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Computational medicine, present and the future:
obstetrics and gynecology perspective
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Medicine is, in its essence, decision making under uncertainty; the decisions aremade about
tests to be performed and treatments to be administered. Traditionally, the uncertainty in
decision making was handled using expertise collected by individual providers and, more
recently, systematic appraisal of research in the form of evidence-based medicine. The
traditional approach has been used successfully in medicine for a very long time. However, it
has substantial limitations because of the complexity of the system of the human body and
healthcare. The complex systems are a network of highly coupled components intensely
interacting with each other. These interactions give those systems redundancy and thus
robustness to failure and, at the same time, equifinality, that is, many different causative
pathways leading to the same outcome. The equifinality of the complex systems of the
human body and healthcare system demand the individualization of medical care, medicine,
and medical decision making. Computational models excel in modeling complex systems
and, consequently, enabling individualization of medical decision making and medicine.
Computational models are theory- or knowledge-based models, data-driven models, or
models that combine both approaches. Data are essential, although to a different degree, for
computational models to successfully represent complex systems. The individualized
decision making, made possible by the computational modeling of complex systems,
has the potential to revolutionize the entire spectrum of medicine from individual
patient care to policymaking. This approach allows applying tests and treatments to
individuals who receive a net benefit from them, for whom benefits outweigh the risk,
rather than treating all individuals in a population because, on average, the population
benefits. Thus, the computational modelingeenabled individualization of medical
decision making has the potential to both improve health outcomes and decrease the
costs of healthcare.
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Introduction
“Medicine is a science of uncertainty and
an art of probability.”1 This is how Sir
William Osler described medicine over a
century ago, a statement that resonates
with us as strongly today. The consider-
able and ever-present multifaceted un-
certainty, in comparison with other
disciplines, is what makes the practice of
medicine so challenging. This is mainly
because in medicine we face a very com-
plex system and we lack fundamental
natural laws describing its function to
inform our models. The uncertainty and
complexity are especially pronounced in
the practice of obstetrics, where 2 ormore
young and usually otherwise healthy pa-
tients with long life expectancies and with
frequently conflicting health interests are
being cared for and where the stakes and
expectations are very high.2,3 Thus,
medicine is, in its essence, decision
making under uncertainty, decisions
about the tests to be performed and
treatments to be administered. The ines-
capable and pervasive uncertainty is the
consequence of 2 issues facing every
medical decision, although to a different
degree: the incomplete information to
make the decision and the element of
chance, randomness, or luck. As a
consequence, there are neither perfect
tests nor treatments. Although not intu-
itive, the false-positive rate of a test—the
probability that the positive test is false—
varies widely among patients depending
on the patient’s prior (before the test)
probability of having a disease. One of the
most accurate tests available is the human
immunodeficiency virus (HIV) antibody
test. The false-positive rate of theHIV test
varies from 3.2% in populations with a
high risk for HIV to 99.5% in low-risk
populations.4 Thus, if a patient is at low
risk for HIV, a positive HIV test is falsely
positive in 99.5% of cases. However,
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when the risk level or prior probability of
the disease is not known before testing,
the uncertainty of testing vastly affects the
decisionmaking for an individual patient.
Similarly, among the top 10 grossing
medications in the US, only 1 in 4 to 1 in
25 patients receiving them benefit from
the treatment.5 Thus, some patients
benefit but many do not, and it is un-
certain who will respond and who will
not. Therefore, in choosing a test or
treatment, uncertainty plays a consider-
able role and substantially affects the de-
cision making.

Patients, physicians, and policymakers
have been shown to have difficulty with
interpretation of the meaning of
numbers, especially probabilities. This
difficulty is common and has serious
consequences for healthcare.6 A study of
160 obstetricians and gynecologists has
shown that 80% of them incorrectly
interpreted the risk of breast cancer
associated with a positive mammogram.
Most of them grossly overestimated the
probability of cancer, overestimating the
risk by almost an order of magnitude,
80% to 90% instead of 10% in the given
clinical scenario.7 US obstetricians and
gynecologists also had difficulty in
interpretation uncertainty and proba-
bilities related to ovarian cancer
screening.8 The difficulty in interpreting
uncertainty and the related probabilities
by obstetricians, gynecologists, and
other specialty physicians and patients
has been shown regarding ovarian can-
cer screening and other areas.8,9

Because of the uncertainty, the best
decision is not the one which results in a
good outcome, but one which carefully
considers all potential future outcomes,
their probabilities, and consequences, as
well as relates to the decision maker’s
individual preferences.10 Two approaches
emerge to handle uncertainty in medi-
cine. The traditional approach has been
used in medicine from its origins. Yet,
recent developments of computational
methods and computer capabilities have
placed us at a point in time when these
advances can revolutionize medical deci-
sion making and medicine in general.

The traditional approach to handling
uncertainty has been successfully used in
medicine for a very long time. For
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centuries, it was based on expertise,
experience collected in the process of
practicing medicine. Expertise is un-
doubtedly very effective and saves
countless lives. It is especially useful,
however, when used with the awareness
of its limitations. These limitations of
expertise are due to the heuristics we use
in intuitive decision making. They were
first described by Tversky and Kahne-
man11 over 40 years ago, and the latter
received for it the Nobel Memorial Prize
in Economic Sciences. Heuristics are
used by every human being and probably
constitute an evolutionary advantage.
They allow quick decision making and
are usually very effective. However, they
may also lead us to make predictable
mistakes, resulting in a bias in our de-
cision making.
One of these biases is our tendency to

overestimate the probability of events we
can more easily retrieve from our mem-
ory, events that are common in our
experience, and events that are emotion-
ally charged. That is why we all have a
biased tendency to overestimate the
probability of good outcomes, especially
in obstetrics, or specific rare adverse
outcomes that have happened to one of
our patients.2,3 The use of expertise in the
handling of uncertainty in medical prac-
tice is also hindered by the limitations of
individual experience. An obstetrician in
the US delivers, on average, about 140
patients a year.12 This means, on average,
an obstetrician will experience 1 cerebral
palsy associated with intrapartum hyp-
oxia in 174 years,13,14 1 permanent
brachial plexus palsy in 40 years,15 1 ce-
rebral palsy because of uterine rupture in
694 years,16,17 and 1 maternal death in 38
years.18,19 Thus, it is very difficult to
collect sufficient experience and use it
effectively in estimating uncertainty in
medical decision making. The limited
possible individual experiences, together
with cognitive biases, limit the effective-
ness of expertise in handling uncertainty
in decision making. These limitations of
expertise are well illustrated by words
spoken in an area outside of medicine but
very well suited to it, by Captain Edward
Smith in 1907, “I never saw a wreck and
never have been wrecked, nor was I ever
in any predicament that threatened to
JANUARY 2021 A

niversity of Texas at Austin School of Nursing from Clinical
 other uses without permission. Copyright ©2021. Elsevier In
end in disaster.”20 Five years later, onApril
14, 1912, he was the captain of the Royal
Mail Ship Titanic.

Mainly in response to the limitations
of expertise, as well as the quality and use
of evidence, evidence-based medicine
was introduced in the 1990s. It was
developed with the goal to guide clinical
practice by using the results of high-
quality evidence, especially in random-
ized controlled trials (RCTs). This
approach was expected to minimize the
uncertainty in medical decision making
and consequently improve outcomes
through consolidation of a high quality
of evidence in systematic reviews and
clinical guidelines. Much progress in
medicine has been achieved in the last 30
years thanks to the evidence-based
medicine paradigm.21 However, its lim-
itations and misapplications have also
become evident.22 Over 2 decades later, a
review of the state of evidence-based
medicine shows that many evidence-
based guidelines are not based on
RCTs, perhaps as few as 11% in some
areas of medicine.23 A review of
approximately 3000 treatments classified
50% of them as having insufficient
supporting evidence. Among the other
half, judged to be evidence-based, 24%
of treatments were considered likely to
be beneficial, 7% required tradeoffs be-
tween benefits and harms, 5% were un-
likely to be beneficial, 3% were likely to
be ineffective or harmful, and only 11%
were clearly beneficial.23

