation (16) has infinitely many solu-
tions. This, however, cannot occur. Indeed, because 𝛿𝑖, 𝜇𝑖 > 0 for all 𝑖, we can only have 𝜑𝑛 = 0
if 𝜎𝑖 = 0 for all 𝑖. Recalling that 𝜎𝑖 + 𝜈𝑖 > 0 by assumption, this implies 𝜓𝑛 = 0, which is a con-
tradiction.

Remark 2.7. One can also compute the equilibrium value function 𝑣(𝑥, 𝑦, 𝑡) of agent 𝑖, by explicitly
computing 𝜌 defined in (13), as the quantities 𝜇𝛼, 𝜎𝛼, and 𝜈𝛼 are now known. However, we omit this
tedious calculation.

It remains an open problem to determine if there exist Nash equilibria that are not constant, e.g.,
equilibria of the feedback form 𝜋𝑖,∗ = 𝜋𝑖,∗(𝑡, 𝑥1,… , 𝑥𝑛), depending on time and/or the agents' wealths.
Actually, an adaptation our argument could show that the constant Nash equilibrium we derived is, in
fact, unique among the broader class of equilibria involving wealth-independent but potentially time-
dependent strategies 𝜋 = 𝜋(𝑡). The only delicate point is the solvability of the HJB equation (12), which
would force us to consider time-dependence with appropriate smoothness and growth conditions.

In addition, focusing on constant Nash equilibria can be justified as follows. It is well known that,
for log-normal models, exponential utilities lead to constant strategies. This holds not only for the plain
investment problem but also, in the absence of competition, for indifference-type investment problems.
The individual optimization problems we encountered in (11) are directly analogous to these standard
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indifference-type problems. Wealth independence is well documented in this context, even in general
semimartingale models. This is precisely the reason exponential utilities are so popular in the areas of
asset price equilibrium and indifference valuation.

2.2 The MFG
In this section, we study the limit as 𝑛 → ∞ of the 𝑛-agent game analyzed in the previous section.

We start with an informal argument, to build intuition and motivate the upcoming definition. For
the 𝑛-agent game, we define for each agent 𝑖 = 1,… , 𝑛 the type vector

𝜁𝑖 ∶=
(
𝑥𝑖0, 𝛿𝑖, 𝜃𝑖, 𝜇𝑖, 𝜈𝑖, 𝜎𝑖

)
.

These type vectors induce an empirical measure, called the type distribution, which is the probability
measure on the type space

𝑒 ∶= ℝ × (0,∞) × [0, 1] × (0,∞) × [0,∞) × [0,∞), (17)

given by

𝑚𝑛(𝐴) =
1
𝑛

𝑛∑
𝑖=1

1𝐴(𝜁𝑖), for Borel sets 𝐴 ⊂ 𝑒.

We then see that for each agent 𝑖 the equilibrium strategy 𝜋𝑖,∗ computed in Theorem 2.3 depends only
on her own type vector 𝜁𝑖 and the distribution 𝑚𝑛 of all type vectors. Indeed, the constants 𝜑𝑛 and 𝜓𝑛

(cf. (9)) are obtained simply by integrating appropriate functions under 𝑚𝑛.
Assume now that as the number of agents becomes large, 𝑛 → ∞, the above empirical measure 𝑚𝑛

has a weak limit 𝑚, in the sense that ∫𝑒 𝑓 d𝑚𝑛 → ∫𝑒 𝑓 d𝑚 for every bounded continuous function 𝑓

on𝑒. For example, this holds almost surely if the 𝜁𝑖's are i.i.d. samples from𝑚. Let 𝜁 = (𝜉, 𝛿, 𝜃, 𝜇, 𝜈, 𝜎)
denote a random variable with this limiting distribution 𝑚. Then, we should expect the optimal strategy
𝜋𝑖,∗ (cf. (10)) to converge to

lim
𝑛→∞

𝜋𝑖,∗ = 𝛿𝑖
𝜇𝑖

𝜎2𝑖 + 𝜈2𝑖
+ 𝜃𝑖

𝜎𝑖

𝜎2𝑖 + 𝜈2𝑖

𝜑

1 − 𝜓
, (18)

where

𝜑 ∶= lim
𝑛→∞

𝜑𝑛 = 𝔼
[
𝛿

𝜇𝜎

𝜎2 + 𝜈2

]
and 𝜓 ∶= lim

𝑛→∞
𝜓𝑛 = 𝔼

[
𝜃

𝜎2

𝜎2 + 𝜈2

]
.

The MFG defined next allows us to derive the limiting strategy (18) as the outcome of a self-
contained equilibrium problem, which intuitively represents a game with a continuum of agents with
type distribution𝑚. Rather than directly modeling a continuum of agents, we follow the MFG paradigm
of modeling a single representative agent, who we view as randomly selected from the population. The
probability measure 𝑚 represents the distribution of type parameters among the continuum of agents;
equivalently, the representative agent's type vector is a random variable with law 𝑚. Heuristically, each
agent in the continuum trades in a single stock driven by two Brownian motions, one of which is
unique to this agent and one of which is common to all agents. The equilibrium concept introduced in
Definition 2.9 will formalize this intuition.
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2.2.1 Formulating the MFG
To formulate the MFG, we now assume that the probability space (Ω, ,ℙ) supports yet another inde-
pendent (one-dimensional) Brownian motion, 𝑊 , as well as a random variable

𝜁 = (𝜉, 𝛿, 𝜃, 𝜇, 𝜈, 𝜎),

independent of 𝑊 and 𝐵, and with values in the space 𝑒 defined in (17). This random variable 𝜁 is
called the type vector, and its distribution is called the type distribution.

Let 𝔽MF = (MF
𝑡 )𝑡∈[0,𝑇 ] denote the smallest filtration satisfying the usual assumptions for which 𝜁 is

MF
0 -measurable and both 𝑊 and 𝐵 are adapted. Let also 𝔽𝐵 = (𝐵

𝑡 )𝑡∈[0,𝑇 ] denote the natural filtration
generated by the Brownian motion 𝐵.3

The representative agent's wealth process solves

d𝑋𝑡 = 𝜋𝑡(𝜇d𝑡 + 𝜈d𝑊 𝑡 + 𝜎d𝐵𝑡), 𝑋0 = 𝜉, (19)

where the portfolio strategy must belong to the admissible setMF of self-financing 𝔽MF-progressively
measurable real-valued processes (𝜋𝑡)𝑡∈[0,𝑇 ] satisfying 𝔼 ∫ 𝑇

0 |𝜋𝑡|2𝑑𝑡 < ∞. The random variable 𝜉 is the
initial wealth of the representative agent, whereas (𝜇, 𝜈, 𝜎) are the market parameters. In the sequel,
the parameters 𝛿 and 𝜃 will affect the risk preferences of the representative agent.

In this mean field setup, the single stock case refers to the case where (𝜇, 𝜈, 𝜎) is nonrandom, with
𝜈 = 0, 𝜇 > 0, and 𝜎 > 0. In the context of the limiting argument above, this corresponds to the 𝑛-agent
game in which 𝜇𝑖 = 𝜇, 𝜈𝑖 = 𝜈 = 0, and 𝜎𝑖 = 𝜎 for all 𝑖. Note that each agent among the continuum may
still have different preference parameters, captured by the fact that 𝛿 and 𝜃 are random.

Remark 2.8. There are two distinct sources of randomness in this model. One source comes from the
Brownian motions 𝑊 and 𝐵, which drive the stock price processes over time. The second source is
static and comes from the random variable 𝜁 , which describes the distribution of type vectors (which
includes initial wealth, individual preference parameters, and market parameters) among a large (in
fact, continuous) population. One can then think of a continuum of agents, each of whom is assigned
an i.i.d. type vector at time zero, and the agents interact after these assignments are made.

To see how to formulate the representative agent's optimization problem, let us first recall how
the Nash equilibrium in the 𝑛-agent game was constructed. We first solved the optimization problem
(12) faced by each single agent 𝑖, in which the strategies of the other agents 𝑘 ≠ 𝑖 were treated as
fixed. However, instead of fixing the strategies of the other agents, we could have just fixed the mean
terminal wealth 1

𝑛

∑
𝑘≠𝑖 𝑋𝑘

𝑇
, as this is effectively the only source of interaction between the agents. This

was precisely the idea behind the proof of Theorem 2.3, and this guides the upcoming formulation of
the MFG.

To this end, suppose that 𝑋 is a given random variable, representing the average wealth of the con-
tinuum of agents. The representative agent has no influence on 𝑋, as but one agent amid a continuum.
The objective of the representative agent is thus to maximize the expected payoff

sup
𝜋∈MF

𝔼
[
−exp

(
−1
𝛿

(
𝑋𝑇 − 𝜃𝑋

))]
, (20)

where (𝑋𝑡)𝑡∈[0,𝑇 ] is given by (19). We are now ready to introduce the main definition of this section.

Definition 2.9. Let 𝜋∗ ∈ MF be an admissible strategy, and consider the 𝐵
𝑇

-measurable random

variable 𝑋 ∶= 𝔼[𝑋∗
𝑇
|𝐵

𝑇
], where (𝑋∗

𝑡 )𝑡∈[0,𝑇 ] is the wealth process in (19) corresponding to the
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strategy 𝜋∗. We say that 𝜋∗ is a MFE if 𝜋∗ is optimal for the optimization problem (20) corresponding
to this choice of 𝑋.

A constant MFE is an MF
0 -measurable random variable 𝜋∗ such that, if 𝜋𝑡 ∶= 𝜋∗ for all 𝑡 ∈ [0, 𝑇 ],

then (𝜋𝑡)𝑡∈[0,𝑇 ] is an MFE.

Typically, an MFE is computed as a fixed point. One starts with a generic 𝐵
𝑇

-measurable random

variable 𝑋, solves (20) for an optimal 𝜋∗, and then computes 𝔼[𝑋∗
𝑇
|𝐵

𝑇
]. If we have a fixed point

in the sense that the consistency condition, 𝔼[𝑋∗
𝑇
|𝐵

𝑇
] = 𝑋, holds, then 𝜋∗ is an MFE. Intuitively,

every agent in the continuum faces an independent noise 𝑊 , an independent type vector 𝜁 , and the
same common noise 𝐵. Therefore, conditionally on 𝐵, all agents face independent and identically
distributed (i.i.d.) copies of the same optimization problem. Heuristically, the law of large numbers
suggests that the average terminal wealth of the whole population should be 𝔼[𝑋∗

𝑇
|𝐵

𝑇
]. This consis-

tency condition illustrates the distinct roles played by the two Brownian motions 𝑊 and 𝐵 faced by
the representative agent.

