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Abstract
We present turnpike-type asymptotic results for the relative risk tol-

erance in Ito-diffusion markets and under time monotone forward perfor-
mance criteria. We show that, contrary to the classical case, the tem-
poral (large time) and spatial (large wealth) limits do not coincide and,
furthermore, depend crucially on the support of the risk preference mea-
sure, used to construct the underlying forward criterion. Specifically, the
spatial limit coincides with the right end of the support while the tem-
poral limit with the left end one. Key role plays the spatial inverse of a
space-time harmonic function that solves the ill-posed heat equation. We
construct two representative examples, one with discrete and the other
with continuous measure support, and analyze the asymptotic behavior
of the dynamic relative risk tolerance for each case.

1 Introduction

Turnpike results in maximal expected utility models yield the behavior of opti-
mal portfolio functions when the investment horizon is long and under asymp-
totic assumptions on the investor’s risk preferences.

The essence of the turnpike result (stated, for simplicity, for a single log-
normal stock with coefficients µ and σ) is the following: consider a (pre-chosen)
investment horizon [0, T ] and assume that the investor’s terminal utility UT

behaves like a power function for large wealth levels, i.e., for some γ ∈ (0, 1) ,

UT (x) ∼ 1

γ
xγ , x large. (1)
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Then, if this specific horizon T is very long, the associated optimal portfolio
function π∗ (x, t;T ) approximates the one corresponding to this power utility,
i.e., for each x > 0, t ∈ [0, T ] ,

π∗ (x, t;T )

x
∼ µ

σ2

1

1− γ
, T large. (2)

In other words, the asymptotic spatial behavior of the terminal datum
dictates the long-horizon temporal behavior of the portfolio function for ev-
ery wealth level. The function π∗ (x, t;T ) is the one the determines the opti-
mal wealth process in feedback form, in that the optimal wealth process X∗

t ,
t ∈ [0, T ] , is generated by the investment strategy π∗

t = π∗ (X∗
t , t;T ) .

Turnpike results can be found in [5] (see, also, [14]) where a continuous
time model was first considered and the turnpike properties were established
using contingent claim methods. Their results were later extended in [12] using
an autonomous pde of fast-diffusion type satisfied by π∗ (x, t;T ) and viscosity
solutions arguments. Duality methods were used in [6] for complete markets
and the incomplete market case was studied in [11]. The authors of [3] es-
tablished the rate of convergence in a log-normal model, showing that there
exist a positive constant c and a function D (x) , such that, for each x > 0,∣∣∣π∗ (x, t;T )− µ

σ2
1

1−γx
∣∣∣ ≤ D (x) e−c(T−t).

A closer look at all existing turnpike results yields that we are essentially
working in a single investment horizon setting, [0, T ] , which is taken to be very
long. As a result, in order to properly define the optimization problem, one needs
to pre-commit to a market model for this long horizon. This choice cannot be
modified later on if time consistency is desired but, on the other hand, knowing
the model dynamics for a very long horizon might not realistic. Besides the
stringent constraints on model choice, one also pre-commits at initial time to
a utility function for very far in the future, which is also a rather restrictive
assumption. Finally, we remark that no matter how big T is, the optimal
investment problem is not defined beyond this point, for the utility function is
chosen only for T and, thus, the underlying problem is well defined on [0, T ]
only.

Herein, we take an alternative point of view and consider a new asymptotic
investment problem. Instead of committing to a single long horizon [0, T ] with
T large, we define from the beginning an investment problem for all times
t ∈ [0,∞). Moreover, instead of choosing at the initial time the utility UT for
the remote horizon T, we choose the utility at this initial time. We, also, depart
from the log-normal setting and work with a general Ito-diffusion multi-security
market model. However, we do not pre-specify the model coefficients but instead
we update them going forward.

We measure the performance of investment strategies via the so called for-
ward performance criterion. This alternative class of stochastic utilities was
introduced by Musiela and the second author in [21] (see, also, [22]) and offers
flexibility for performance measurement under model adaptation, model am-
biguity, alternative market views, rolling horizons, and others. We recall its
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definition and refer the reader, among others, to [2], [7], [8], [15], [16], [17], [23],
[24], [29], [30] and [31]; see, also, the recent review article [20].