Perhaps even more importantly, when
the clinical guidelines make recommen-
dations based on RCTs, the recommen-
dations frequently differ between the
guidelines even when the same RCTs
are cited as evidence for the different
recommendations.24,25 This is a conse-
quence of the focus of the guidelines’
appraisal tools on the internal validity of
the referenced RCTs. These appraisal
tools focus on the methodology and
quality of reporting of the cited studies
rather than on their external validity,
generalizability, and clinical relevance
and applicability besides their internal
validity.26 Therefore, the RCTs may not
be applicable to the populations, in-
terventions, and outcomes specified in
the recommendations made in the
merican Journal of Obstetrics & Gynecology 17
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guidelines. Analysis of national clinical
guidelines issued by professional orga-
nizations from the US, Canada, and
Europe, showed that, of the 338 treat-
ment recommendations made in the 9
guidelines, a third had not been based on
evidence from RCTs, considered to be
the highest quality level of evidence.
Another third of recommendations did
cite RCTs in support but were found to
provide evidence of low quality. The low
quality of the evidence in those recom-
mendations was due to lack of applica-
bility of the RCTs to the population
targeted by the recommendations or
because the cited trials reported surro-
gate outcomes rather than the outcomes
addressed by the recommendations.26

RCTs are traditionally considered to
be the strongest form of evidence for
clinical decision making. However, 20%
of all published medical research was
shown to have methodological flaws,
with RCTs having as many limitations as
other studies.27 Some estimates of the
nonreproducibility of RCTs are even
higher. Furthermore, even the highest
quality medical evidence is itself uncer-
tain. An analysis of 49 studies, each cited
over 1000 times and published in the
leading journals, showed that a third of
their findings could not be reproduced
by subsequent studies of similar or larger
size or the effect sizes of the subsequent
studies were substantially smaller.28

RCTs are widely considered the gold
standard of evidence, and their integra-
tion, the metaanalyses, are thought by
many to be the platinum standard of
evidence-based medicine.29 They are
considered to be the highest level of ev-
idence and thus the best way to handle
uncertainty in medicine. However,
despite many tremendous contributions
made to the practice of medicine, RCTs
and their metaanalyses have a large
number of potentially serious limita-
tions, making them less than optimal to
be the sole source of evidence in man-
aging uncertainty in medicine. A. L.
Cochrane, the pioneer of the use of RCTs
in medicine, warned in 1971, “Between
measurements based on RCTs and
benefit . . . in the community there is a
gulf which has been much under-
estimated.”30
18 American Journal of Obstetrics & Gynecology
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Today it is evident that treatments used
across the medical specialties are consis-
tently less effective in clinical practice
than they are reported in RCTs.30e36 The
low effectiveness of medications in clin-
ical practice appears to result from poor
external validity or generalizability of
clinical trials. Research into the internal
validity of RCTs dwarfs the evaluation of
their generalizability and their use in
clinical practice. The RCTs’ appraisal
tools evaluating their performance, and
thus the quality of their evidence, usually
do not consider generalizability of RCTs,
the quality critical to managing uncer-
tainty in clinical practice. In RCTs, only a
subset of a population in which an
intervention or medication is applied
benefits from it.34,37,38 Frequently, the
benefiting subset is a minority of patients
receiving a medication.34 A still smaller
subset of patients may receive a net
benefit from medication, the benefit
minus harm related to medication.39,40

The low generalizability or external val-
idity of clinical trials and, consequently,
low effectiveness of medications in clin-
ical practice is due in large part to the
heterogeneity of treatment effect (HTE),
which has been observed across the
spectrum of interventions and domains
of medicine.30,36,41,42 HTE has 4 sources:
heterogeneity of baseline disease risk;
heterogeneity of treatment effect; het-
erogeneity of treatment-related harm;
and heterogeneity of competing risks,
risks related to conditions other than the
one studied.33,34,36,43,44

The limited generalizability of RCTs is
also because of a very narrow selection of
study populations in RCTs and the
extensive inclusion and exclusion
criteria applied.45

Thus, RCTs and the guidelines cannot
always be assumed to provide high-
quality evidence for the recommenda-
tions they make. RCTs and their meta-
analyses answer the question “does it
work?” rather than the question more
critical to medical decision making, “in
whom might it work?” Evidence-based
medicine in general and RCTs specif-
ically are substantially limited in
handling uncertainty, which is critical in
medical decision making and the prac-
tice of medicine.
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Complex systems
The traditional approaches to handling
uncertainty, based on expertise or
evidence-based, are shown to have severe
limitations. One could argue that these
limitations underlie a large part of the
healthcare crisis by enabling abuses of
the fee-for-service system and defensive
medicine. The difficulty in managing the
uncertainty inherent in medicine comes
from the traditional understanding of
the human body and healthcare as linear
cause and effect systems. However, the
human body and healthcare are complex
systems, systems composed of a vast
number of relatively simple compo-
nents, which intensely interact with each
other, and lead to the emergence of
unique system behaviors. The complex
systems are networks of tightly coupled
components (eg, genes, proteins, cells)
interacting in a nonlinear manner.46e49

The unique behaviors of the system
emerge from the interactions of the
simple components. The number of
possible interactions grows exponen-
tially with the number of elements in the
system. To put this in a proper perspec-
tive, a moderate number of 25 elements,
for example, risk factors and protective
characteristics, could have up to 225, or
33,554,432, interactions among them. If
one considers that the human body is
made of an order of 1013 cells, and each
cell contains 42�106 protein molecules,
the number of potential interactions is
genuinely staggering. Interactions where
almost everything affects everything else
and does so in a nonlinear manner result
in redundancies that make the complex
systems robust to failures, such as disease
in an individual patient or inability to
provide healthcare to patients in need in
a healthcare system.50 However, these
redundancies also result inmultiple ways
that failure can occur rather than a single
root cause leading to failure. Because of
that structure, complex systems have
many different causative pathways and
thus many different ways an outcome
can occur, the phenomenon known as
equifinality.51 Equifinality demands
individualization of care, the individu-
alization of decision making and the
individualization of testing and treat-
ments (Figure 1). For example, in a
Key.com by Elsevier on March 01, 2021.
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FIGURE 1
Representation of the complex system, such as the human body or
healthcare system

The complex system is made of a vast number of components highly interacting with each other.

Complex systems have, because of their structure, many different ways or causative pathways an

outcome can occur, the phenomenon known as equifinality. Equifinality demands individualization in

approach to the complex systems, such as individualization of medical decision making.
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predictive model using a combination of
13 continuous and categorical pre-
dictors, 80% of the 2M pregnant women
have a unique combination of those
predictors, risk factors and protective
characteristics.

Therefore, any contemplated preven-
tive or therapeutic intervention, test, or
health policy considered must be based
on a balance between individual associ-
ated risks and benefits and an individual
decision maker’s risk preference. The
human mind is ill-equipped to under-
stand andmanage the level of complexity
needed for optimal medical decision
making. Despite that, these complex
decisions are made daily by a broad
spectrum of decision makers ranging
from an individual patient to a health
policymaker.

Computational models are uniquely
suited to handle the intensity of in-
teractions and the uncertainty and
complexity associated with them. They
excel in modeling complex systems. The
wordmodel in this context is a simplified
approximate representation of the com-
plex system, which allows analysis of the
complex system behavior. The compu-
tational part is the mathematical and
quantitative representation of the com-
plex system, which prevents ambiguity
of the model specification and repre-
sentation in a form that is executable
using a computer. Computational
modeling of complex systems can be
achieved by using data-driven and the-
ory- or knowledge-driven models. In
very general terms, the data-driven
models require a limited amount of
knowledge about the system but a large
amount of data. The theory- or
knowledge-driven models require a
limited amount of data but substantial
knowledge of the system. The compu-
tational models predict the behavior of
the system (eg, patients) in the future,
and this ability is expressed as external
validation of the model. The computa-
tional model, which predicts well, also
provides a good understanding of the
complex system it represents. Prediction
is an essential component of medical
decisionmaking. Because of the inherent
uncertainty in medical decision making
and complex systems in general, the
Downloaded for Anonymous User (n/a) at U
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computational models are stochastic.
That means that the models limit the
number of possible outcomes by elimi-
nating some possibilities and giving a
higher probability to other outcomes
that are among a pool of potential out-
comes known before modeling and ones
that become a possibility with themodel.
Familiar examples of computational
models are weather forecasts or hurri-
cane predictions.
The computational models excel in

modeling complex systems and at solv-
ing these kinds of complex problems.
They are ideally suited to address the
critical and complex elements of indi-
vidualized medical decision making.
Computational methods are unrivaled
and can play a central role in individual
predictions and weighing individual,
frequently conflicting, risks and benefits
with their preferences. Computational
approaches can account for these types
of complexities, aiding optimal medical
decision making for an individual pa-
tient and simulating a suite of decisions
for policymakers.
Computational medicine can thus be

defined as the discipline that uses
advanced mathematical approaches to
JANUARY 2021 A

niversity of Texas at Austin School of Nursing from Clinical
 other uses without permission. Copyright ©2021. Elsevier In
model complex systems along a spec-
trum from the human body to the
healthcare system. To accurately repre-
sent these complex systems, the models
need to capture the individuality of
health and disease for accurate decision
making at all levels. Ranging from the
patient to the policy, these require sub-
stantial computational capabilities to
make accurate decisions. The models
can be theory- or knowledge-driven,
data-driven, or a combination of these.