Perhaps more intuitively clear is the case where 𝜎 = 0 a.s., so there is no common noise term. In this
case, the consistency condition could be replaced with 𝑋 = 𝔼[𝑋∗

𝑇
], owing to the fact that each agent

in the continuum faces an i.i.d. copy of the same optimization problem.
We refer the reader to Carmona, Delarue, and Lacker (2016) for a detailed discussion of MFGs with

common noise, and to Cardaliaguet, Delarue, Lasry, and Lions (2015) and Lacker (2016) for general
results on limits of 𝑛-agent games. Alternatively, the so-called “exact law of large numbers” provides
another way to formalize this idea of averaging over a continuum of (conditionally) independent agents
(Sun, 2006).

2.2.2 An alternative formulation of the MFG
It is worth emphasizing that the optimization problem (20) treats the type vector 𝜁 as a genuine source
of randomness, in addition to the stochasticity coming from the Brownian motions. However, an alter-
native interpretation is given below, which will also help in solving the MFG.

As our starting point, note that for a fixed 𝐵
𝑇

-measurable random variable 𝑋 we have

sup
𝜋∈MF

𝔼
[
−𝑒−

1
𝛿

(
𝑋𝑇−𝜃𝑋

)]
= 𝔼[𝑢(𝜁 )], (21)

where 𝑢(⋅) is a value function defined for (deterministic) elements 𝜁0 = (𝑥0, 𝛿0, 𝜃0, 𝜇0, 𝜈0, 𝜎0) of the
type space 𝑒 by

𝑢(𝜁0) ∶= sup
𝜋

𝔼
[
−exp

(
− 1
𝛿0

(
𝑋

𝜁0,𝜋
𝑇

− 𝜃0𝑋
))]

, (22)

with

𝑑𝑋
𝜁0,𝜋
𝑡 = 𝜋𝑡

(
𝜇0d𝑡 + 𝜈0d𝑊 𝑡 + 𝜎0d𝐵𝑡

)
, 𝑋

𝜁0,𝜋
0 = 𝑥0,

and where the supremum is over square-integrable processes, which are progressively measurable with
respect to the filtration generated by the Brownian motions 𝑊 and 𝐵 (noting that the random variable
𝜁 is absent from this filtration).

For a deterministic-type vector 𝜁0 ∈ 𝑒, the quantity 𝑢(𝜁0) can be interpreted as the value of the
optimization problem (22) faced by an agent of type 𝜁0. On the other hand, the original optimization
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problem on the left-hand side of (21) gives the optimal expected value faced by an agent before the
random assignment of types at time 0.

This new interpretation will be used somewhat implicitly to compute an MFE in the proof of
Theorem 2.10, in the following manner. We may write 𝑢(𝜁0) = 𝑣𝜁0 (𝑥0, 0) as the time-zero value of
the solution of a HJB equation, 𝑣𝜁0 (𝑥, 𝑡), for (𝑥, 𝑡) ∈ ℝ × [0, 𝑇 ].4 The optimal value on the left-hand
side of (21) is then the expectation of these time-zero values, 𝔼[𝑣𝜁 (𝜉, 0)], when the random-type vector
𝜁 is used.

Similarly, the optimal strategy 𝜋𝜁0,∗ in (22) depends on the fixed value of 𝜁0. The optimal strategy for
the left-hand side of (21) is then obtained by plugging in the random type vector, yielding 𝜋𝜁,∗ ∈ MF.
This justifies the interpretation of the strategy 𝜋𝜁0,∗ as the strategy chosen by an agent with type vector
𝜁0.

2.2.3 Solving the MFG
Next, we present the second main result, in which we construct a constant MFE and also provide
conditions for its uniqueness. The result also confirms that the MFG formulation is indeed appropriate,
as the MFE we obtain agrees with the limit of the 𝑛-agent equilibrium strategies in the sense of (18).

Theorem 2.10. Assume that, a.s., 𝛿 > 0, 𝜃 ∈ [0, 1], 𝜇 > 0, 𝜎 ≥ 0, 𝜈 ≥ 0, and 𝜎 + 𝜈 > 0. Define the
constants

𝜑 ∶= 𝔼
[
𝛿

𝜇𝜎

𝜎2 + 𝜈2

]
and 𝜓 ∶= 𝔼

[
𝜃

𝜎2

𝜎2 + 𝜈2

]
,

where we assume that both expectations exist and are finite.
There are two cases:

(1) If 𝜓 < 1, there exists a unique constant MFE, given by

𝜋∗ = 𝛿
𝜇

𝜎2 + 𝜈2
+ 𝜃

𝜎

𝜎2 + 𝜈2
𝜑

1 − 𝜓
. (23)

Moreover, we have the identity

𝔼[𝜎𝜋∗] = 𝜑

1 − 𝜓
.

(2) If 𝜓 = 1, there is no constant MFE.

Next, we highlight the single stock case, noting that the form of the solution is essentially the same
as in the 𝑛-agent game, presented in Corollary 2.4.

Corollary 2.11 (Single stock). Suppose (𝜇, 𝜈, 𝜎) are deterministic, with 𝜈 = 0 and 𝜇, 𝜎 > 0. Define
the constants

𝛿 ∶= 𝔼[𝛿] and �̄� ∶= 𝔼[𝜃].

There are two cases:

(1) If 𝜃 < 1, there exists a unique constant MFE, given by

𝜋𝑠∗ =
(
𝛿 + 𝜃

𝛿

1 − 𝜃

)
𝜇

𝜎2
.
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(2) If 𝜃 = 1, there is no constant MFE.

Proof of Theorem 2.10. The first step in constructing a constant MFE is to solve the stochastic opti-
mization problem in (20), for a given choice of 𝑋. First, observe that it suffices to restrict our attention
to random variables 𝑋 of the form 𝑋 = 𝔼[𝑋𝛼

𝑇
|𝐵

𝑇
], where 𝑋𝛼 solves (19) for some admissible strategy

𝛼 ∈ MF. However, because we are searching only for constant MFE, we may fix a constant strategy,
i.e., an MF

0 -measurable random variable 𝛼 with 𝔼[𝛼2] < ∞.
It is convenient to define, for 𝑡 ∈ [0, 𝑇 ],

𝑋𝑡 ∶= 𝔼
[
𝑋𝛼

𝑡 |𝐵
𝑇

]
.

Noting that 𝑋𝑇 = 𝑋, the key idea is then to identify the dynamics of the process (𝑋𝑡)𝑡∈[0,𝑇 ] and incor-
porate it into the state process of the control problem (20). Because (𝜉, 𝜇, 𝜎, 𝜈, 𝛼), 𝑊 , and 𝐵 are inde-
pendent, we must have

𝑋𝑡 = 𝜉 + 𝜇𝛼𝑡 + 𝜎𝛼𝐵𝑡,

where we use the notation 𝑀 = 𝔼[𝑀] for an integrable random variable 𝑀 .
In turn, for 𝜋 ∈ MF, we define, for 𝑡 ∈ [0, 𝑇 ],

𝑍𝜋
𝑡 ∶= 𝑋𝜋

𝑡 − 𝜃𝑋𝑡,

with (𝑋𝜋
𝑡 )𝑡∈[0,𝑇 ] solving (19). Then,

d𝑍𝜋
𝑡 = (𝜇𝜋𝑡 − 𝜃𝜇𝛼)d𝑡 + 𝜈𝜋𝑡d𝑊 𝑡 + (𝜎𝜋𝑡 − 𝜃𝜎𝛼)d𝐵𝑡,

with 𝑍𝜋
0 = 𝜉 − 𝜃𝜉.

We have thus absorbed 𝑋 as part of the controlled state process. As a result, instead of solving the
original control problem (20), we can equivalently solve the Merton-type problem,

sup
𝜋∈MF

𝔼
[
−exp

(
−1
𝛿
𝑍𝜋

𝑇

)]
. (24)

As in the discussion in Section 2.2.2, the above supremum equals 𝔼[𝑣(𝜉 − 𝜃𝜉, 0)], where 𝑣(𝑥, 𝑡) is the
unique (smooth, strictly concave, and strictly increasing in 𝑥) solution of the HJB equation

𝑣𝑡 + max
𝜋

(1
2
(
𝜈2𝜋2 + (𝜎𝜋 − 𝜃𝜎𝛼)2

)
𝑣𝑥𝑥 + (𝜇𝜋 − 𝜃𝜇𝛼)𝑣𝑥

)
= 0, (25)

with terminal condition 𝑣(𝑥, 𝑇 ) = −𝑒−𝑥∕𝛿 . We stress that this HJB equation is random, in the sense that
it depends on the MF

0 -measurable type parameters (𝛿, 𝜃, 𝜇, 𝜈, 𝜎).
Equation (25) simplifies to

𝑣𝑡 −
1
2

(
𝜇𝑣𝑥 − 𝜃𝜎𝜎𝛼𝑣𝑥𝑥

)2
(𝜎2 + 𝜈2)𝑣𝑥𝑥

− 𝜃𝜇𝛼𝑣𝑥 +
1
2
(𝜃𝜎𝛼)2𝑣𝑥𝑥 = 0.

Making the ansatz 𝑣(𝑥, 𝑡) = −𝑒−𝑥∕𝛿𝑓 (𝑡), the above reduces to

𝑓 ′(𝑡) − 𝜌𝑓 (𝑡) = 0,



1018 LACKER AND ZARIPHOPOULOU

with 𝑓 (𝑇 ) = 1, and with 𝜌 given by the MF
0 -measurable random variable

𝜌 ∶=

(
𝜇 + 𝜃

𝛿
𝜎𝜎𝛼

)2

2(𝜎2 + 𝜈2)
− 𝜃

𝛿
𝜇𝛼 − 1

2

(
𝜃

𝛿
𝜎𝛼

)2
. (26)

Thus, 𝑓 (𝑡) = 𝑒−𝜌(𝑇−𝑡), and 𝑣(𝑥, 𝑡) = −𝑒−𝑥∕𝛿𝑓 (𝑡). Furthermore, the optimal feedback control achieving
the maximum in (25) is given by

𝜋∗(𝑥, 𝑡) = −
𝜇𝑣𝑥(𝑥, 𝑡) − 𝜃𝜎𝜎𝛼𝑣𝑥𝑥(𝑥, 𝑡)

(𝜎2 + 𝜈2)𝑣𝑥𝑥(𝑥, 𝑡)
= 𝛿

𝜇

𝜎2 + 𝜈2
+ 𝜃

𝜎

𝜎2 + 𝜈2
𝜎𝛼, (27)

In fact, 𝜋∗ = 𝜋∗(𝑥, 𝑡) is MF
0 -measurable and does not depend on (𝑥, 𝑡). The optimality of 𝜋∗ for the

problem (24) follows.
Recalling Definition 2.9, we see that for the candidate control 𝛼 to be a constant MFE, we need

𝛼 = 𝜋∗. In light of (27), 𝜋∗ is a constant MFE if it solves the equation

𝜋∗ = 𝛿
𝜇

𝜎2 + 𝜈2
+ 𝜃

𝜎

𝜎2 + 𝜈2
𝜎𝜋∗. (28)

Multiply both sides by 𝜎 and average to find that 𝜎𝜋∗ must satisfy

𝜎𝜋∗ = 𝔼
[
𝛿

𝜇𝜎

𝜎2 + 𝜈2

]
+ 𝔼

[
𝜃

𝜎2

𝜎2 + 𝜈2

]
𝜎𝜋∗ = 𝜑 + 𝜓𝜎𝜋∗. (29)

We then have the following cases:

(i) If 𝜓 < 1, the above yields 𝜎𝜋∗ = 𝜑∕(1 − 𝜓), and using Equation (28) we prove part (1).