Herein, we develop forward turnpike type results working with the class of
time monotone forward utilities, developed and studied in [25]; we briefly review
them in the next section. These forward criteria are given by a time-decreasing
and adapted to the market information process, U (x, t) , t ≥ 0, x ≥ 0, of the
form

U (x, t) = u (x,At) ,

where u (x, t) is a deterministic function (cf. (13)) and At =
∫ t

0
|λs|2 ds, with

the process λt, t ≥ 0, being the market price of risk. In other words, U (x, t) is a
compilation of a deterministic investor-specific input, u (x, t) , and a stochastic
market-specific input, At. Furthermore, the optimal investment process π∗

t ,
t ≥ 0, is given by

π∗
t = σ+

t λtr (X
∗
t , At) with r (x, t) := − ux (x, t)

uxx(x, t)
, (3)

where σ+
t is the pseudo-inverse of the volatility matrix, and X∗

t , t ≥ 0, the
optimal wealth generated by this investment strategy π∗

t (cf. (11)). The function
r (x, t) is the dynamic risk tolerance and will be the main object of study herein.

Contrary to the classical case, in which a terminal datum is pre-assigned for
T and the solution is then constructed for t ∈ [0, T ) , in the forward setting,
the forward criterion is defined for all times, starting with an initial (and not
terminal) datum U (x, 0) .

In analogy to the classical setting, we are thus motivated to study the fol-
lowing turnpike-type question in the forward framework: if the initial condition
u (x, 0) is such that, for some γ ∈ (0, 1) ,

u (x, 0) ∼ 1

γ
xγ , x large, (4)

does this imply that, for each x > 0,

r(x, t)

x
∼ 1

1− γ
, t large ?

There are fundamental differences between the classical and the forward
settings as one is not a mere variation of the other by a time reversal. Rather,
the classical problem is well-posed while the forward is an inverse and, in general,
ill-posed problem. As a result, various properties used for the classical turnpike
results fail, with the most important being the lack of comparison principle for
the various PDEs (cf. (13) and (24)) at hand.

The first striking difference between the two settings is the distinct nature
of the temporal and spatial limits. Indeed, in the traditional turnpike results in
[12] and [3], the temporal limit in (2) coincides with the spatial one, in that for
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fixed time T0 and wealth level x0, respectively,

lim
x↑∞

π (x, t;T0)

x
= lim

T↑∞

π (x0, t;T )

x0
.

However, this is not the case in the forward setting. Indeed, the temporal

and spatial limits of the function r(x,t)
x do not coincide. This can be seen, for

instance, in the motivational example in subection 2.1.
The aim herein then becomes the study of the spatial and temporal limits

of the dynamic relative risk tolerance function,

lim
x↑∞

r(x, t0)

x
and lim

t↑∞

r(x0, t)

x
, (5)

for fixed t0 ≥ 0, x0 > 0, respectively, under appropriate conditions on the asymp-
totic behavior of the initial datum U (x, 0) , for large x.

Pivotal role for determining these limits is played by a positive finite Borel
measure, µ, which is the defining element in the construction of the time mono-
tone forward processes. Specifically, it was shown in [25] that the above func-
tion u is uniquely (up to an additive constant) related to a space-time harmonic
function h : R× [0,∞) −→ R+ which is (uniquely) characterized by an integral
transform, namely,

ux (h (z, t) , t) = e−z+ t
2 with h (z, t) =

∫ b

a

ezy−
1
2y

2tµ (dy) , (6)

for some 0 ≤ a ≤ b ≤ ∞. An immediate consequence of this general solution
is that the initial datum, in particular the initial inverse marginal utility, is

directly constructed through this measure µ, in that (ux(x, 0))
(−1)

needs to be
of the integral form

(ux(x, 0))
(−1)

=

∫ b

a

x−yµ (dy) .

As a result, it is natural to expect that the asymptotic properties of u (x, 0) ,
which enter crucially in the turnpike assumptions, are also directly linked to
the form and properties of µ. Furthermore, this measure also appears in the
specification of the dynamic risk tolerance function. Indeed, we deduce from (3)
and (6) that r (x, t) is represented as

r (x, t) = hz

(
h(−1) (x, t) , t

)
, (7)

with both hz and h(−1) depending on µ. We will be calling µ the risk preference
measure.