To define the future direction of
computational medicine, the Computa-
tional Health Conference, held in Austin,
Texas in 2018, brought together key
stakeholders in healthcare and experts in
computation and health from academia,
government, industry, philanthropy, and
communities with the goal of identifying
future directions and opportunities for
computational health and medicine
(Figure 2). In addition to establishing a
consensus that advances in computation
are creating a new paradigm for medi-
cine and healthcare, a primary outcome
of the conference was a recommendation
to create a multidisciplinary center or
think tank to research and develop
computational solutions to problems of
merican Journal of Obstetrics & Gynecology 19
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FIGURE 2
The Computational Health Conference, 2018

The conference held in Austin, TX in October 2018 brought together key stakeholders in healthcare and

experts in computation and health from academia, government, industry, philanthropy, and communities

with the goal of identifying future directions and opportunities for computational health and medicine.
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interest for healthcare stakeholders from
academia, government, industry, phi-
lanthropy, and communities. Such a
collaborative partnership would most
efficiently use computational methods to
exploit data at a deeper level and assure
the use of computational solutions for a
range of the stakeholders’ interests, from
clinical practice to policymaking.

Computational models allow us to
explore a very large number of predictors
and many more interactions among
them, inherent to every complex system,
to extract a deeper level of information
contained in the data. The deeper, more
refined insights consequently allow bet-
ter modeling of complex systems by
capturing their individual facets and
thus allowing individualization of med-
icine through individualized decision
making.

Data are essential, although to a
different degree, for computational
models to successfully model complex
systems. However, having more data on
an individual level, higher granularity
data, does not necessarily equate to more
information. Indeed, there is no perfect
20 American Journal of Obstetrics & Gynecology
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data source, neither for traditional nor
for computational solutions. Each data
source in medicine has its own advan-
tages and limitations. However, compu-
tational methods seem to extract more
information from the same data than
traditional solutions.

Data
Traditional sources of data
Using information to make and inform
clinical decisions is innate within medi-
cine. Teaching and personal experience
lead to decision making that can be
interpreted in light of statistical theory.
Bayesian statistical methods estimate
posterior risk by combining prior risk
with disease associations, which increase
or decrease the odds of disease. Clini-
cians do this every day without formal-
izing or possibly even thinking about the
analysis. The experience of sudden onset
dyspnea is a possible presenting symp-
tom of pulmonary embolism. The pro-
portional increase in risk (the positive
likelihood ratio) will be greater still if it is
associated with pleuritic chest pain. The
likelihood of the diagnosis of pulmonary
JANUARY 2021
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embolism will also depend on the prior
risk. It will be higher in a pregnant
womanwith a recent history of long haul
travel, whereas it will be lower in a febrile
but previously healthy child.

Computational methods allow data to
be explored at a deeper level by exploring
a very large number of predictors and
many more interactions among them.
Hence, complex combinations of posi-
tive and negative factors can be com-
bined into a single estimate of risk in a
way that an individual clinicianwould be
unable to achieve. Moreover, whereas a
clinician may be biased by individual
experience of a relatively small number
of cases, computational methods attach
weights to risk factors that are based on
the observed data and can use far more
cases than any clinician could ever see.
However, there is no perfect data source,
either for analytical or for numeric so-
lutions. Each data source inmedicine has
its own advantages and limitations.

Real-world data
Every data source can be criticized, and
there is no such thing as a perfect data
source; they are all imperfect, but they
are imperfect in inherently different
ways.

Administrative databases. The strength of
administrative databases is that they tend
to have large numbers of subjects and
they are available for analysis, that is, it is
usually straightforward to obtain
permission for research and the data
usually come in a format that is easy to
accommodate. This means that rare
outcomes can be studied and that the
costs of the research are often modest
when compared with alternative ap-
proaches. There are, however, multiple
drawbacks of using administrative data-
sets. The data are generally of rather low
granularity. Hence, outcomes such as
preeclampsia (PE) will simply be recor-
ded in a binary fashion with little or no
information of the different phenotypes.
Key exposure data might also be absent.
Consequently, associations may be
observed through residual confounding
by rather obvious and well-recognized
confounders. The lack of granularity
also affects covariates. For example, a
Key.com by Elsevier on March 01, 2021.
c. All rights reserved.
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womanmay be documented as a smoker.
However, it might only be recorded at 1
stage in pregnancy, the number or type
of tobacco might not be documented
and there may be no information on
whether she subsequently quit smoking
during the pregnancy. The other major
issue with administrative data sources is
the quality. Taking the previous example,
not only is the diagnosis of PE binary, in
many cases the definition of PE may be
completely incorrect, being documented
as absent in a woman with severe disease
and documented as present in a healthy
woman. There could also be conflicting
information contained in the different
parts of patient records.

The strengths of administrative data
mean that it is very likely that they will
continue to be used for the purposes of
research. The appropriate response to
weaknesses is their recognition by those
generating and using research. The
researcher may use multiple sensitivity
analyses to determine whether their as-
sociations are likely to be true. For
example, where there is an analysis of an
association with PE, they might perform
exploratory analyses to determine
whether the pattern is consistent with a
real association. Was the diagnosis of PE
associated with known risk factors, such
as nulliparity and obesity? When the
outcome was confined to women with
other features consistent with the dis-
ease, such as preterm birth and fetal
growth restriction, were the key obser-
vations still present?

Electronic medical records. The future
prospects for researchers planning a
career in the analysis of routinely
collected data look quite bright, and this
is due to the increasing use of the elec-
tronic medical record (EMR). Adminis-
trative databases, as described
previously, have existed since the second
half of the 20th century and would have
involved records staff entering data to a
dedicated database from a patient’s pa-
per case record. However, with the
development of the EMR, in some hos-
pitals every piece of information that is
held on a patient may be kept in an EMR.
This means that the information avail-
able is much greater in scope and much
Downloaded for Anonymous User (n/a) at U
For personal use only. No
more detailed. Moreover, the data are
being entered by clinicians who have a
much more highly developed clinical
knowledge than records staff. However,
research analysis of the data is a sec-
ondary purpose of the EMR. As the
primary purpose is to facilitate the de-
livery of and billing for care, the data are
entered prioritizing this end. Moreover,
although the clinical staff will have
greater knowledge, data entry is a means
to an end and not their primary purpose.
Hence, when compared with records
staff, they may apply definitions less
consistently and incompletely. A great
strength of analysis of the EMR is the
access to observed numeric data. This
includes vital signs (eg, temperature,
blood pressure, and respiratory rate) and
the result of lab tests, (eg, biochemistry,
hematology, and microbiology). Hence,
if studying PE, a researcher might hesi-
tate to accept the presence or absence of
the diagnosis being documented in the
EMR as defining the presence or absence
of the condition. However, considering
the American College of Obstetricians
and Gynecologists Guidelines52 for
definition, every single blood pressure
measurement recorded during a stay
could be analyzed to define hyperten-
sion; every point of care and laboratory
analysis of urine could be used to define
proteinuria; and every laboratory test
performed during admission (such as
creatinine, platelet count, or alanine
transaminase) could be used to define
the renal, hematological, or hepatic fea-
tures, respectively, of severe disease.
The practical utility of EMR data also

depends on other issues. Whereas
administrative databases are typically
available in a simple spreadsheet format
of columns and rows and the very large
databases may have a more complex
structure, EMR data will reflect the
complexity of the clinical environment.
Some members of a cohort of pregnant
patients may have 10 measurements of
blood pressure, others may have 200.
The researcher needs to consider
whether they wish for a raw data dump
or for the information to be pre-
processed. Whatever the case, additional
resources will be required to format the
dataset before analysis when compared
JANUARY 2021 A
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with an administrative dataset. Statistical
power is likely to be better than in many
research studies, as the entire population
attending a hospital will, over a short
period of time, generate the sorts of
numbers of patients that would be
extremely expensive to study in a pro-
spective fashion. However, outcomes
such as perinatal or maternal death may
still be too infrequent for the analysis of a
single institution to be informative.
Perhaps one of the most promising av-
enues is the analysis of a common EMR
used by a network of hospitals, perhaps
covered by the same provider, or where
different providers have used the same
EMR. For example, a national RCT in
the United Kingdom is going to collect
outcome data from a widely used
neonatal intensive care EMR to ascertain
outcomes.53

Research studies. Study design is key
when assessing the evidence around a
given belief in medicine. This has led to
the widely adopted use of levels of evi-
dence (Figure 3). However, the prioriti-
zation of study design above many other
important issues is open to criticism.54

For example, for some outcomes, the
main challenge might be to perform a
study that has a large sample size, as the
outcome in question is rare, which is
true for the most important outcomes,
such as mortalities or severe morbidities.
RCTs are biased to report negative results
for rare outcomes, as conducting a trial
that is powered is prohibitively expen-
sive. Similar arguments apply for remote
outcomes, because of the expense of
long-term follow-up. Hence, the pyra-
mid of evidence could be an unhelpful
metaphor, as it oversimplifies a complex
question.