(ii) If 𝜓 = 1 but 𝜑 ≠ 0, then Equation (29) has no solution, and, as a result, there can be no constant
MFE.

(iii) The remaining case is 𝜓 = 1 and 𝜑 = 0. However, this cannot happen. Indeed, if this were the
case, then 𝜑 = 0 and the restrictions on the parameters would imply 𝜎 = 0 < 𝜈 a.s., which would
in turn yield 𝜓 = 0, a contradiction. This completes the proof of part (2).

Remark 2.12. Note that the proof above yields a tractable formula for the equilibrium value function
of the representative agent. Because the controlled process (𝑍𝜋

𝑡 )𝑡∈[0,𝑇 ] starts from 𝑍𝜋
0 = 𝜉 − 𝜃𝜉, the

time-zero value to the representative agent (also called 𝑢(𝜁 ) in Section 2.2.2) is given by

𝑣(𝜉 − 𝜃𝜉, 0) = − exp
(
−1
𝛿
(𝜉 − 𝜃𝜉) − 𝜌𝑇

)
. (30)

It is now straightforward to explicitly compute 𝜌 in (26), using the values of 𝜇𝛼 and 𝜎𝛼. Indeed,

𝜌 = 1
2(𝜎2 + 𝜈2)

(
𝜇 + 𝜃

𝛿

𝜑

1 − 𝜓
𝜎

)2
− 𝜃

𝛿

(
�̃� + �̃�𝜑

1 − 𝜓

)
, (31)

where the constants �̃� and �̃� are defined by

�̃� = 𝔼
[
𝛿

𝜇2

𝜎2 + 𝜈2

]
and �̃� = 𝔼

[
𝜃

𝜇𝜎

𝜎2 + 𝜈2

]
.
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Notably, in the single stock case, this simplifies further to

𝜌 =
⎛⎜⎜⎝1 +

(
𝛿𝜃

𝛿(1 − 𝜃)

)2⎞⎟⎟⎠
𝜇2

2𝜎2
.

Remark 2.13. Equation (30) essentially provides the solution of the so-called master equation; see
Bensoussan, Frehse, and Yam (2015) or Carmona and Delarue (2014) for an introduction to the master
equation in MFG theory. Indeed, the master equation is a partial differential equation (PDE) providing
a function 𝑈 = 𝑈 (𝑥, 𝑚, 𝑡), where (𝑥, 𝑡) ∈ ℝ × [0, 𝑇 ] and 𝑚 is a probability measure on ℝ. The value
𝑈 (𝑥,𝑚, 𝑡) is naturally interpreted as the value at time 𝑡 for a representative agent starting with wealth
𝑋𝑡 = 𝑥, when the distribution of other agents' wealths is 𝑚. In our case, this value is nothing but

𝑈 (𝑥, 𝑚, 𝑡) = 𝑣(𝑥 − 𝜃�̄�, 𝑡) = − exp
(
−1
𝛿
(𝑥 − 𝜃�̄�) − 𝜌(𝑇 − 𝑡)

)
,

where �̄� is the mean of the measure 𝑚. We do not attempt to make this any more precise, as the concept
of a master equation has not yet been settled for models with different types of agents.

2.3 Discussion of the equilibrium
We focus most of the discussion on the MFE of Theorem 2.10 and Corollary 2.11, as the 𝑛-agent
equilibria of Theorem 2.3 and Corollary 2.4 have essentially the same structure.

Recall first that the MFE 𝜋∗ is MF
0 -measurable or, equivalently, 𝜁 -measurable, where 𝜁 =

(𝜉, 𝛿, 𝜃, 𝜇, 𝜈, 𝜎) is the type vector. The randomness of 𝜁 captures the distribution of type vectors among
the population, while a single realization of 𝜁 can be interpreted as the type vector of a single repre-
sentative agent. Hence, we interpret the investment strategy 𝜋∗ as the equilibrium strategy adopted by
those agents with type vector 𝜁 .

The equilibrium portfolio 𝜋∗ consists of two components. The first, 𝛿𝜇∕(𝜎2 + 𝜈2), is the classical
Merton portfolio in the absence of relative performance concerns. The second component is always
nonnegative, vanishing only in the absence of competition, i.e., when 𝜃 = 0. It increases linearly with
the competition weight 𝜃, so we find that competition always increases the allocation in the risky asset.

The representative agent's strategy 𝜋∗ is influenced by the other agents only through the quantity
𝜑∕(1 − 𝜓) = 𝔼[𝜎𝜋∗]. This quantity can be viewed as the volatility of aggregate wealth. Indeed, let 𝑋∗

denote the wealth process corresponding to 𝜋∗ (i.e., the solution of (19)). The average wealth of the
population at time 𝑡 ∈ [0, 𝑇 ] is 𝑌𝑡 ∶= 𝔼[𝑋∗

𝑡 |𝐵
𝑇
]. A straightforward computation using the indepen-

dence of 𝜁 , 𝑊 , and 𝐵 yields

𝑌𝑡 = 𝔼[𝜉] + 𝔼[𝜇𝜋∗]𝑡 + 𝔼[𝜎𝜋∗]𝐵𝑡.

Alternatively, we may interpret the ratio 𝜑∕(1 − 𝜓) in terms of the type distribution. Define 𝑅 =
𝜎2∕(𝜎2 + 𝜈2), which is the fraction of the representative agent's stock's variance driven by the com-
mon noise 𝐵. Then, 𝜑 = 𝔼[𝑅𝛿𝜇∕𝜎] is computed by multiplying each agent's Sharpe ratio by her risk
tolerance parameter and the weight 𝑅, then averaging over all agents. Similarly, 𝜓 = 𝔼[𝑅𝜃] is the
average competition parameter, weighted by 𝑅. Several important factors will lead to an increase in
𝜑∕(1 − 𝜓), and thus an increase in the investment 𝜋∗ in the risky asset. Namely, 𝜋∗ increases as other
agents become more risk tolerant (higher 𝛿 on average), as other agents become more competitive
(higher 𝜃 on average), or as the quality of the other stocks increases, as measured by their Sharpe ratio
(higher 𝜇∕𝜎 on average).
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F I G U R E 1 Single stock case (Corollary 2.11): 𝜋∗ versus 𝜃 and �̄�, with 𝛿 = 5, 𝛿 = 6, and 𝜇 = 𝜎 = 1 [Color

figure can be viewed at wileyonlinelibrary.com]

Some of the effects of competition are more transparent in the single stock case of Corollary 2.11.
The resulting MFE 𝜋∗ clearly resembles the Merton portfolio but with effective risk tolerance param-
eter

𝛿eff ∶= 𝛿 + 𝜃
𝛿

1 − 𝜃
.

We always have 𝛿eff > 𝛿 if 𝜃 > 0, and the difference 𝛿eff − 𝛿 increases with 𝜃, with 𝛿, and with 𝜃. That
is, the representative agent invests more in the risky asset if she is more competitive, if other agents
tend to be more risk tolerant, or if other agents tend to be more competitive. In the latter cases, when 𝛿

and 𝜃 increase, we can interpret the increase in 𝜋∗ as an effort, on the part of the representative agent,
to “keep up” with a population more willing to take risk. At the extreme ends, as both 𝜃 and �̄� approach
1, 𝜋∗ blows up very quickly; that is, a highly competitive agent in a population of highly competitive
agents invests significantly in the risky asset. This is illustrated in Figure 1.

A few other special cases are worth discussing. If 𝜎 = 0 a.s., there is no common noise. In this
case, 𝜑 = 𝜓 = 0, and in turn the MFE is equal to the Merton portfolio. All agents act independently
uncompetitively, not taking into account the performance of their competitors.

On the other hand, if 𝜈 = 0 a.s., there is no independent noise, and we have the simplifications
𝜓 = 𝔼[𝜃] and 𝜑 = 𝔼[𝛿𝜇∕𝜎]. If 𝔼[𝜃] < 1, then

𝜋∗ = 𝛿
𝜇

𝜎2
+ 𝜃

𝜎(1 − 𝔼[𝜃])
𝔼
[
𝛿
𝜇

𝜎

]
.

If 𝜈 = 0 a.s. and also 𝔼[𝜃] = 1, then 𝜃 = 1 a.s. and 𝜓 = 1. In this case, every agent is concerned exclu-
sively with relative and not absolute performance, and there is no equilibrium.
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Another degenerate case is when all agents have the same type vector, i.e., when 𝜁 is deterministic.
Then, the MFE is common for all agents and (assuming 𝜃 < 1) reduces to

𝜋∗ = 𝛿𝜇

(1 − 𝜃)𝜎2 + 𝜈2
.

Finally, we comment on the effect of population size on the equilibrium in the 𝑛-agent game given
in Theorem 2.3. The only real difference compared to the mean field setting is the rescaling of 𝜈2

𝑘
by

(1 − 𝜃𝑘∕𝑛) wherever it appears in Theorem 2.3, with no rescaling present in the single stock case of
Corollary 2.4. It is not yet clear how to properly interpret this rescaling, and it is worth noting that the
change of variables discussed in Remark 2.5 does not significantly change the situation. Interpreting
the average wealth 1

𝑛−1
∑

𝑗≠𝑖 𝑋𝑗
𝑇

as a liability term in an indifference valuation problem, as we have
mentioned before, seems promising, but we do not pursue this any further here.

3 CRRA RISK PREFERENCES

In this section, we focus on power and logarithmic (CRRA) utilities. Given the homogeneity properties
of the power risk preferences, we choose to measure relative performance using a multiplicative and
not additive factor. Such cases were analyzed for a two-agent setting in Basak and Makarov (2015)
and more recently in Anthropelos, Geng, and Zariphopoulou (2017) under forward relative perfor-
mance criteria.

3.1 The 𝒏-agent game
We consider an 𝑛-agent game analogous to that of Section 2.1, but where each agent has a CRRA
utility. We work on the same filtered probability space of Section 2.1, and we assume that the 𝑛 stocks
have the same dynamics as in (1).