The main results herein are that, under certain asymptotic assumptions for
large x on the initial risk preferences, the spatial limit of the dynamic relative
risk tolerance function coincides with the right end point of the support of the
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risk preference measure while its temporal limit coincides with the left end.
In other words, for a and b as in (6), we have, for each t0 ≥ 0 and x0 > 0,
respectively,

lim
t↑∞

r(x0, t)

x
= a and lim

x↑∞

r(x, t0)

x
= b. (8)

The first step in obtaining the above limits is to establish equivalences be-
tween the asymptotic, for large x, behavior of the initial marginal utility and
the structure of the measure, and in particular, the finiteness of its support and
the existence of masses at its end points. We summarize the main findings next.

Spatial turnpike limit: To establish the spatial limit in (8), we first show
that the asymptotic assumption (4), stated in terms of the marginal,

ux (x, 0) ∼ xγ−1, x large, (9)

for some γ ∈ (0, 1) , holds if and only if the right end of the measure’s support
satisfies both b = 1

1−γ and µ ({b}) = 1. In other words, condition (9) implies

that the measure must have finite support with its right boundary equal to 1
1−γ

and, furthermore, with a (unit) mass at this point. Conversely, for the mea-
sure to have these properties, condition (9) must hold. We, in turn, establish
the spatial limit in (8) using representation (6), equation (13) and various con-
vexity properties of h and its derivatives. We stress that the requirement that

µ
({

1
1−γ

})
̸= 0 cannot be relaxed. Indeed, we show in subsection 5.2, where

the measure is Lebesgue, that the spatial turnpike property fails.
Temporal turnpike limit: To establish the temporal limit in (8), we first

relate the finiteness of the measure’s support with a weaker version of (9).
Specifically, we show that if there exists γ ∈ (0, 1) such that for all γ′ ∈ (γ, 1)
and all γ′′ ∈ (0, γ) ,

lim
x↑∞

ux (x, 0)

xγ′−1
= 0 and lim

x↑∞

ux (x, 0)

xγ′′−1
= ∞, (10)

then the right boundary of the support must satisfy b = 1
1−γ and vice versa.

This ”regular variation” assumption is weaker than (9), required for the spatial
limit and, naturally, yields a weaker result. Indeed, while the support has to
be finite with right boundary equal to 1

1−γ , it does not need to have a mass

at 1
1−γ . In turn, we establish the temporal limit in (8), which is the genuine

analogue of the classical turnpike results. Obtaining this limit is considerably
more challenging than in the classical case due to the ill-posed nature of the
problem. Indeed, the methodology used in [12] is inapplicable due to the lack of
comparison results for the ergodic version of the equation satisfied by r (x, t) .
The approach of [3] does not apply either because of the lack of connection
between the solutions of the ill-posed heat equation and Feynman-Kac type
stochastic representation of its solution. Therefore, one needs to work directly
with the function r (x, t), which, from (6) and (7), is given in the implicit form

r (x, t) =

∫ 1
1−γ

a

yeyh
(−1)(x,t)− 1

2y
2tµ (dy) ,
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where, however, the spatial inverse h(−1) is involved, which is not explicitly
known. The key step in obtaining the temporal limit is to show that, for each
x > 0,

lim
t↑∞

h(−1) (x, t)

t
=

a

2
.

In turn, we establish the temporal limit in (8) as well as the rate of convergence
using the implicit representation

r (x, t)− ax =

∫ 1
1−γ

a

(y − a) e
ty

(
h(−1)(x,t)

t − 1
2y

)
µ (dy) .

In addition to the general spatial and temporal convergence results in (8),
we present two representative examples. In the first, the measure is a finite sum
of Dirac functions while, in the second, it is taken to be the Lebesgue measure.
To calculate the limits in (8) we first derive asymptotic expansions for both the
auxiliary function h(−1) (x, t) and the dynamic risk tolerance function.

The paper is structured as follows. In section 2, we present the market model,
the forward performance criterion and a motivating example demonstrating that
the temporal and spatial limits do not in general coincide. In section 3 and 4
we analyze, respectively, the spatial and temporal asymptotic behavior of the
dynamic relative risk tolerance. In section 5 we present the two representative
examples and conclude in section 6 providing future research directions.