Observational studies. There are multiple
observational study designs, and a
description of these is outside the scope
of this review. The key issue around
observational designs is that the expo-
sure of interest is observed but not
determined by the investigator. This is in
contrast to the RCT (described here-
after), where the exposure is applied
experimentally. The major weakness of
observational study designs is that
merican Journal of Obstetrics & Gynecology 21
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FIGURE 3
Schematic representation of the levels of evidence

RCT, randomized controlled trial; SR, systematic review.
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associations between the given exposure
and the outcome are not causal but are
related to their mutual dependence on a
third characteristic, a confounder. Con-
trolling for confounding can be
attempted statistically, for example, us-
ing multivariable statistical models.
However, the concern is that an associ-
ation that is observed after statistical
adjustment for the measured potential
confounders could be explained by an
unmeasured confounder. For this
reason, the associations described in
observational studies are interpreted
cautiously.

The reality is, however, that many
major questions can only be assessed
using observational studies. Sometimes,
this is because women will not agree to
be randomized to a trial. Virtually the
entirety of the evidence around vaginal
birth after cesarean (VBAC) is based on
observational data. A group who
attempted a large-scale RCTof VBAC vs
planned repeat cesarean delivery in 14
Australian maternity hospitals only
managed to recruit 22 women out of a
cohort of 2345 (ie, <1% of those
recruited).55 Other questions will only
ever be addressable using observational
studies because an adequately powered
trial is prohibitively expensive. For
22 American Journal of Obstetrics & Gynecology
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example, there is strong evidence from
observational studies that there is an
increased risk of perinatal death of the
second twin at term but not preterm.56

Observational studies also indicate a
reduced risk of perinatal death of twins
with planned cesarean at term.56 How-
ever, a multicenter, international RCT
was only able to study about 1500 term
twin births,57 less than a quarter of the
required sample size to study the effect of
planned cesarean on the risk of perinatal
death.58 A recent reanalysis of the Twin
Birth Study has shown that planned ce-
sarean delivery reduced the risk of a
composite adverse outcome, including
death, when delivery occurred at term
but not preterm (as predicted by obser-
vational studies).59

Randomized controlled trials. There is no
doubt that an adequately powered RCT,
conducted in a methodologically
rigorous fashion (eg, prospective regis-
tration, prespecified primary outcome,
predefined analysis plan, overseen by
independent steering and data moni-
toring committees) provides the stron-
gest evidence in relation to the effects of
interventions in medicine. Furthermore,
metaanalysis of multiple such trials,
conducted in different settings, will
JANUARY 2021
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generate more precise estimates of effect
size and assess whether the intervention
works consistently in different settings.
However, a minority of clinical decisions
in obstetrics and gynecology are made
using such an evidence base.

An increasingly recognized concern is
that we may end up making clinical de-
cisions based on metaanalysis of RCTs
but the decisions made may be flawed
because of issues with the evidence base,
despite being composed of RCTs. As
recently stated by the Editor of The
Lancet, “But what if the astonishing en-
ergy, commitment, and productivity of
the systematic review community are
poisoning rather than nourishing med-
ical practice?”60 The issue being
addressed was concerns about the qual-
ity and accuracy of many of the small
trials included in systematic reviews.
However, even well-conducted trials
have the potential to mislead. The
women recruited to a trial might not be
representative of the general population;
this undermines the external validity of
the conclusions. RCTs are difficult and
expensive; hence, the number of women
recruited may have been limited by cost,
meaning that only relatively common
outcomes could be studied. Therefore, a
treatment might be recommended or
not based on its effect on mild adverse
outcomes that are common when it has
the opposite effect on severe adverse
outcomes that are rare. Cost may also
limit the duration of follow-up. Hence,
an intervention might be recommended
on the basis of a short-term benefit but
in the absence of evidence about its long-
term effect.

Further issues relate to type 1 and
type 2 statistical error. Whereas best
practice recognizes that reliable con-
clusions from RCTs can only be drawn
from the prespecified primary outcome,
p-hacking still occurs. Multiple hy-
pothesis tests make it more likely that a
null hypothesis is incorrectly rejected
(type 1 error).61 Conversely, type 2 er-
ror is the major concern in relation to
statistical power. If the sample size is too
small, a study will be biased to produce a
negative result. In an ideal world, cli-
nicians would look at the 95% confi-
dence interval of the effect and
Key.com by Elsevier on March 01, 2021.
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FIGURE 4
Ownership of cellphones and smartphones

Reproduced, with permission, from Pew Research Center.64
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understand that no safe conclusion can
be drawn. However, with an over-
emphasis on P-values, the statistically
uninformed may equate absence of ev-
idence with evidence of absence and
utter evidence-based medicine’s 6 most
dangerous words62: “there is no evi-
dence to suggest that...”

In summary, clinical decisions involve
drawing conclusions from a large body
of evidence. For most clinical decisions,
the task of relating the research evidence
to making a given decision is highly
complex. Analysis of routinely collected
data, whether administrative or EMR,
has the advantage that the entire popu-
lation can be studied but has the draw-
back that the approach is much more
complicated, and the output can be
difficult to assess. RCTs are attractive by
their relative simplicity and their exper-
imental design. However, considering
complex questions about recommend-
ing a given approach in a simplistic
manner, for example, study design is the
only major concern, has the capacity to
lead to widespread harm.

Novel sources of data
Digital phenotyping.Digital phenotyping
is an all-encompassing term for the trail
of digital data that people leave behind in
their daily lives, interactions with the
internet, social media, and technology.
These data are largely untapped and have
substantial potential for use in the
healthcare industry. People generate an
enormous amount of digital data each
day, and this moment-by-moment
computation of an individual’s pheno-
type measured in situ from ubiquitous
personal devices has enormous potential
to revolutionize the way we understand
and make sense of health and health-
related conditions.63

A total of 81% of Americans now own
smartphones, and this rate has dramat-
ically increased over time (Figure 4)64.
The ubiquity of smartphones makes
them ideal to collect detailed patterns of
true behavior from individuals in an
objective manner. In addition, passive
methods for collecting data—those
mechanisms that automatically collect,
with the individual’s consent, but
without the need for explicit input—
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provide a continuousmeans of collecting
data in the background and allow for a
more fine-grained collection of behav-
ioral, health-related, environmental, and
lifestyle data.65 These data, in combina-
tion with traditional clinical data, pro-
vide a powerful tool to understand and
develop a digital phenotype of both
health and disease at the individual level
but also across a given population
(Figure 5). With rapid advances in the
broad availability of machine learning
and the application of numeric simula-
tions, digital phenotyping holds
tremendous promise to provide a
plethora of insight not previously
possible.
Novel approaches such as digital

phenotyping allow wider applications of
N-of-1 trials or studies and are more
effectively performed using computa-
tional methods. By connecting aggregate
multilevel and multiscale clinical,
biomedical, personal, social, contextual,
environmental, and organizational data
and using it to individualize decision
making in health and medicine, we
would get not only a more informed
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picture of an individual’s health, but also
a greater promise for transforming and
optimizing healthcare for populations as
well.