The 𝑛 agents trade in a common investment horizon. As is common in power utility models, the
strategy 𝜋𝑖

𝑡 is taken to be the fraction (as opposed to the amount) of wealth that agent 𝑖 invests in the
stock 𝑆𝑖 at time 𝑡. Her discounted wealth is then given by

𝑑𝑋𝑖
𝑡 = 𝜋𝑖

𝑡𝑋
𝑖
𝑡

(
𝜇𝑖𝑑𝑡 + 𝜈𝑖𝑑𝑊

𝑖
𝑡 + 𝜎𝑖𝑑𝐵𝑡

)
, (32)

with initial endowment 𝑋𝑖
0 = 𝑥𝑖0. The class of admissible strategies is as before the set  of self-

financing 𝔽 -progressively measurable processes (𝜋𝑡)𝑡∈[0,𝑇 ] satisfying 𝔼 ∫ 𝑇
0 |𝜋𝑡|2𝑑𝑡 < ∞.

The 𝑖th agent's utility is a function 𝑈𝑖 ∶ ℝ2
+ → ℝ of both her individual wealth, 𝑥, and the geometric

average wealth of all agents, 𝑚. Specifically,

𝑈𝑖(𝑥, 𝑚) ∶= 𝑈
(
𝑥𝑚−𝜃𝑖 ; 𝛿𝑖

)
,

where 𝑈 (𝑥; 𝛿) is defined for 𝑥 > 0 and 𝛿 > 0 by

𝑈 (𝑥; 𝛿) ∶=
⎧⎪⎨⎪⎩
(
1 − 1

𝛿

)−1
𝑥1−

1
𝛿 , for 𝛿 ≠ 1,

log 𝑥 for 𝛿 = 1.
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The constant parameters 𝛿𝑖 > 0 and 𝜃𝑖 ∈ [0, 1] are the personal relative risk tolerance and competition
weight parameters, respectively.5 If agents 𝑖 = 1,… , 𝑛 choose admissible strategies 𝜋1,… , 𝜋𝑛, the
payoff for agent 𝑖 is given by

𝐽𝑖(𝜋1,… , 𝜋𝑛) ∶= 𝔼
[
𝑈
(
𝑋𝑖

𝑇
𝑋

−𝜃𝑖
𝑇 ; 𝛿𝑖

)]
, where 𝑋𝑇 =

(
𝑛∏

𝑘=1
𝑋𝑘

𝑇

)1∕𝑛

. (33)

Notice that here, unlike in the exponential utility model, agents measure relative wealth using the
geometric mean, rather than the arithmetic mean. Working with the geometric mean instead of the
arithmetic mean renders the problem tractable, as it allows us to exploit the homogeneity of the util-
ity function.

The above expected utility may be rewritten more illustratively as

𝐽𝑖(𝜋1,… , 𝜋𝑛) = 𝔼
[
𝑈
((

𝑋𝑖
𝑇

)1−𝜃𝑖 (𝑅𝑖
𝑇

)𝜃𝑖 ; 𝛿𝑖)],
where 𝑅𝑖

𝑇
= 𝑋𝑖

𝑇
∕𝑋𝑇 is the relative return for agent 𝑖. This clarifies the role of the competition weight

𝜃𝑖 as governing the trade-off between absolute and relative wealth to agent 𝑖, as in the exponential
utility model. As before, an agent with a higher value of 𝜃𝑖 is more concerned with relative wealth than
with absolute wealth.

The notion of (Nash) equilibrium is defined exactly as in Definition 2.1, but with the new objective
function defined in (33) above. We find a unique constant equilibrium in the following theorem, which
we subsequently specialize to the single stock case.

Theorem 3.1. Assume that for all 𝑖 = 1,… , 𝑛 we have 𝑥𝑖0 > 0, 𝛿𝑖 > 0, 𝜃𝑖 ∈ [0, 1], 𝜇𝑖 > 0, 𝜎𝑖 ≥ 0,
𝜈𝑖 ≥ 0, and 𝜎𝑖 + 𝜈𝑖 > 0. Define the constants

𝜑𝑛 ∶=
1
𝑛

𝑛∑
𝑘=1

𝛿𝑘
𝜇𝑘𝜎𝑘

𝜎2
𝑘
+ 𝜈2

𝑘
(1 + (𝛿𝑘 − 1)𝜃𝑘∕𝑛)

(34)

and

𝜓𝑛 ∶=
1
𝑛

𝑛∑
𝑘=1

𝜃𝑘(𝛿𝑘 − 1)
𝜎2
𝑘

𝜎2
𝑘
+ 𝜈2

𝑘
(1 + (𝛿𝑘 − 1)𝜃𝑘∕𝑛)

. (35)

There exists a unique constant equilibrium, given by

𝜋𝑖,∗ = 𝛿𝑖
𝜇𝑖

𝜎2𝑖 + 𝜈2𝑖 (1 + (𝛿𝑖 − 1)𝜃𝑖∕𝑛)
− 𝜃𝑖(𝛿𝑖 − 1)

𝜎𝑖

𝜎2𝑖 + 𝜈2𝑖 (1 + (𝛿𝑖 − 1)𝜃𝑖∕𝑛)
𝜑𝑛

1 + 𝜓𝑛

. (36)

Moreover, we have the identity

1
𝑛

𝑛∑
𝑘=1

𝜎𝑘𝜋
𝑘,∗ =

𝜑𝑛

1 + 𝜓𝑛

.

Corollary 3.2 (Single stock). Assume that for all 𝑖 = 1,… , 𝑛 we have 𝜇𝑖 = 𝜇 > 0, 𝜎𝑖 = 𝜎 > 0, and
𝜈𝑖 = 0. Define the constants

𝛿 ∶= 1
𝑛

𝑛∑
𝑘=1

𝛿𝑘 and 𝜃(𝛿 − 1) ∶= 1
𝑛

𝑛∑
𝑘=1

𝜃𝑘(𝛿𝑘 − 1).
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There exists unique constant equilibrium, given by

𝜋𝑖,∗ =

(
𝛿𝑖 −

𝜃𝑖(𝛿𝑖 − 1)𝛿

1 + 𝜃(𝛿 − 1)

)
𝜇

𝜎2
.

Proof. Apply Theorem 3.1, taking note of the simplifications 𝜑𝑛 = 𝛿𝜇∕𝜎 and 𝜓𝑛 = 𝜃(𝛿 − 1). □

Remark 3.3. As in Remark 2.5 in the exponential utility model, one might modify our payoff structure
so that agent 𝑖 excludes herself from the geometric mean 𝑋𝑇 . That is, one might replace the payoff
functional 𝐽𝑖 defined in (33) by

𝔼
[
𝑈
(
𝑋𝑖

𝑇
(𝑋

(−𝑖)
𝑇 )−𝜃

′
𝑖 ; 𝛿′𝑖

)]
, where 𝑋

(−𝑖)
𝑇 =

(∏
𝑘≠𝑖

𝑋𝑘
𝑇

)1∕(𝑛−1)

,

for some parameters 𝜃′𝑖 ∈ [0, 1] and 𝛿′𝑖 > 0. By modifying the preference parameters, we may view this
payoff as a special case of ours. Indeed, by matching coefficients it is straightforward to show that

𝑈
(
𝑋𝑖

𝑇
(𝑋

(−𝑖)
𝑇 )−𝜃

′
𝑖 ; 𝛿′𝑖

)
= 𝑐𝑖𝑈

(
𝑋𝑖

𝑇
𝑋

−𝜃𝑖
𝑇 ; 𝛿𝑖

)
,

for some constant 𝑐𝑖 > 0 (which does not influence the optimal strategies), when 𝜃𝑖 ∈ [0, 1] and 𝛿𝑖 > 0
are defined by

𝛿𝑖 =
𝛿′𝑖

𝛿′𝑖 − (𝛿′𝑖 − 1)
(
1 + 1

𝑛−1𝜃
′
𝑖

) and 𝜃𝑖 =
𝜃′𝑖

𝑛−1
𝑛

+ 1
𝑛
𝜃′𝑖

.

However, this is only valid if (1 − 1∕𝛿′𝑖 )(1 +
1

𝑛−1𝜃
′
𝑖 ) < 1, which ensures that 𝛿𝑖 > 0. This certainly holds

for sufficiently large 𝑛. We favor our original parameterization because of the relative simplicity of the
formulas in Theorem 3.1 and Corollary 3.2, and because there is no difference in the 𝑛 → ∞ limit.

Proof of Theorem 3.1. The proof is similar to that of Theorem 2.3, so we only highlight the main steps.
Fix an agent 𝑖 and constant strategies 𝛼𝑘 ∈ ℝ, for 𝑘 ≠ 𝑖. Define

𝑌𝑡 ∶=

(∏
𝑘≠𝑖

𝑋𝑘
𝑡

)1∕𝑛

,

where 𝑋𝑘
𝑡 solves (32) with constant weights 𝛼𝑘 and 𝑋𝑘

0 = 𝑥𝑘0 .

Setting Σ𝑘 ∶= 𝜎2
𝑘
+ 𝜈2

𝑘
, we deduce that

𝑑
(
log𝑋𝑘

𝑡

)
=
(
𝜇𝑘𝛼𝑘 −

1
2
Σ𝑘𝛼

2
𝑘

)
𝑑𝑡 + 𝜈𝑘𝛼𝑘𝑑𝑊

𝑘
𝑡 + 𝜎𝑘𝛼𝑘𝑑𝐵𝑡.

In turn,

𝑑
(
log 𝑌𝑡

)
= 1

𝑛

∑
𝑘≠𝑖

𝑑 log𝑋𝑘
𝑡 =

(
𝜇𝛼 − 1

2
Σ̂𝛼2

)
𝑑𝑡 + 1

𝑛

∑
𝑘≠𝑖

𝜈𝑘𝛼𝑘𝑑𝑊
𝑘
𝑡 + 𝜎𝛼𝑑𝐵𝑡,

where we abbreviate

𝜇𝛼 ∶= 1
𝑛

∑
𝑘≠𝑖

𝜇𝑘𝛼𝑘, 𝜎𝛼 ∶= 1
𝑛

∑
𝑘≠𝑖

𝜎𝑘𝛼𝑘,
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Σ̂𝛼2 ∶= 1
𝑛

∑
𝑘≠𝑖

Σ𝛼2𝑘, and (̂𝜈𝛼)2 ∶= 1
𝑛

∑
𝑘≠𝑖

𝜈2𝑘𝛼
2
𝑘.

Thus, the process 𝑌𝑡 solves

𝑑𝑌𝑡
𝑌𝑡

= 𝜂𝑑𝑡 + 1
𝑛

∑
𝑘≠𝑖

𝜈𝑘𝛼𝑘𝑑𝑊
𝑘
𝑡 + 𝜎𝛼𝑑𝐵𝑡, 𝑌0 =

(∏
𝑘≠𝑖

𝑥𝑘0

)1∕𝑛

, (37)

with

𝜂 ∶= 𝜇𝛼 − 1
2

(
Σ̂𝛼2 − 𝜎𝛼2 − 1

𝑛
(̂𝜈𝛼)2

)
.