2 The model and the forward investment crite-
rion

The market environment consists of one riskless and k risky securities. The
prices of the risky securities are modelled as Itô-diffusion processes, namely, the
price Si

t , t ≥ 0, of the ith risky asset follows

dSi
t = Si

t

µi
tdt+

d∑
j=1

σji
t dW j

t

 ,

with Si
0 > 0, for i = 1, ..., k. The process Wt =

(
W 1

t , ...,W
d
t

)
, t ≥ 0, is a

standard Brownian motion, defined on a filtered probability space (Ω,F ,P) and
with natural filtration {Ft} , t ≥ 0.

The coefficients µi
t and σi

t =
(
σ1i, ..., σdi

t

)
, t ≥ 0, i = 1, ..., k, are Ft-adapted

processes with values in R and Rd, respectively. We denote by σt the volatility

matrix, i.e. the d × k random matrix
(
σji
t

)
, whose ith column represents the

volatility σi
t of the ith asset. We may, then, alternatively, write the above

equation as
dSi

t = Si
t

(
µi
tdt+ σi

t · dWt

)
.

The riskless asset (the savings account) is taken to be the numeraire and
has price process Bt, t ≥ 0, satisfying dBt = rtBtdt with B0 = 1, and for a
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nonnegative Ft−adapted interest rate process rt, t ≥ 0. We, also, denote by
µt the k-dimensional vector with coordinates µi

t and by 1 the k-dimensional
vector with every component equal to one. The processes µt, σt and rt satisfy
the appropriate integrability conditions.

We assume that µt−rt1 ∈Lin
(
σT
t

)
, where Lin

(
σT
t

)
denotes the linear space

generated by the columns of σT
t . Therefore, the equation σT

t z = µt − rt1 has a

solution, known as the market price of risk, λt =
(
σT
t

)+
(µt − rt1) . It is assumed

that there exists a deterministic constant c > 0, such that |λt| ≤ c, t ≥ 0.
Starting at t = 0 with an initial endowment x ≥ 0, the investor invests at

any time t > 0 in the riskless and risky assets. The present value of the amounts
invested are denoted by the processes π0

t and πi
t, t ≥ 0, i = 1, ..., k, respectively,

and are taken to be self-financing. The present value of her investment is given
by the (discounted) wealth process Xπ

t , t ≥ 0, with Xπ
t =

∑N
i=1 π

i
t, which solves

dXπ
t = σtπt · (λtdt+ dWt) , Xπ

0 = x ≥ 0, (11)

with the (column) vector πt =
(
πi
t; i = 1, ..., k

)
. It is taken to satisfy the non-

negativity constraint Xπ
t ≥ 0, t > 0.

The set of admissible policies is given by

A =

{
π : self-financing, πt ∈ Ft, EP

∫ t

0

|σsπs|2 ds < ∞, Xπ
t ≥ 0, t > 0

}
.

The performance of admissible investment strategies is evaluated via the so-
called forward performance criteria introduced in [21] (see also, the references
mentioned in the Introduction). We review their definition next.

We introduce the domain notation D+= R+ × R+ and D = R× R+.

Definition 1 An Ft-adapted process U(x, t), (x, t) ∈ D+, is a forward perfor-
mance criterion if,

i) for each t ≥ 0, the mapping x → U(x, t) is strictly increasing and strictly
concave,

ii) for each π ∈ A, U(Xπ
t , t) is a (local) supermartingale,

iii) there exists π∗ ∈ A such that U(Xπ∗

t , t) is a (local) martingale.

Herein we focus on the class of time monotone forward performance pro-
cesses, which constitute a rich enough class of forward criteria. They were
extensively studied in [25] and we refer the reader therein for all technical de-
tails. We only review the main results that we will use, some of which have
been already stated in the Introduction.

Time monotone forward performance criteria are uniquely represented by
processes of the form

U(x, t) = u(x,At), (12)

where u : D+→ R+, and for each t ≥ 0, it is strictly increasing and strictly
concave in x, and satisfies

ut =
1

2

u2
x

uxx
. (13)
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The market input processes At and Mt, t ≥ 0, are defined as

Mt =

∫ t

0

λs · dWs and At = ⟨M⟩t =
∫ t

0

|λs|2 ds. (14)

Central role in the entire construction is played by the space-time harmonic
function h : D → R+, defined by

ux(h(z, t), t) = e−z+ t
2 . (15)

It solves, as it follows from (13) and (15), the ill-posed heat equation

ht +
1

2
hzz = 0, (16)

and, moreover, it is positive and strictly increasing in z, for each t ≥ 0. It was
shown in [25] that such solutions are uniquely represented in the integral form

h(z, t) =

∫ b

a

eyz−
1
2y

2t − 1

y
ν(dy) + C,

where the measure ν ∈ B+(R), the set of positive Borel measures, with the
additional properties that, for z ∈ R,

ν((−∞, 0]) = 0,

∫ b

a

eyzν(dy) < ∞ and

∫ b

a

1

y
ν(dy) < ∞.