Wearables and internet-connected sensors.
Current and emerging wearable and
internet-connected devices and sensors
are poised to address many deficiencies
of traditional data sources by enabling
the longitudinal collection of contextu-
ally rich, multifaceted, and individual-
level data at unprecedented scales. The
use of wearables or smart devices (eg,
activity trackers, smartwatches, gluc-
ometers) for health and wellness is
rapidly proliferating among consumers,
from an estimated 9% in 2014 to 33% in
2018.66 They also continue to be incor-
porated into clinical practice as a means
of remote patient monitoring (eg,
chronic disease management, acute
health event detection) and population-
based health research.4 A detailed re-
view of these devices is beyond the scope
of this article, and we refer the reader to
Dunn et al67 for a thorough discussion of
health-related applications. The diverse
merican Journal of Obstetrics & Gynecology 23
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FIGURE 5
Digital phenotype data streamed in real time from a patient’s cell phone to the supercomputer
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data generated by sensors embedded in
wearables or smart devices can report
on, for example, an individual’s mobility
and physical behaviors using acceler-
ometers, gyroscopes, and global posi-
tioning system; physiological parameters
like heart rate, temperature, and oxygen
saturation; biologic analyte concentra-
tions like blood glucose measured from
continuous, internet-connected glucose
monitors; and real-time air pollution
exposure via personal air quality moni-
tors.68 Furthermore, an individual’s so-
cial behaviors and mental health may be
assessed, for example, through the
analysis of phone call and text message
logs (ie, frequency, duration, incoming
and outgoing)69 or through psycholin-
guistic analyses of user-generated social
media content.70 These technologies
have been used in a variety of health
domains including weight management,
metabolic and cardiovascular disease,
maternal and neonatal care, sleep quality
and assessment, and neurology, among
others.67,71

Although it is likely that the next
decade will see networks of wearable
devices being routinely used in medical
24 American Journal of Obstetrics & Gynecology
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practice, there are a number of chal-
lenges to be addressed. These include,
but are not limited to, the development
of a robust cyber-infrastructure capable
of the real-time fusion and analysis of
disparate data streams and flexible
enough to accommodate the rapid pace
of consumer technology development;
development of analytical methods and
algorithms to extract or discover signa-
tures (ie, digital biomarkers) or leading
indicators of health or disease status
from real-world, messy data; execution
of large RCTs to assess efficacy of using
these novel data sources in treatments or
interventions; and interoperability with
existing EMRs and medical decision
making workflows.
Contrary to popular belief, the data,

or big data itself, are not the focus of
computational medicine. Its focus is the
modeling of complex systems such as the
human body or the healthcare system.
Data in this context are an essential
prerequisite to building a model, but as
highlighted in the section on the theory-
based model, a large amount of data and
especially big data is not a necessary
condition for those models.72
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Currently, data gathering is primarily
driven by convenience and is empirical
in nature. Such an approach must
necessarily lead tomany areas where data
are either not collected or not usable for
model development. It has been pro-
posed that the models, especially the
computational models, should define
what data are needed and direct the
design of experiments allowing better
model development. The area where
such an approach would be especially
useful is genomics.72,73

Models
However, evenwhen the data contain the
necessary information, it is by itself
insufficient to individualize decision
making andmedicine in general. Indeed,
an accuratemodel of the complex system
has to be developed, a model that cap-
tures the equifinality, the multiple caus-
ative pathways in the system leading to
the same outcome, requiring individu-
alization of medicine. The capture of
equifinality and enabling of individuali-
zation of medicine can be achieved by
data being used by computational
models, theory- or knowledge-based
Key.com by Elsevier on March 01, 2021.
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models, data-driven models, or models
that combine both approaches. As
mentioned earlier and using broad
strokes, the data-drivenmodels require a
limited amount of knowledge about the
system but a large amount of data. The
theory- or knowledge-based models
require a limited amount of data but
substantial knowledge of the system.

Theory- or knowledge-based models.
What is a model? A mouse model for
laboratory experiments that try to
mimic human physiology, a toy airplane
model, a model community? No, the
notion of a model addressed here is a
mathematical construct that represents
an abstraction of physical phenomena
described by a scientific theory—a
mathematical characterization of a set
of inductive hypotheses, often based on
observation and moving toward gener-
alized conclusions, put forth to explain
events that occur in the physical uni-
verse. Such scientific models thus form
the essence of the second pillar of sci-
ence, alongside empirical observations,
as a fundamental source of knowledge.
To qualify as a scientific theory or as a
meaningful model based on theory, the
theory must be falsifiable, according to
philosopher Karl Popper—that is, it
must be capable of being contradicted
and abandoned if predictions contrary
to theoretical predictions are
observed.74 Today, we deal with
computational models to make pre-
dictions of the behavior of complex
systems; they are corruptions (dis-
cretizations) of mathematical models
constructed so as to be implemented on
digital computers. The selection of a
model to describe a class of physical
realities is the most important and
difficult component of predictive sci-
ence. Models involve parameters that
are usually unknown and can be
random variables; the calibration of
model parameters, the adjustment of
the model parameters for the model
to better reflect the modeled complex
system, requires the acquisition of
data that can be noisy and expensive to
access, and the discretization of the
model to produce a viable computa-
tional model introduces additional
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uncertainties. The quantification of
these uncertainties is essential for reli-
able model predictions.
Science and scientific prediction

without models are meaningless. It must
be emphasized that the development of
predictive computational models is
critical to the advancement of science; it
is a fundamental challenge that must be
met in all areas of science, medicine, and
technology.
The construction of predictive

computational models in medical sci-
ence and practice could lead to one of the
most important developments in human
history. For example, the development of
predictive computational models of
cancer75 and of the effects of various
cancer therapies for specific individuals,
where patient-specific observational
data are used to calibrate and validate
models, would make possible break-
through effective and noninvasive treat-
ments of the disease, revolutionize
medicine worldwide, and forever enrich
and expand the scope of medical science.

Data-driven models.Data-driven models
are those for which predictions are per-
formed by examining relationships be-
tween a number of available state
variables (predictors) related to a
particular quantity (outcome) of inter-
est. Unlike theory- or knowledge-based
models, explicit knowledge of the un-
derlying physical, biologic, and psycho-
logical mechanisms impacting the
outcome is not a prerequisite. Instead,
the goal is to develop predictive models
that infer relationships directly from
available data. Fundamental to the
development of these models is the
availability of sufficient data containing
input features (predictors, confounders,
and mediators) that have observed in-
fluence (either directly or indirectly) on
the outcome of interest. Historically,
data-driven models used in healthcare
have been fairly simple via the deploy-
ment of regression models leveraging a
relatively small number of input pa-
rameters. These regression models typi-
cally have very modest computational
requirements. More recently, more
advanced machine-learning models are
being exploited in a variety of healthcare
JANUARY 2021 A
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areas. Relevant examples of modeling
algorithms in this space include feature
detection and pattern matching (useful
in imaging and radiology), clustering
(the detection of like groups and struc-
tures), and classification (formulating
predictions into a predefined set of
relevant outcome classes). Clustering is
an example of unsupervised learning
where labeled data (data with defined
outcomes) are not required as an input,
whereas classification is an example of
supervised learning that requires a set of
data with known outcomes that serves as
the basis for training the classification
algorithm. Performance and range of
applicability of these machine-learning
models often improves with a larger
amount of data, and consequently, these
types of data-driven models can lead to
more demanding computational re-
quirements requiring parallel processing
and high-speed input/output sub-
systems during their formulation,
particularly for model training in su-
pervised learning approaches. Although
very promising in a variety of industries,
there are challenges in the US healthcare
industry related to development and
adoption of machine-learning models.
Examples of these challenges include
data inconsistencies and limited wide-
spread availability of high-quality data
for model development because of the
proprietary nature of electronic health
record systems, lack of understanding
and exposure to more advanced data
analytics within the medical community,
and difficulty in disseminating machine-
learning results by healthcare pro-
fessionals that can be perceived as black-
box models.

Combined theory- and knowledge-based
and data-driven models. The pro-
ponents of the 2 types of computational
models, theory- or knowledge-based
models and data-driven models, often
argue about their relative merits, but
experience indicates both are very
important in computational medicine.
An example is illustrative.

HeartFlow, Inc is a pioneering
computational medicine company
providing individualized, noninvasive
diagnosis of coronary artery disease to
merican Journal of Obstetrics & Gynecology 25
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determine whether or not coronary ar-
tery narrowings are obstructing blood
flow and would benefit from coronary
artery stenting or coronary bypass sur-
gery. The primary source of patient data
is a coronary computed topography
(CT) scan, which is uploaded by way of a
secure web-based interface. The first
aspect of modeling is construction of an
individual quantitative 3-dimensional
anatomic model of the aortic root and
coronary arteries. This step, performed
using data-driven modeling, specifically
deep learning, is referred to as “seg-
mentation” and is particularly chal-
lenging. Construction of a high-accuracy
geometric model of the coronary vessels
on a patient-by-patient basis, even with
the assistance of computer algorithms,
may take an inordinate amount of time
and is prone to error. However, because
of the compilation of an enormous data
trove of coronary trees of over 50,000
patients, deep learning algorithms could
be trained to develop the data-driven
models to more quickly and accurately
segment coronary arteries of new patient
data. Data-driven models, developed
using machine learning, for example,
deep learning, are very effective for vi-
sual tasks, and constructing geometry
from a CTscan is in essence a visual task.