The 𝑖th agent then solves the optimization problem

sup
𝜋𝑖∈

𝔼
[
𝑈
((

𝑋𝑖
𝑇

)1−𝜃𝑖∕𝑛 𝑌 −𝜃𝑖
𝑇

; 𝛿𝑖
)]

, (38)

where

𝑑𝑋𝑖
𝑡 = 𝜋𝑖

𝑡𝑋
𝑖
𝑡

(
𝜇𝑖𝑑𝑡 + 𝜈𝑖𝑑𝑊

𝑖
𝑡 + 𝜎𝑖𝑑𝐵𝑡

)
, 𝑋𝑖

0 = 𝑥𝑖0,

with (𝑌𝑡)𝑡∈[0,𝑇 ] solving (37). We then obtain that the value (38) is equal to 𝑣(𝑋𝑖
0, 𝑌0, 0), where 𝑣(𝑥, 𝑦, 𝑡)

solves the HJB equation

𝑣𝑡 + max
𝜋∈ℝ

(1
2
(
𝜎2𝑖 + 𝜈2𝑖

)
𝜋2𝑥2𝑣𝑥𝑥 + 𝜋

(
𝜇𝑖𝑥𝑣𝑥 + 𝜎𝑖𝜎𝛼𝑥𝑦𝑣𝑥𝑦

))
+ 1

2

(
𝜎𝛼2 + 1

𝑛
(̂𝜈𝛼)2

)
𝑦2𝑣𝑦𝑦 + 𝜂𝑦𝑣𝑦 = 0, (39)

for (𝑥, 𝑦, 𝑡) ∈ ℝ+ ×ℝ+ × [0, 𝑇 ], with terminal condition

𝑣(𝑥, 𝑦, 𝑇 ) = 𝑈
(
𝑥1−𝜃𝑖∕𝑛𝑦−𝜃𝑖 ; 𝛿𝑖

)
.

Applying the first-order conditions, the maximum in (39) is attained by

𝜋𝑖,∗(𝑥, 𝑦, 𝑡) = −
𝜇𝑖𝑥𝑣𝑥(𝑥, 𝑦, 𝑡) + 𝜎𝑖𝜎𝛼𝑥𝑦𝑣𝑥𝑦(𝑥, 𝑦, 𝑡)(

𝜎2𝑖 + 𝜈2𝑖
)
𝑥2𝑣𝑥𝑥(𝑥, 𝑦, 𝑡)

. (40)

In turn, Equation (39) reduces to

𝑣𝑡 −
1
2
(𝜇𝑖𝑥𝑣𝑥 + 𝜎𝑖𝜎𝛼𝑥𝑦𝑣𝑥𝑦)2(

𝜎2𝑖 + 𝜈2𝑖
)
𝑥2𝑣𝑥𝑥

+ 1
2

(
𝜎𝛼2 + 1

𝑛
(̂𝜈𝛼)2

)
𝑦2𝑣𝑦𝑦 + 𝜂𝑦𝑣𝑦 = 0. (41)

Working as in the proof of Theorem 2.3, we deduce that the above HJB equation has a unique smooth
solution (in an appropriate class of time-separable and space-homogeneous solutions), and the optimal
feedback control in (40) reduces to

𝜋𝑖,∗ =
𝛿𝑖𝜇𝑖 − 𝜎𝑖𝜎𝛼𝜃𝑖

(
𝛿𝑖 − 1

)
(𝜎2𝑖 + 𝜈2𝑖 )(𝛿𝑖 − (1 − 𝜃𝑖∕𝑛)(𝛿𝑖 − 1))

. (42)
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We prove this in two cases:

(i) Suppose 𝛿𝑖 ≠ 1. Making the ansatz

𝑣(𝑥, 𝑦, 𝑡) = 𝑈
(
𝑥1−𝜃𝑖∕𝑛𝑦−𝜃𝑖 ; 𝛿𝑖

)
𝑓 (𝑡) = (1 − 1∕𝛿𝑖)−1(𝑥(1−𝜃𝑖∕𝑛)𝑦−𝜃𝑖)1−1∕𝛿𝑖𝑓 (𝑡)

reduces Equation (41) to (1 − 1∕𝛿𝑖)−1𝑓 ′(𝑡) + 𝜌𝑓 (𝑡) = 0, with 𝑓 (𝑇 ) = 1, where

𝜌 ∶ =
(𝜇𝑖(1 − 𝜃𝑖∕𝑛) − 𝜎𝑖𝜎𝛼𝜃𝑖(1 − 𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖))2

2
(
𝜎2𝑖 + 𝜈2𝑖

)
(1 − 𝜃𝑖∕𝑛)(1 − (1 − 𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖))

− 𝜂𝜃𝑖

+1
2

(
𝜎𝛼2 + 1

𝑛
(̂𝜈𝛼)2

)
𝜃𝑖(1 + 𝜃𝑖(1 − 1∕𝛿𝑖)).

We easily deduce that the solution of (41) is

𝑣(𝑥, 𝑦, 𝑡) = (1 − 1∕𝛿𝑖)−1(𝑥(1−𝜃𝑖∕𝑛)𝑦−𝜃𝑖)1−1∕𝛿𝑖𝑒𝜌(1−1∕𝛿𝑖)(𝑇−𝑡),

and that (40) yields (42).

(ii) Suppose 𝛿𝑖 = 1. Making the ansatz

𝑣(𝑥, 𝑦, 𝑡) = 𝑈 (𝑥1−𝜃𝑖∕𝑛𝑦−𝜃𝑖 ; 𝛿𝑖) + 𝑓 (𝑡) =
(
1 −

𝜃𝑖
𝑛

)
log 𝑥 − 𝜃𝑖 log 𝑦 + 𝑓 (𝑡)

reduces Equation (41) to 𝑓 ′(𝑡) + 𝜌 = 0, with 𝑓 (𝑇 ) = 0 and

𝜌 ∶=
𝜇2
𝑖 (1 − 𝜃𝑖∕𝑛)

2
(
𝜎2𝑖 + 𝜈2𝑖

) − 𝜃𝑖𝜂 +
1
2
𝜃𝑖

(
𝜎𝛼2 + 1

𝑛
(̂𝜈𝛼)2

)
.

In turn, the solution of (41) is given by

𝑣(𝑥, 𝑦, 𝑡) =
(
1 −

𝜃𝑖
𝑛

)
log 𝑥 − 𝜃𝑖 log 𝑦 + 𝜌(𝑇 − 𝑡),

and (40) reduces to 𝜋𝑖,∗ = 𝜇𝑖∕(𝜎2𝑖 + 𝜈2𝑖 ), which is consistent with (42) for 𝛿𝑖 = 1.

We conclude the proof as follows. For (𝛼1,… , 𝛼𝑛) to be a constant equilibrium, we must have 𝜋𝑖,∗ =
𝛼𝑖, for each 𝑖 = 1,… , 𝑛. Using (42) and abbreviating

𝜎𝛼 ∶= 1
𝑛

𝑛∑
𝑘=1

𝜎𝑘𝛼𝑘 = 𝜎𝛼 + 1
𝑛
𝜎𝑖𝛼𝑖,

we deduce that we must have

𝛼𝑖 =
𝜇𝑖 − 𝜎𝑖𝜎𝛼𝜃𝑖(1 − 1∕𝛿𝑖) + 𝜎2𝑖 𝛼𝑖(𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖)(

𝜎2𝑖 + 𝜈2𝑖
)
(1 − (1 − 𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖))

.

Solving for 𝛼𝑖 yields,

𝛼𝑖 =
𝜇𝑖 − 𝜎𝑖𝜎𝛼𝜃𝑖(1 − 1∕𝛿𝑖)

(𝜎2𝑖 + 𝜈2𝑖 )(1 − (1 − 𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖))

(
1 −

𝜎2𝑖 (𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖)(
𝜎2𝑖 + 𝜈2𝑖

)
(1 − (1 − 𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖))

)−1
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=
𝜇𝑖 − 𝜎𝑖𝜎𝛼𝜃𝑖(1 − 1∕𝛿𝑖)(

𝜎2𝑖 + 𝜈2𝑖
)
(1 − (1 − 𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖)) − 𝜎2𝑖 (𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖)

=
𝜇𝑖 − 𝜎𝑖𝜎𝛼𝜃𝑖(1 − 1∕𝛿𝑖)

𝜎2𝑖 ∕𝛿𝑖 + 𝜈2𝑖 (1 − (1 − 𝜃𝑖∕𝑛)(1 − 1∕𝛿𝑖))
=

𝜇𝑖𝛿𝑖 − 𝜎𝑖𝜎𝛼𝜃𝑖(𝛿𝑖 − 1)
𝜎2𝑖 + 𝜈2𝑖 (1 − 𝜃𝑖∕𝑛 + 𝛿𝑖𝜃𝑖∕𝑛)

. (43)

Multiplying both sides by 𝜎𝑖 and averaging over 𝑖 = 1,… , 𝑛 give

𝜎𝛼 = 𝜑𝑛 − 𝜓𝑛𝜎𝛼, (44)

where 𝜑𝑛, 𝜓𝑛 are as in (34) and (35). Because 1 + 𝜓𝑛 > 0, Equation (44) holds if and only if 𝜎𝛼 =
𝜑𝑛∕(1 + 𝜓𝑛). We then deduce from (43) that the equilibrium strategy 𝛼𝑖 = 𝜋𝑖,∗ is given by (36).

Remark 3.4. Note that Equation (43) above has a unique solution for all parameter values. In contrast,
the analogous equation (29) in the exponential case has no solutions for certain parameter values, which
is why there were two cases in Theorem 2.3.

It is worth highlighting that, for the CRRA case, we assume that relative performance concerns
appear multiplicatively, and not additively. There are two reasons for this. First, as discussed in the
Introduction, this is natural in modeling preferences, which depend on relative return as opposed to
relative wealth; see also Basak and Makarov (2015) for a discussion. The second reason is mathematical
tractability. We have already seen that using the geometric mean leads to explicit solutions.

To formulate an analogous problem using an arithmetic mean, we may consider the following two
possibilities. First, we may modify the optimization criterion to be of the form

𝑈
⎛⎜⎜⎝

𝑋𝑖
𝑇

1
𝑛

∑𝑛
𝑖=1𝑋

𝑖
𝑇

; 𝛿𝑖
⎞⎟⎟⎠.

The challenge here is that the ratio appearing in the first argument cannot be expressed as the solution
of a one-dimensional stochastic differential equation (SDE). The proofs of both Theorems 3.1 and
3.6 exploited the fact that the geometric mean of geometric Brownian motions remains a geometric
Brownian motion, whereas the arithmetic mean enjoys no such properties.