Once the coronary arteries are
segmented, an analysis of blood flow is
performed through theory- or
knowledge-based modeling. The Navier-
Stokes equations of fluid dynamics the-
ory are employed because they are
capable of accurately representing blood
flow phenomena in the coronary ar-
teries. Additional data are not needed to
establish this fact. The Navier-Stokes
equations are based on the foundation
of Newtonian mechanics and have been
corroborated through untold numbers
of physical experiments over hundreds
of years. Very accurate, efficient, and
robust computer algorithms are
employed for their solution. The result is
a precise prediction of flow velocity and
pressure in the coronary arteries. Clini-
cians are particularly interested in frac-
tional flow reserve, which is the pressure
drop across obstructed regions in the
coronaries caused by disease under
conditions of maximal coronary blood
26 American Journal of Obstetrics & Gynecology
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flow (hyperemia). This predicts whether
or not coronary revascularization is
needed and is the gold standard for
guiding treatment. During cardiac cath-
eterization, hyperemia is induced by
administering a drug (adenosine).
HeartFlow analysis simulates this he-
modynamic condition computationally,
thus making it possible to determine
noninvasively which patients should be
treated medically and who should be
sent for coronary angiography and
possible revascularization. The compu-
tational model can also be manipulated
to simulate stent implantation with
prediction of the potential outcome of
stenting before the procedure is per-
formed. The benefits of HeartFlow’s
synthesis of theory- or knowledge-based
and data-driven modeling have been
demonstrated by the Platform Trials.76

Among patients with planned invasive
coronary angiography (ICA), 73%
showed no considerable blockage or
obstruction, and in 61% of patients, the
use of computational modeling resulted
in the cancellation of a planned ICA.
After 1 year, none of the 117 patients
who had ICA cancelled had suffered an
adverse clinical event. There are over 1
million ICAs in the US each year, over 2
million in Japan, and a similar number
in Europe. The cost of an ICA in the US
is over $12,000; about two-thirds seem
to be unnecessary and can be eliminated,
representing potential savings in billions
of dollars. In summary, there are well-
established and highly reliable theory-
or knowledge- based models that can be
effectively used in computational medi-
cine, but where these models do not
exist, we can utilize powerful data-driven
modeling approaches.
Computational models, as any other

models in medicine, are developed to be
clinically useful to make optimal med-
ical decisions and thus improve pa-
tients’ health. To improve decision
making, the models need to enable both
individual decision making and deter-
mination of individual net benefit for
contemplated tests or treatments.77 To
aid in clinical decision making and
especially in individualized decision
making, the models need to have high
discriminatory power and be well
JANUARY 2021
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calibrated.78 Discrimination is the
ability of the model to predict a higher
probability of the event in patients who
will ultimately experience the event or
outcome than in patients who will not
have it.79 If a model always predicts a
higher probability of the event in pa-
tients who have it than in patients who
do not experience it, then the discrim-
ination of this model is perfect, and its
measures, area under the receiver
operating characteristic curve and c-
statistics, are equal to 1.0. However, the
relationship between true positives and
false positives for different cutoff points
of the model predictions those statistics
describe has to be balanced. Thus,
choosing a cutoff that maximizes true
positives leads to an increase in false
positives and vice versa.79 Calibration,
on the other hand, is the ability of the
model to predict probabilities of the
event (the absolute risk) that are in
agreement with observed frequencies of
the event.79 In other words, if a well-
calibrated model predicts risk of the
outcome of 60% in 10 women, 6 of the
10 or 60% of them will experience the
predicted event.

Good discrimination is an essential
first step, without which the model is
generally not useful for decision mak-
ing. However, good discrimination is
insufficient for effective decision mak-
ing. The measures of discrimination
assume an equal value of sensitivity and
specificity, of false negatives and false
positives. In real life, however, the
consequences of false negatives (eg,
missed diagnosis) are more severe than
consequences of false positives (eg,
unnecessary tests).77 As a consequence,
a model with good discrimination can
still have an unacceptable rate of false
negatives (missed diagnoses).77 A
poorly calibrated model can lead to a
situation where an individual with a
high risk of disease has assigned a low
probability of it occurring and thus
misses the opportunity of effective
preventive intervention.77 Although
both the discrimination and calibration
are critical for the clinical usefulness of
the model for medical decision making,
they are rarely both provided in the
literature.79 A systematic review in
Key.com by Elsevier on March 01, 2021.
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cardiovascular medicine showed that
discrimination was reported in 63%
and calibration in 36% of the studies.80

Good discrimination and good cali-
bration of the computational model or
any other model is necessary for the
model’s clinical usefulness for individ-
ual patient and individualization of
medical decision making.78,81 The rarer
the event the model predicts, the more
difficult it is to achieve good calibration.
This is because the model is much more
likely to be right by predicting the
overwhelmingly more common
nonevent, and thus the prediction of
higher risk of the event is under-
estimated. However, the outcomes of
highest interest are the rare, most severe
morbidities and mortalities rather than
more common proxy outcomes. Finally,
because decision making is about the
prediction of future outcomes in in-
dividuals and populations, the model’s
discrimination, calibration, and use-
fulness in decision making can only be
accurately evaluated in the process of
external validation.82 That is in the
population of individuals whose data
were not used in model development
and who are from a population that
would be a potential target population
for the clinical use of the model.
Therefore, external validation should be
the final adjudicator of the model’s
performance and clinical usefulness for
decision making.

Clinical practice can only be informed
by very good models that represent the
complex system of the human body in
health and disease accurately. The data
are critically important but are, concep-
tually, insufficient to the development of
such models. Building meaningful
models requires a much broader
analytical and quantitative medical
expertise, much beyond empirical in-
puts. Novel sources of data, the signals of
wearables, digital phenotype data
including environmental or social media
data, etc., carry a promise of improving
the accuracy of the models and, as a
consequence, individualization of
healthcare that utilizes those models.
However, at this point, it is not clear
which sources of data and to what extent
will inform the development of the
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models in general and computational
models specifically. In short, more data
does not mean more information and,
thus, better healthcare.
Computational models offer an op-

portunity to integrate the different
sources of multimodal data into action-
able information, which will inform the
clinical practice. Computational models
were shown to provide real insights, for
example, into breast cancer therapy.83

However, although promising, the clin-
ical usefulness of those models has not
yet been demonstrated, including those
proposed in obstetrics and
gynecology.77,81,84,85

Medical Decision Making
As we have argued in the beginning, the
human body and the healthcare system
are complex systems. Those systems are
made of a very large number of
intensely interacting elements forming
highly coupled networks with a vast
number of feedback loops and re-
dundancies. This structure makes
complex systems robust to failure but
also, because of equifinality, difficult to
predict their behavior. Because of this
pervasive and inescapable uncertainty,
medicine is, in its essence, decision
making under uncertainty. The de-
cisions about tests to be performed and
treatments to be administered range the
entire spectrum of healthcare from de-
cisions regarding individual patients to
policymaking. Traditionally, decisions
are being made based on experience and
traditional evidence from research
studies, both limited by a number of
factors including limited possible per-
sonal experience of a single physician
and average effects reported by the
clinical research studies, respectively. In
complex systems, characterized by
many causative pathways, basing the
decision on an average effect in a pop-
ulation of patients is limiting the opti-
mality of the decision. Because
medications are only effective in a
relatively small fraction of patients
receiving them5 and tests’ predictive
performance depend strongly on the
patients’ characteristics defining their
pretest risk of the disease tested for,4

decision making has to be
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individualized to be optimal. Specif-
ically, it has to be optimal under the
condition of uncertainty, when the de-
cision is being made prospectively and
not after the outcome is already
known,10 and for an individual or a
population of individuals and not for a
population average. However, to indi-
vidualize medical decision making re-
quires accounting for very large
numbers of constellations of risk factors
and protective characteristics. The
number of those unique combinations
grows exponentially. For example, just 5
characteristics with 3 categories each
would result in 243 unique combina-
tions of those characteristics potentially
affecting the individual outcome
(Figure 6).

Traditional methods of analysis are
limited in handling this type of complex
data. However, computational models
excel in modeling the behavior of
complex systems, enabling individuali-
zation of decision making. The indi-
vidualized medical decision making is
dependent on the individual prediction
of outcomes, individual weighing of
probabilities of outcomes, individual
(patient to policymaker) preferences,
and individual risk communication
(Figure 7).

Individualized prediction of outcomes
“Prediction is an essential feature of
nonarbitrary decision-making”51 and
individual prediction is an essential
feature of individual decision making,
critical in medicine. Although the per-
fect prediction of the behavior of com-
plex systems may never be achievable,
computational models can eliminate,
from a pool of potential alternatives,
ones that are inconsistent with the data
for an individual and assign individual
probabilities to the remaining alterna-
tives.51 This probabilistic approach is
very effective in real-world individual-
ized decisionmaking, especially whenwe
accept that deterministic solutions (0%
or 100% probabilities) are not possible
in predicting the behavior of a complex
system such as the human body.86

Perfectly accurate tests or perfectly
effective interventions are not and are
not likely to ever be available.
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FIGURE 6
The role of computation in medicine

The human body and the healthcare system are complex systems, networks of highly coupled

components intensely interacting with each other. These interactions give those systems redundancy

and thus robustness to failure and, at the same time, equifinality, many different causative pathways

leading to the same outcome. The equifinality demands individualization of medical care, which is

urgently needed. Computational models excel in accounting for a very large number of interactions

and modeling complex systems, and therefore they enable the individualization of medicine. They

have the potential to enable individualization of medical decision making and, consequently, better

health outcomes and lower costs.
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Decision theory: weighing individual
probabilities of outcomes and
individual (from the patient’s to the
policymaker’s) preferences
Building models of individual optimal
decision making under uncertainty in
health and medical care is of tantamount
importance. The modeling cornerstone,
besides the individual outcome predic-
tion, is to describe the preferences toward
uncertainty, capturing individuals’ atti-
tudes toward risk; loss; incomplete in-
formation; and other ingredients that
28 American Journal of Obstetrics & Gynecology
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affect personal choices, both statically and
dynamically.86 Building risk-preference
models is a challenging task as similar
notions in economics (expected utility
theory, behavioral finance, bounded ra-
tionality, rational inattention, etc.), albeit
foundational, cannot be directly applied
because of how detrimental certain risks
might be for the health and wellbeing of
the patient. Indeed, traditional risk
criteria, based on averaging and
smoothing formulations, are not very
suitable to model loss aversion, fear,
JANUARY 2021
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prudence, impatience, and other
(frequently acute and also path-
dependent) sentiments arising in the
course of a medical treatment. Further-
more, traditional criteria are typically 1-
dimensional and, thus, cannot capture
the multiattribute risks a patient faces.

An additional challenge is how to
solve the associated stochastic optimi-
zation problems. Indeed, such complex
risk preferences criteria often give rise to
time-inconsistency, a well-documented
phenomenon even for financial and in-
surance risks. These problems are very
hard to solve because all classical
optimization approaches fail and new
techniques, both analytical and compu-
tational, need to be developed. In addi-
tion, these problems need to be analyzed
in real time, for model decay always oc-
curs, and adaptive optimization criteria
need to be incorporated to capture
incoming information.

Overall, individualized medical deci-
sion making under uncertainty in dy-
namic settings is a wide-open area with a
plethora of new research directions.
Although, as mentioned previously,
modeling patients’ risk preferences will
borrow considerably from fundamental
notions in financial economics, building
both sophisticated dynamic models and
solving the associated stochastic control
problems present many challenges but, at
the same, a very fertile ground for both
cross- and interdisciplinary collabora-
tions. Furthermore, there is a pressing
need to support such developments as, at
present, there is a rather sizable discrep-
ancy between the sophistication that ex-
ists in medical science models and the
simplicity, if not absence, of evaluation
criteria from the patients’ point of view.

The literature and evidence in the area
of decision theory in medicine is very
limited, and new computational- and
computer scienceebased approaches
promise to offer progress in this area.

Individualized risk communication
However, individual prediction and
weighing of individual probabilities of
outcomes and individual preferences are
insufficient for individual decision
making in medicine. Those individual
probabilities and preferences have to be
Key.com by Elsevier on March 01, 2021.
c. All rights reserved.
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FIGURE 7
Individualized decision making in medicine

Individualized decision making in medicine can be thought of as composed of 3 consecutive parts:

prediction of the individual probability of outcome; weighing of those individual probabilities of

outcomes and individual patient preferences for outcomes; and communication of the risk, the

probability of the outcome, and the burden of this outcome.
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appraised and communicated efficiently
to make effective decisions. The domi-
nant way risk communication has been
viewed is as an individual-level percep-
tion. Uncertainty is presumed to drive
risk, and its perception exists when an
individual perceives information to be
unavailable, inaccessible, or inconsis-
tent.87 Most theories of risk communi-
cation conceptualize risk as an
individualized perception (eg, Planned
Risk Information Seeking Model,88 The-
ory of Planned Behavior,89 Theory of
Motivated Information Management,90

Extended Parallel Processing Model,91

Health Information Acquisition
Model,92 Risk Information Seeking
Model,93 and Comprehensive Model of
Information Seeking94). In addition to
the view that risk communication is an
individual-level construct, it is important
to realize that perceptions of risk are
influenced by others or socially con-
structed.95,96 Past research has acknowl-
edged this in several communication
models (eg, subjective norms that influ-
ence individual behavior), but these per-
ceptions are still measured on an
individual level. A more recent argument
is for health-related risk studies to think
of risk communication as the “exchange
of information among individuals,
groups, and institutions related to the
assessment, characterization, and man-
agement of risk.”97 This is an approach
that resonates with healthcare providers
because they are naturally part of the risk
communication process. However, the
important others are expanding, and this
is especially relevant as mobile and social
media become a part of the fabric of our
society. Specifically, individuals can make
their risks visible to others by posting on
social media or sending a photo or text
to a trusted friend or family member, and
others can directly respond, thus influ-
encing how individuals internalize and
potentially act regarding their own risk.
Thus, risk decision making is a combi-
nation of individualized perceptions and
the influences of others around them.

Medical decision making relies on the
understanding of potential outcomes
and their probabilities. A rational deci-
sion would theoretically try to maximize
the probability of a positive outcome
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while minimizing the risk, the proba-
bility of an adverse outcome. Of course,
the reality is more complex. There are
many factors that impact medical deci-
sion making that may cause a patient to
choose a riskier procedure to achieve a
desired outcome. The preferences,
values, and biases of the individual pa-
tient have a large influence on the
perception of risk, the value of potential
outcomes, and ultimately the individual
decision making. For example, a patient
may choose to deliver the baby at home
rather than in the hospital even though
she knows that the risks for home de-
livery are higher.98 Here it is the personal
preference and the value placed on home
delivery that cause the patient to place
less importance on the associated risk.
Knowing these individual biases can help
the clinician formulate an effective
communication strategy. For instance,
knowing that the patient prefers home
delivery, it would be prudent to ensure
that the patient truly understands the
associated risks of home delivery,
particularly if she has other risk factors.
Computer game technology has been
used in the past to educate patients about
the risks and possible outcomes of
various screenings and procedures. In the
future, immersive game technology will
be used to automatically determine how a
patient places value on certain outcomes
and learn what bias the patient has
regarding associated risks. The use of
virtual environments will allow the pa-
tient to be less inhibited about their re-
sponses to questions asked through
interactive scenarios. The game itself will
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use these responses to adapt the presen-
tation of information regarding the risks
and outcomes of the procedure in ques-
tion. Ultimately, the decision lies with the
patient, but with improved communica-
tion provided by computational solu-
tions, the clinician and patient will be able
to formulate a plan that meets the bias
and value structure of the individual pa-
tient and minimizes the risks involved.

Individualized decision making, made
possible by the computational modeling
of complex systems, has the potential to
revolutionize the entire spectrum of
medicine from individual patient care to
healthcare policymaking. In patient care,
computational models can enable indi-
vidual decision making based on the pa-
tient’s individual net benefit of
contemplated tests and interventions. In
making decisions on a strategic level of a
hospital, a system of hospitals, or on the
level of government policy, the compu-
tational models enable individualized
decision making for a population. Those
individualized decisions on the popula-
tion level are based on the benefits of
individuals comprising the population
rather than based on the average benefit
of the population. This approach allows
applying tests and treatments exclusively
to individuals who receive net benefit, in
whom benefits outweigh the risk, rather
than to all individuals in the population
regardless if they do or do not receive the
net benefit. Computational models
enable individual medical decision mak-
ing that can transform medicine and the
healthcare system, both in urgent need of
a substantial disruptive transformation.
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Future of Computational Medicine:
Healthcare Stakeholders’
Perspectives
The substantial potential benefits of
computational medicine can only be
realized if they solve problems impor-
tant to healthcare stakeholders. This
will ensure that the computational
medicine solutions will be implemented
and thus could transform healthcare.
The potential to transform healthcare
exists at all levels of the system, from the
hospital and hospital system levels to
government policy. This is because
healthcare is a complex system, which
can be thought of as a highly coupled
network system in which constituents
affect each other.47,49

Academia
From an academic standpoint, it is an
extremely exciting time to be investing in
research and educational programs in
computational medicine. The conflu-
ence of computing power, scalable al-
gorithms, availability of patient data, and
increased understanding of physical
mechanisms positions us for a revolu-
tion in the way medical advances are
achieved and in the way medicine is
delivered. The methodological founda-
tions for concepts such as a digital twin
are being laid in fields as diverse as
aviation and medicine, built on syner-
gistic combinations of predictive
physics-based models and data and
providing an enabling technology for
achieving asset and patient-specific data-
driven decisions. The research and
educational programs that will enable
this revolution must be highly interdis-
ciplinary in nature. The fields of artificial
intelligence and data science will play a
big role, particularly with machine-
learning methods, but we cannot lose
sight of the critical importance of
physics-based and mechanism-based
modeling. Educational programs in
computational medicine must blend
these perspectives, training students at
the interfaces of mathematical modeling,
computing, data science, and medicine.
Partnerships have never been more
important, including the sharing of data
and digital infrastructure, both partner-
ships among units within the university
30 American Journal of Obstetrics & Gynecology
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system and partnerships across univer-
sities, government, and healthcare
providers.