Alternatively, we may use an optimization criterion of the form 𝑈 (𝑋𝑖
𝑇
− 1

𝑛

∑𝑛
𝑖=1𝑋

𝑖
𝑇
; 𝛿𝑖), which,

however, runs into more serious problems because 𝑈 (𝑥, 𝛿𝑖) is well defined and finite only for 𝑥 > 0 (or
𝑥 ≥ 0 if 𝛿𝑖 > 1). Hence, this criterion would enforce the hard constraint 𝑋𝑖

𝑇
> 1

𝑛

∑𝑛
𝑖=1𝑋

𝑖
𝑇

a.s., which
raises the two natural questions of how this constraint propagates to previous times and whether this
results in a meaningful class of solutions.

In short, using an arithmetic mean criterion would give rise to interdependent state and control
constraints, which will likely render the problem intractable, and, at worst, could lead to trivial or
meaningless solutions.

3.2 The MFG
This section studies the limit as 𝑛 → ∞ of the 𝑛-player game analyzed in the previous section, analo-
gously to the treatment of the exponential case in Section 2.2.

We proceed with some informal arguments. Recall that the type vector of agent 𝑖 is

𝜁𝑖 ∶=
(
𝑥𝑖0, 𝛿𝑖, 𝜃𝑖, 𝜇𝑖, 𝜈𝑖, 𝜎𝑖

)
.
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As before, the type vectors induce an empirical measure, which is the probability measure on

𝑝 ∶= (0,∞) × (0,∞) × [0, 1] × (0,∞) × [0,∞) × [0,∞) (45)

given by

𝑚𝑛(𝐴) =
1
𝑛

𝑛∑
𝑖=1

1𝐴(𝜁𝑖), for Borel sets 𝐴 ⊂ 𝑝.

Similarly to the exponential case, for a given agent 𝑖, the equilibrium strategy 𝜋𝑖,∗ computed in Theo-
rem 3.1 depends only on her own type vector 𝜁𝑖 and the distribution 𝑚𝑛 of type vectors, and this enables
the passage to the limit.

Assume now that 𝑚𝑛 has a weak limit 𝑚, in the sense that ∫𝑝 𝑓 𝑑𝑚𝑛 → ∫𝑝 𝑓 𝑑𝑚 for every bounded
continuous function 𝑓 on 𝑝. Let 𝜁 = (𝜉, 𝛿, 𝜃, 𝜇, 𝜈, 𝜎) denote a random variable with distribution 𝑚.
Then, the optimal strategy 𝜋𝑖,∗ (cf. (36)) should converge to

lim
𝑛→∞

𝜋𝑖,∗ = 𝛿𝑖
𝜇𝑖

𝜎2𝑖 + 𝜈2𝑖
− 𝜃𝑖(𝛿𝑖 − 1)

𝜎𝑖

𝜎2𝑖 + 𝜈2𝑖

𝜑

1 − 𝜓
, (46)

where

𝜑 ∶= lim
𝑛↑∞

𝜑𝑛 = 𝔼
[
𝛿

𝜇𝜎

𝜎2 + 𝜈2

]
and 𝜓 ∶= lim

𝑛↑∞
𝜓𝑛 = 𝔼

[
𝜃(𝛿 − 1) 𝜎2

𝜎2 + 𝜈2

]
.

As in the exponential case, we will demonstrate that this limiting strategy is indeed the equilibrium of
an MFG, which we formulate analogously to Section 2.2.1.

Recall that 𝑊 and 𝐵 are independent Brownian motions and that the random variable 𝜁 =
(𝜉, 𝛿, 𝜃, 𝜇, 𝜈, 𝜎) is independent of 𝑊 and 𝐵. For the power case, the type vector 𝜁 now takes values in
the space 𝑝. Furthermore, the filtration 𝔽MF is the smallest one satisfying the usual assumptions for
which 𝜁 is MF

0 -measurable and 𝑊 and 𝐵 are adapted. Finally, recall that 𝔽𝐵 = (𝐵
𝑡 )𝑡∈[0,𝑇 ] denotes

the natural filtration generated by the Brownian motion 𝐵.
The representative agent's wealth process solves

𝑑𝑋𝑡 = 𝜋𝑡𝑋𝑡(𝜇𝑑𝑡 + 𝜈𝑑𝑊𝑡 + 𝜎𝑑𝐵𝑡), 𝑋0 = 𝜉, (47)

where the investment weight 𝜋 belongs to the admissible set MF of 𝔽MF-progressively measurable
real-valued processes satisfying 𝔼 ∫ 𝑇

0 |𝜋𝑡|2𝑑𝑡 < ∞. Notice that, for all admissible 𝜋, the wealth process
(𝑋𝑡)𝑡∈[0,𝑇 ] is strictly positive, as 𝜉 > 0 a.s.

We denote by 𝑋 an MF
0 -measurable random variable representing the geometric mean wealth

among the continuum of agents. Then, the objective of the representative agent is to maximize the
expected payoff

sup
𝜋∈MF

𝔼
[
𝑈 (𝑋𝑇𝑋

−𝜃
; 𝛿)

]
, (48)

where (𝑋𝑡)𝑡∈[0,𝑇 ] is given by (47).
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The definition of an MFE is analogous to Definition 2.9. However, one needs to extend the notion
of geometric mean appropriately to a continuum of agents. The geometric mean of a measure 𝑚 on
(0,∞) is most naturally defined as

exp
(
∫(0,∞)

log 𝑦 𝑑𝑚(𝑦)
)
,

when log 𝑦 is 𝑚-integrable. Indeed, when 𝑚 is the empirical measure of 𝑛 points (𝑦1,… , 𝑦𝑛), this
reduces to the usual definition (𝑦1𝑦2⋯ 𝑦𝑛)1∕𝑛.

Definition 3.5. Let 𝜋∗ ∈ MF be an admissible strategy, and consider the 𝐵
𝑇

-measurable random

variable𝑋 ∶= exp𝔼[log𝑋∗
𝑇
|𝐵

𝑇
], where (𝑋∗

𝑡 )𝑡∈[0,𝑇 ] is the wealth process in (47) corresponding to the
strategy 𝜋∗. We say that 𝜋∗ is an MFE if 𝜋∗ is optimal for the optimization problem (48) corresponding
to this choice of 𝑋.

A constant MFE is an MF
0 -measurable random variable 𝜋∗ such that, if 𝜋𝑡 ∶= 𝜋∗ for all 𝑡 ∈ [0, 𝑇 ],

then (𝜋𝑡)𝑡∈[0,𝑇 ] is an MFE.

The following theorem characterizes the constant MFE, recovering the limiting expressions derived
above from the 𝑛-agent equilibria.

Theorem 3.6. Assume that, a.s., 𝛿 > 0, 𝜃 ∈ [0, 1], 𝜇 > 0, 𝜎 ≥ 0, 𝜈 ≥ 0, and 𝜎 + 𝜈 > 0. Define the
constants

𝜑 ∶= 𝔼
[
𝛿

𝜇𝜎

𝜎2 + 𝜈2

]
and 𝜓 ∶= 𝔼

[
𝜃(𝛿 − 1) 𝜎2

𝜎2 + 𝜈2

]
,

where we assume that both expectations exist and are finite.
There exists a unique constant MFE, given by

𝜋∗ = 𝛿
𝜇

𝜎2 + 𝜈2
− 𝜃(𝛿 − 1) 𝜎

𝜎2 + 𝜈2
𝜑

1 + 𝜓
. (49)

Moreover, we have the identity

𝔼[𝜎𝜋∗] = 𝜑

1 + 𝜓
.

In the single stock case, the form of the solution is essentially the same as in the 𝑛-agent game,
presented in Corollary 3.2:

Corollary 3.7 (Single stock). Suppose (𝜇, 𝜈, 𝜎) are deterministic, with 𝜈 = 0 and 𝜇, 𝜎 > 0. Define the
constants

𝛿 ∶= 𝔼[𝛿] and 𝜃(𝛿 − 1) ∶= 𝔼[𝜃(𝛿 − 1)].

There exists a unique constant MFE, given by

𝜋∗ =

(
𝛿 − 𝜃(𝛿 − 1)𝛿

1 + 𝜃(𝛿 − 1)

)
𝜇

𝜎2
.
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Proof of Theorem 3.6. As in the exponential case, we first reduce the optimal control problem (48) to
a low-dimensional Markovian one. To this end, it suffices to restrict our attention to random variables
𝑋 of the form

𝑋 = exp𝔼[log𝑋𝛼
𝑇
|𝐵

𝑇 ],

where 𝑋𝛼 is the wealth process of (47) with an admissible constant strategy 𝛼. That is, 𝛼 is an
MF
0 -measurable random variable satisfying 𝔼[𝛼2] < ∞.
Define

𝑌𝑡 ∶= exp𝔼[log𝑋𝛼
𝑡 |𝐵

𝑇 ].

Note that 𝑌𝑡 = exp𝔼[log𝑋𝛼
𝑡 |𝐵

𝑡 ], for 𝑡 ∈ [0, 𝑇 ), because (𝐵𝑠 − 𝐵𝑡)𝑠∈[𝑡,𝑇 ] and 𝑋𝛼
𝑡 are independent. In

analogy to the exponential case, we identify the dynamics of 𝑌 and, in turn, treat it, as an additional
(uncontrolled) state process.

To this end, first use Itô's formula to get

𝑑
(
log𝑋𝛼

𝑡

)
=
(
𝜇𝛼 − 1

2
(𝜎2 + 𝜈2)𝛼2

)
𝑑𝑡 + 𝜈𝛼𝑑𝑊𝑡 + 𝜎𝛼𝑑𝐵𝑡.