Hospital system
In healthcare, we are awash in data and
information. However, it is often in
disparate systems, discrete data, and
largely does not tell the entire story of the
patient. With computer technology and
the introduction of the EMR, we have
lost sight of the entirety of patient care,
invested more in small, discrete data el-
ements to enter into the system, often to
never be harvested. Over the decades we
have stored more patient-specific data
than ever, but at what cost? Very few, if
any, health systems maximize the use of
data to truly improve quality, patient
safety, or health outcomes or to ulti-
mately improve the health of the com-
munities we serve. We have the ability to
make profound changes in how care is
delivered. Given the current state of
healthcare, the variability in care deliv-
ered, and the continued rise in overall
cost of care, we need a dramatically new
approach, and the data we have been
feverishly storing may hold the answer to
the changes we need.
The discrete data inputs, when pro-

vided to computational models, may
lead to information that results in better
decision making, more decisive and co-
ordinated care, and, ultimately, better
outcomes for patients and communities.
With computational models available
and more robust computing capacity,
care delivery can be more predictive,
efficient, and effective in the diagnosis
and care of an individual patient, which
improves outcomes for all parties,
payers, providers, and patients. As health
systems look ahead toward affordable
care and value-based payment systems,
effective and efficient care of patients is
tantamount to health and longevity of
the organization and the right thing to
do for the patient. However, that alone is
not enough. To create change and to
ultimately impact patients, these ad-
vances must make it to the bedside and
truly impact the care of the patient at
their most vulnerable time and in the
most expensive setting in healthcare.
Once these advances cross the chasm and
JANUARY 2021
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change the way care is delivered inside,
the hospital (in a sustainable and lasting
way for the patients, families, and pro-
viders) then it will be transformative and
will truly change the hospital systems
and healthcare for the better.

State government
Responsible stewardship of taxpayer
dollars is arguably the paramount duty
of lawmakers throughout the USwho are
tasked with using those dollars to
maintain government operations while
also ensuring that appropriations are
made to achieve expectations of tax-
payers. Achieving this balance is no
simple matter. Texas in particular faces
additional difficulties because of certain
limitations, including a constitutional
balanced budget requirement99 and the
adoption of a biennial budget that ne-
cessitates substantial estimations.100 To
aid with these constraints, the Texas
Legislature often involves subject matter
experts to educate lawmakers on how to
best achieve desired policy outcomes
with limited resources. However, this
type of short-term partnership—where,
for example, experts are only called on to
testify for a single committee hearing—
has the potential to fall short as facts and
data are either forgotten in the deluge of
legislative issues or overlooked for po-
litical expediency. Avariety of factors can
cause this, but notably, the lack of a
strong and well-established partnership
between government and experts is a key
contributor.

It is empirically proven in Texas that
long-term partnerships, particularly
with industry and academia, are both
effective and fruitful. The Cancer Pre-
vention and Research Institute of Texas
(CPRIT), which was established by the
Legislature and approved by Texas voters
in 2007 to aid in cancer research and
implement the Texas Cancer Plan, is a
prime example. Since its inception,
CPRIT reports recruiting 192 cancer re-
searchers and labs, producing a Nobel
Prize recipient, and awarding 1452
grants totaling $2.4 billion.101 It has also
provided the Legislature with evidence-
based prevention interventions and ser-
vices with 66 active projects that, com-
bined, impact every single one of the
Key.com by Elsevier on March 01, 2021.
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FIGURE 8
The Texas Advanced Computing Center at The University of Texas at
Austin

The University is home to Frontera, the fastest supercomputer at any university and the fifth most

powerful system in the world. This is the type of computational infrastructure that will allow

breakthroughs in computational medicine.
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state’s 254 counties.102 This partnership
has produced both desired health out-
comes and considerable cost savings for
the Legislature and Texans, which likely
contributed to the Legislature’s over-
whelming support, and eventual voter
approval, for Proposition 6 in 2019 to
increase CPRIT’s ability to award fund-
ing from a total of $3 billion to $6
billion.103 In addition, Texas is now
seeking to replicate its success with
CPRIT in the mental health arena with
the recent passage of Senate Bill 11 by the
86th Legislature in 2019 to create the
Texas Child Mental Health Care
Consortium.104

The benefits of a strong partnership
are clear: improved research capabil-
ities, healthier outcomes, and cost-
efficient investments. As such, a part-
nership on computational medicine
between the Texas government and
other healthcare stakeholders has
virtually limitless possibilities. Every
area of medicine can benefit from a
more individualized approach, and
establishing the infrastructure for
various computational models paves
the path to achieving desired health
outcomes, whether that outcome is
lowering maternal mortality rates or
simply increasing wellness visits to
emphasize preventive care. Further, a
computational medicine partnership
could assist the Legislature with its
ongoing efforts to contain healthcare
costs in Texas, particularly in Medicaid.
The most recent iteration of this
initiative is delineated in the 86th Leg-
islature’s House Bill 1, the state’s budget
for fiscal years 2020 and 2021, and re-
quires the Health and Human Services
Commission (HHSC) realize at least
$350 million in savings.105 Currently,
HHSC is limited to achieving these
services by addressing systemic fraud,
waste, and abuse as well as maximizing
the use of federal Medicaid dollars.
With computational medicine, the op-
tions expand as, for instance, expensive
treatments are avoided with individu-
alized decision making and preventive
care, medications best for a patient are
prescribed, and unnecessary procedures
are cut back with individual best prac-
tices. Simply put, having the ability to
Downloaded for Anonymous User (n/a) at U
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take a pertinent health issue and pro-
duce cost-efficient solutions that will
ensure a healthier population with
striking accuracy would make the Leg-
islature’s job elementary, to the benefit
of lawmakers and, more importantly,
Texans.

Federal government
Federal agencies can serve as enablers or
even doers for issues with societal im-
plications that are beyond visible market
forces. There are elements of computa-
tional medicine that may require such
actions from the federal government.
The Human Genome Project, which
evolved into a multiagency, interna-
tional, and public-private partnership, is
an example of a large-scale effort that
was driven by a federal recognition that
technological convergence of advance-
ments in robotics, image processing,
database restructuring, computing, la-
sers, and so forth, all outside of medi-
cine, could be foundationally
transformative to genomics. The scale of
data that became to be generated from
sequencing has been pivotal to driving
data-centered analysis into the fabric of
medicine. Learning from rich data sets
remains a challenge, as the questions
being asked are more complex and the
growth of available data continues to
stress the leading edge technologies,
including artificial intelligence (AI)
systems.
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The promise of computational med-
icine resides in the complex technical
landscape that spans more traditional
supercomputing, through data sciences,
cognitive computing, and AI. The ad-
vancements in computational medicine
will be furthered when we recognize
which efforts are hindered by viewing
the computational demands as a post
hoc add-on. Our notable successes in
the application of computational sci-
ence to decision making in high
consequence situations have, at their
core, teams of specialists from the
outset that codevelop everything from
the technologies to tools and share in
the responsibilities of the outcomes. It is
quite likely that AI-based analog will
need to develop in the same way. Many
tough problems remain in prediction
from models or data or both, problems
that do not have visible economic
drivers behind them. It is in this space
that federal agencies can play a role in
filling gaps that can help in making
progress in the areas we have discussed.
It is likely that at the federal level, that
progress here will require 2 or more
federal agencies participating. There are
many means to organize such efforts,
and finding the suitable champions is a
key ingredient.

As enablers, the federal agencies can
also help develop the technical base from
academic programs to support the
future workforce and key areas such as
merican Journal of Obstetrics & Gynecology 31
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uncertainty quantification for AI, data
trust and integrity, and decision support.
The US has a unique ability today to
shape this future. Defining the right
partnerships and working together can
transform health research and healthcare
for us all (Figure 8). -
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