Define �̌�𝛼
𝑡 ∶= 𝔼[log𝑋𝛼

𝑡 |𝐵
𝑇
], and note as with 𝑌𝑡 above that �̌�𝛼

𝑡 = 𝔼[log𝑋𝛼
𝑡 |𝐵

𝑡 ], for 𝑡 ∈ [0, 𝑇 ).
Setting

Σ ∶= 𝜎2 + 𝜈2,

and noting that (𝜉, 𝜇, 𝜎, 𝜈, 𝛼), 𝑊 and 𝐵 are independent, we compute

𝑑�̌�𝛼
𝑡 =

(
𝜇𝛼 − 1

2
Σ𝛼2

)
𝑑𝑡 + 𝜎𝛼𝑑𝐵𝑡, (50)

where, again, we use the notation 𝑀 = 𝔼[𝑀] for a generic integrable random variable 𝑀 . In turn,

𝑑𝑌𝑡 = 𝑑𝑒�̌�
𝛼
𝑡 = 𝑌𝑡

(
𝜂𝑑𝑡 + 𝜎𝛼𝑑𝐵𝑡

)
, 𝑌0 = 𝜉, (51)

where 𝜂 ∶= 𝜇𝛼 − 1
2 (Σ𝛼

2 − 𝜎𝛼2).
To solve the stochastic optimization problem (48), we equivalently solve

sup
𝜋∈MF

𝔼
[
𝑈 (𝑋𝑇𝑌

−𝜃
𝑇

; 𝛿)
]

(52)

with

𝑑𝑋𝑡 = 𝜋𝑡𝑋𝑡(𝜇𝑑𝑡 + 𝜈𝑑𝑊𝑡 + 𝜎𝑑𝐵𝑡),

and (𝑌𝑡)𝑡∈[0,𝑇 ] solving (51). Then, as in the discussion of Section 2.2.2, the value of (52) is equal to

𝔼[𝑣(𝜉, 𝜉, 0)], where 𝑣 = 𝑣(𝑥, 𝑦, 𝑡) is the unique smooth (strictly concave and strictly increasing in 𝑥)
solution of the HJB equation

𝑣𝑡 + max
𝜋∈ℝ

(1
2
Σ𝜋2𝑥2𝑣𝑥𝑥 + 𝜋

(
𝜇𝑥𝑣𝑥 + 𝜎𝜎𝛼𝑥𝑦𝑣𝑥𝑦

))
+ 1

2
𝜎𝛼2𝑦2𝑣𝑦𝑦 + 𝜂𝑦𝑣𝑦 = 0, (53)
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with terminal condition 𝑣(𝑥, 𝑦, 𝑇 ) = 𝑈 (𝑥𝑦−𝜃; 𝛿). Notice that this HJB equation is random, because of
its dependence on the MF

0 -measurable type parameters.
Applying the first-order conditions, the maximum in (53) is attained by

𝜋∗(𝑥, 𝑦, 𝑡) = −
𝜇𝑥𝑣𝑥(𝑥, 𝑦, 𝑡) + 𝜎𝜎𝛼𝑥𝑦𝑣𝑥𝑦(𝑥, 𝑦, 𝑡)

Σ𝑥2𝑣𝑥𝑥(𝑥, 𝑦, 𝑡)
. (54)

In turn, Equation (53) reduces to

𝑣𝑡 −
(𝜇𝑥𝑣𝑥 + 𝜎𝜎𝛼𝑥𝑦𝑣𝑥𝑦)2

2Σ𝑥2𝑣𝑥𝑥
+ 1

2
𝜎𝛼2𝑦2𝑣𝑦𝑦 + 𝜂𝑦𝑣𝑦 = 0. (55)

Next, we claim that, for all (𝑥, 𝑦, 𝑡),

𝜋∗(𝑥, 𝑦, 𝑡) = Σ−1(𝜇𝛿 − 𝜃(𝛿 − 1)𝜎𝜎𝛼
)
. (56)

We prove this in two cases:

(i) Suppose 𝛿 ≠ 1. Making the ansatz

𝑣(𝑥, 𝑦, 𝑡) = 𝑈 (𝑥𝑦−𝜃; 𝛿)𝑓 (𝑡) = (1 − 1∕𝛿)−1𝑥1−1∕𝛿𝑦−𝜃(1−1∕𝛿)𝑓 (𝑡),

reduces Equation (55) to 𝑓 ′(𝑡) + 𝜌𝑓 (𝑡) = 0, with 𝑓 (𝑇 ) = 1, where

𝜌 ∶=
(
𝜇𝛿 − 𝜃(𝛿 − 1)𝜎𝜎𝛼

)2
2Σ(𝛿 − 1)

− 𝜂𝜃(1 − 1∕𝛿)−1 + 1
2
𝜎𝛼2𝜃(𝜃 + (1 − 1∕𝛿)−1).

We easily deduce that the solution of (55) is

𝑣(𝑥, 𝑦, 𝑡) = (1 − 1∕𝛿)−1𝑥1−1∕𝛿𝑦−𝜃(1−1∕𝛿) exp(𝜌(𝑇 − 𝑡)),

and that (54) yields (56).

(ii) Suppose 𝛿 = 1. It is easily checked that the solution 𝑣 of (55) is given by

𝑣(𝑥, 𝑦, 𝑡) = log 𝑥 − 𝜃 log 𝑦 + 𝜌(𝑇 − 𝑡),

with

𝜌 ∶= 𝜇2

2Σ
− 𝜂𝜃 + 1

2
𝜃𝜎𝛼

2
.

In this case, (54) becomes 𝜋∗(𝑥, 𝑦, 𝑡) = 𝜇∕Σ, which is consistent with (56) for 𝛿 = 1.

Recalling Definition 3.5, we see that for the candidate control 𝛼 to be a constant MFE, we need
𝛼 = 𝜋∗. In light of (3.5), 𝜋∗ is a constant MFE if it solves the equation

𝜋∗ =
∑−1 (

𝜇𝛿 − 𝜃(𝛿 − 1)𝜎𝜎𝜋∗
)
. (57)

Multiply both sides by 𝜎 and average to find that 𝜎𝜋∗ must satisfy

𝜎𝜋∗ = 𝔼
[
𝛿
𝜇𝜎

Σ

]
− 𝔼

[
𝜃(𝛿 − 1)𝜎

2

Σ

]
𝜎𝜋∗ = 𝜑 − 𝜓𝜎𝜋∗.

We then deduce that 𝜎𝛼 = 𝜑∕(1 + 𝜓), and plugging this into (56) we obtain (49).



LACKER AND ZARIPHOPOULOU 1031

3.3 Discussion of the equilibrium
Some of the structural properties of the equilibrium are similar to those observed in the CARA model
in Section 2.3. We again focus the discussion here on the mean field case of Theorem 3.6 and Corol-
lary 3.7, as the 𝑛-agent equilibria of Theorem 3.1 and Corollary 3.2 have essentially the same structure.
The only difference is the rescaling of 𝜈2

𝑘
by (1 + (𝛿𝑘 − 1)𝜃𝑘∕𝑛) wherever it appears in Theorem 3.1.

We first discuss the general case of Theorem 3.6, before concentrating on the single stock case of
Corollary 3.7.

3.3.1 The general case
The MFE 𝜋∗ of Theorem 3.6 can be written as the sum of two components, 𝜋∗ = 𝜋∗

(1) + 𝜋∗
(2), where

𝜋∗
(1) = 𝛿𝜇∕(𝜎2 + 𝜈2) is the classical Merton portfolio, and

𝜋∗
(2) ∶= −𝜃(𝛿 − 1) 𝜎

𝜎2 + 𝜈2
𝜑

1 + 𝜓
.

The second component 𝜋∗
(2) isolates the linear effect of the competition parameter 𝜃. Notably, 𝜋∗

(2)
vanishes when 𝜃 = 0.

Interestingly, the effect of competition is quite different in the CRRA model than in the CARA
model, in the sense that competition now leads some agents to invest less in the risky asset than they
would in the absence of competition. Indeed, the sign of 𝜋∗

(2) is the same as that of (1 − 𝛿), assuming
𝜃 > 0 and 𝜎 > 0. Thus, agents with 𝛿 < 1 invest more as 𝜃 increases, whereas agents with 𝛿 > 1 invest
less. In particular, we have 𝜋∗

(2) = 0 when 𝛿 = 1; that is, agents with log utility are not competitive,
which is also easily deduced from the original problem formulation.

In fact, a highly risk-tolerant and competitive agent may choose to short the stock. That is, if 𝛿 > 1
and 𝜃 is close to 1, 𝜋∗ may be negative. This typically occurs when 𝛿 is much higher than their popu-
lation averages, or, in other words, when the representative agent is very risk tolerant and competitive
relative to the other agents.

The representative agent's strategy 𝜋∗ is influenced by the other agents only through the quan-
tity 𝜑∕(1 + 𝜓) = 𝔼[𝜎𝜋∗], and, as in Section 2.3, we can view this quantity as the volatility of the
aggregate wealth. Indeed, let 𝑋∗ denote the wealth process corresponding to 𝜋∗ (i.e., the solution
of (47) using the strategy 𝜋∗). The geometric average wealth of the population at time 𝑡 ∈ [0, 𝑇 ] is
𝑌𝑡 ∶= log𝔼[exp(𝑋∗

𝑡 )|𝐵
𝑇
], and, as we saw in the proof of Theorem 3.6, it satisfies

𝑑𝑌𝑡 = 𝑌𝑡
(
𝜂𝑑𝑡 + 𝔼[𝜎𝜋∗]𝑑𝐵𝑡

)
.

Alternatively, the ratio𝜑∕(1 + 𝜓) can be interpreted directly in terms of the type distribution. Define
𝑅 = 𝜎2∕(𝜎2 + 𝜈2), and note that 𝜑 = 𝔼[𝑅𝛿𝜇∕𝜎] and 𝜓 = 𝔼[𝑅𝜃(𝛿 − 1)]. Notice that the assumptions
on the parameter ranges ensure that 1 + 𝜓 > 0. As before, the numerator 𝜑 increases as the quality
of the other stocks increases, as measured by their Sharpe ratio. However, the ratio 𝜑∕(1 + 𝜓) may
not increase as the population becomes more risk tolerant (i.e., as 𝛿 increases on average), as both the
numerator and denominator increase in this case.

The dependence of𝜑∕(1 + 𝜓) and thus of 𝜋∗ on the type distribution is rather complex. The distribu-
tion of competition weights 𝜃 appears only through 𝜓 , and its effect is mediated by the risk tolerance 𝛿.
Loosely speaking, the population average of 𝜃 can have a positive or negative effect on 𝜋∗

(2) depending
on the “typical” sign of (1 − 𝛿). These complexities are more easily unraveled in the single stock case.
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3.3.2 Single stock case
From the results of Corollary 3.7, we may write the equilibrium portfolio in the single stock case as

𝜋∗ = ((1 − 𝑘𝜃)𝛿 + 𝑘𝜃) 𝜇
𝜎2

, (58)

where

𝑘 ∶= 𝛿

1 + 𝜃(𝛿 − 1)
. (59)

The equilibrium 𝜋∗ can thus be written as a Merton portfolio, 𝜋∗ = 𝛿eff𝜇∕𝜎2, with effective risk
tolerance parameter

𝛿eff ∶= (1 − 𝑘𝜃)𝛿 + 𝑘𝜃 = 𝛿 − 𝜃(𝛿 − 1)𝛿
1 + 𝜃(𝛿 − 1)

. (60)

This representation simplifies some of the complex dependencies of 𝜋∗ on the type distribution men-
tioned in the previous paragraph. For instance, suppose 𝜃 and 𝛿 are uncorrelated, so that 𝜃(𝛿 − 1) =
𝜃(𝛿 − 1). If 𝛿 > 1, then |𝛿eff − 𝛿| is decreasing in 𝜃. That is, if the average risk tolerance is high, then,
as the population becomes more competitive (i.e., 𝜃 increases), the representative agent behaves less
competitively in the sense that 𝛿eff moves closer to 𝛿. On the other hand, if 𝛿 < 1, then |𝛿eff − 𝛿| is
increasing in 𝜃. That is, if the average risk tolerance is low, then, as the population becomes more com-
petitive, the representative agent behaves more competitively in the sense that 𝛿eff moves away from
𝛿. Again, if 𝛿 = 1, then 𝜃 and 𝜃 play no role whatsoever.

More interesting is the joint effect of (𝛿, 𝜃) on 𝜋∗, when the other parameters are fixed. Still assuming
𝜃 and 𝛿 are uncorrelated, notice that the value of 𝑘 can range between 1 and 𝛿, as 𝜃 varies between 0
and 1. Hence, if 𝜃𝛿 > 1, then there is a critical value, 𝜃crit ∶= (𝜃𝛿 − 1)∕(𝛿 − 1), at which the effect of
𝛿 on 𝜋∗ changes sign. When the population is highly competitive (i.e., 𝜃 > 𝜃crit), the investment 𝜋∗ in
the risky asset increases with the risk tolerance 𝛿, as one might expect. On the other hand, when the
population is less competitive (i.e., 𝜃 < 𝜃crit), 𝜋

∗ is decreasing in 𝛿. This effect is illustrated in Figure 2.
A similar transition appears in the joint effect of (𝛿, 𝜃) on 𝜋∗, when the other parameters are fixed.

When 𝑘 ≤ 1 (which is equivalent to 𝛿 ≤ 1 if we assume 𝜃 and 𝛿 are uncorrelated), then the risky
investment 𝜋∗ is increasing in the risk tolerance 𝛿, for any value of 𝜃. On the other hand, if 𝑘 < 1,
then 𝜋∗ is increasing in 𝛿 if and only if 𝜃 < 1∕𝑘. This situation is illustrated in Figure 3. Note that
these effects are more pronounced if 𝛿 and 𝜃 are positively correlated and less pronounced if they are
negatively correlated.

There are two ways to explain the counterintuitive phenomenon described in the previous two
paragraphs, in which 𝜋∗ may be decreasing in 𝛿 for certain (fixed) values of the other parameters.
This regime happens precisely when 1 < 𝑘𝜃. Assuming again that 𝜃 and 𝛿 are uncorrelated, the latter
inequality is equivalent to

𝜃 >
1
𝛿
(1 − 𝜃) + 𝜃.
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F I G U R E 2 Single stock case (Corollary 3.7): 𝜋∗ versus 𝛿 and 𝜃, with 𝜃 = 3∕4, 𝛿 = 2, 𝜇 = 5, and 𝜎 = 1; here, 𝜃

and 𝛿 are uncorrelated, and 𝜃crit = 1∕2 [Color figure can be viewed at wileyonlinelibrary.com]

Assume for the sake of argument that 𝛿 is extremely large. In the limit 𝛿 → ∞, we see that 1 < 𝑘𝜃 if
and only if 𝜃 > 𝜃, and the expression for 𝜋∗ becomes

𝜋∗ =
((

1 − 𝜃

𝜃

)
𝛿 + 𝜃

𝜃

)
𝜇

𝜎2
.

There are two immediate observations:

(i) If 𝜃 < 𝜃 and 𝛿 is large, then 𝜋∗ is positive and large. That is, less competitive agents go long.

(ii) If 𝜃 > 𝜃 and 𝛿 is large, then 𝜋∗ is very negative. That is, competitive agents go short.

The first case, 𝜃 < 𝜃, is natural: A less competitive agent behaves more like a Merton investor, with 𝜋∗

increasing in 𝛿. On the other hand, we may explain the second regime, 𝜃 > 𝜃, as follows. Still assuming
that the average risk tolerance is very large, we know from (i) that most other agents will take large
long positions in the stock. If our representative agent were to go long, he could not afford to accept
enough risk to go as long as the other investors. Then, if the stock price goes up, the representative
agent may achieve a high absolute performance but would suffer in terms of relative performance, as
the other agents who invested even more in the stock would earn even higher returns. Hence, a natural
strategy is to short the stock, to focus on gains from outperforming competitors when the stock price
drops, rather than focusing on absolute performance. This is still reasonable if the representative agent
is himself quite risk tolerant, willing to accept risk in the opposite direction as the more Merton-like
investors. Note that these effects are less pronounced but still present outside of the asymptotic regime
𝛿 → ∞.

There is an alternative explanation in the spirit of (Basak & Makarov, 2015, pp. 13–14). A risk-averse
agent typically seeks to minimize volatility by investing less in the stock than a more risk-tolerant agent.
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F I G U R E 3 Single stock case (Corollary 3.7): 𝜋∗ versus 𝛿 and 𝜃, with 𝜃 = 1∕5, 𝛿 = 2, and 𝜇 = 5, 𝜎 = 1; here 𝛿

and 𝜃 are uncorrelated, and 𝑘 = 5∕3 [Color figure can be viewed at wileyonlinelibrary.com]

However, relative performance concerns provide an additional source of volatility. A risk-averse agent
may then invest heavily in the stock in an attempt to mitigate losses from being outperformed.

3.3.3 Some additional special cases
A few other special cases are worth discussing. If 𝜎 = 0 a.s., there is no common noise. In this case,
𝜑 = 𝜓 = 0, and in turn the MFE is equal to the Merton portfolio, which means that the agents are
not at all competitive. On the other hand, if 𝜈 = 0 a.s., there is no independent noise. In this case,
𝜑 = 𝔼[𝛿𝜇∕𝜎] and 𝜓 = 𝔼[𝜃(𝛿 − 1)], and the optimal portfolio becomes

𝜋∗ = 𝛿
𝜇

𝜎2
− 𝜃(𝛿 − 1)

𝜎(1 + 𝔼[𝜃(𝛿 − 1)])
𝔼
[
𝛿
𝜇

𝜎

]
.

Finally, if all agents have the same type vector (i.e., 𝜁 is deterministic), then 𝜋∗ is deterministic and,
furthermore,

𝜋∗ = 𝛿𝜇

(1 + 𝜃(𝛿 − 1))𝜎2 + 𝜈2
.

4 CONCLUSIONS AND EXTENSIONS

We have considered optimal portfolio management problems under relative performance concerns for
both finite and infinite populations. The agents have a common investment horizon and either CARA
or CRRA risk preferences, and they trade individual stocks with log-normal dynamics driven by both
common and idiosyncratic noises. They face competition in that their individual utility criteria depend
on both their individual wealth as well as the wealth of the others. We have explicitly constructed the
associated constant Nash equilibrium and MFE.
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Our study points to several directions for future research. A first direction is to further analyze the
finite population problems by using concepts from indifference valuation. Indeed, as we mentioned in
the proof of Theorem 2.3, we may identify the effect of competition as a liability and, in turn, solve
an indifference valuation problem. Similarly, for the CRRA case, one may relate the competition to
a multiplicative liability factor. There is a fundamental difference, of course, between the classical
indifference pricing problems and the ones herein; namely, the liability is essentially endogenous, as
it depends on the actions of the agents. Nevertheless, employing indifference valuation arguments is
expected to yield a clearer financial interpretation of the equilibrium strategies by relating them to
indifference hedging strategies. It will also permit an analysis of sensitivity effects of varying agents'
population size using arguments from the so-called relative indifference valuation. Such questions are
left for future work.

Herein, the fund managers are only concerned with maximization of utility coming from terminal
wealth (both absolute and relative to other agents), but one could also incorporate intermediate con-
sumption. There are two natural ways to do this, discussed only for the CRRA model for concreteness.
First, one might add a utility-of-consumption term to the optimization criterion (33) and modify the
individual wealth process to

𝑑𝑋𝑖
𝑡 = 𝜋𝑖

𝑡𝑋
𝑖
𝑡

(
𝜇𝑖𝑑𝑡 + 𝜈𝑖𝑑𝑊

𝑖
𝑡 + 𝜎𝑖𝑑𝐵𝑡

)
− 𝐶𝑖

𝑡𝑑𝑡.

While the calculations may be tedious, we expect that this problem is tractable. A more interesting
approach would build on the first by incorporating relative consumption standards, modeled as con-
straints in the form of lower bounds on the rate of consumption, which could themselves depend on the
consumption of other agents. This setting would reflect the more realistic situation in which individual
consumption standards are affected by the behavior of other agents.

An important assumption of the model herein is that each agent has full information of the individ-
ual preference and market parameters of each other agent. This is also the main modeling ingredient in
Basak and Makarov (2015) and is partially defended by the fact that fund managers post their returns
publicly, and from these announcements certain information can in turn be inferred by their competi-
tors. While this is undoubtedly a considerable modeling limitation, our results give new solutions to
existing problems, especially for MFGs with nonquadratic criteria. Furthermore, this assumption of
common knowledge may be relaxed if one introduces ambiguity around the publicly posted competi-
tors' parameters. This ambiguity may be, for example, modeled through an error margin depending on
individual views. This would give rise to a class of interesting MFGs with filtering.

In a different direction, a natural generalization of our model would allow agents to invest in any
of the stocks, not just the individual stock assigned to them. Such a case has been recently analyzed
in Basak and Makarov (2015), and in Anthropelos et al. (2017) under forward performance criteria.
Important questions arise on the effects of competition to asset specialization. While such generaliza-
tion might be intractable for the finite population setting, a mean field formulation may provide a more
tractable framework for studying the interactive role of competition and asset familiarity, specializa-
tion, and competition.

Finally, one may extend the current model to dynamically evolving markets and rolling horizons.
Such generalization may be analyzed under forward performance criteria, extending the results of
Anthropelos et al. (2017), and would lead naturally to a new class of MFGs. It would also allow
for further extending the concept of benchmarking under forward criteria, introduced in Musiela and
Zariphopoulou (2009).
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ENDNOTES
1 Note that (𝛿𝑖, 𝜃𝑖), 𝑖 = 1,… , 𝑛, are unitless, because all wealth processes are discounted by the riskless bond.
2 Our notion of Nash equilibrium is more accurately known as an open-loop Nash equilibrium. A popular alternative is

closed-loop Nash equilibrium, in which agents choose strategies in terms of feedback functions as opposed to stochastic
processes. However, for constant strategies, the open-loop and closed-loop concepts coincide. That is, a constant (open-
loop) Nash equilibrium is also a closed-loop Nash equilibrium, and vice versa.

3 One might as well formulate the MFG on a different probability space from the 𝑛-agent game, but we prefer to avoid
introducing additional notation.

4 There is some redundancy in this notation, as 𝑥0 is already part of the vector 𝜁0.
5 For CRRA utilities, it is more common to use the relative risk aversion parameter 𝛾𝑖 = 1∕𝛿𝑖, but our choice of parame-

terization ensures that the relative risk tolerance is precisely

𝛿𝑖 = −
𝑈𝑥(𝑥; 𝛿𝑖)
𝑥𝑈𝑥𝑥(𝑥; 𝛿𝑖)

.
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