To simplify the presentation we choose without loss of generality the constant

C =
∫ b

a
1
ydν(y) and introduce the normalized measure µ (dy) = 1

yν(dy). Then,

the function h admits the (unique) representation, for (z, t) ∈ D,

h(z, t) =

∫ b

a

eyz−
1
2y

2tµ(dy), with 0 ≤ a ≤ b ≤ ∞. (17)

From (15) and (17), we obtain that u(x, t) is represented as

u(x, t) = −1

2

∫ t

0

e−h(−1)(x,s)+ s
2hz

(
h(−1) (x, s) , s

)
ds+

∫ x

0

e−h(−1)(z,0)dz. (18)

Note that, for t = 0, the initial datum of the forward process is given by

U(x, 0) = u(x, 0) =

∫ x

0

e−h(−1)(z,0)dz, (19)

which is fully specified by the risk preference measure through h(−1)(x, 0). Fur-

thermore, the initial inverse marginal utility, (ux(x, 0))
(−1)

, must be of the form

(U ′(x, 0))
−1

= (ux(x, 0))
(−1)

=

∫ b

a

x−yµ(dy). (20)
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We stress that (19) and (20) are if and only if characterizations in the sense
that only initial utility data with inverse marginals of the above structure are
admissible, otherwise equation (13) does not have a well defined solution for all
times in [0,∞) . For modeling purposes, the risk preference measure is extracted
from the choice of the initial utility or its marginal. Inverse marginal utilities
of form (20) were extensively studied in [19] in the classical setting.

It was shown in [25] that h, together with the market input processes At

and Mt, yield the optimal allocation process π∗
t and the associated optimal

wealth X∗
t , t ≥ 0. Specifically, if the measure satisfies the additional assump-

tion,
∫ b

a
yeyz+

1
2y

2tµ(dy) < ∞, z ∈ R, then the optimal processes are given,
respectively, by

X∗
t = h

(
h(−1)(x, 0) +At +Mt, At

)
and π∗

t = σ+
t λthz

(
h(−1)(X∗

t , At), At

)
.

(21)
The dynamic risk tolerance function r : D+ → R+, defined as

r(x, t) := − ux(x, t)

uxx(x, t)
, (22)

can be represented as

r(x, t) = hz

(
h(−1)(x, t), t

)
=

∫ b

a

eyh
(−1)(x,t)− 1

2y
2tµ(dy). (23)

It, also, satisfies the ill-posed fast-diffusion type equation

rt +
1

2
r2rxx = 0, r(x, 0) =

∫ b

a

eyh
(−1)(x,0)µ(dy), (24)

and, for each t ≥ 0, limx↓0r(x, t) = r(0, t) = 0.
The optimal portoflio process can be written as

π∗
t = σ+

t λtr(X
∗
t , At). (25)

It is easily seen that, for each t ≥ 0, the function h (., t) is absolutely mono-

tonic, since ∂ih(z,t)
∂zi > 0, i = 1, .... Such functions satisfy, for each t ≥ 0, the well

known inequality

∂i+1h (z, t)

∂zi+1

∂i−1h (z, t)

∂zi−1
−
(
∂ih (z, t)

∂zi

)2

≥ 0. (26)

In turn, for each t ≥ 0, r (., t) is strictly increasing and strictly convex, since

rx(x, t) =
hzz

(
h(−1)(x, t), t

)
r(x, t)

=
1

r(x, t)

∫ b

a

y2eyh
(−1)(x,t)− 1

2y
2tµ(dy) > 0,

and

rxx(x, t) =
1

r3(x, t)

(
hzzz(z, t)hz(z, t)− h2

zz(z, t)
∣∣
z=h(−1)(x,t)

)
> 0,
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where we used (26).
We note that throughout we will frequently differentiate under the integral

sign in (17) and in similar integrals, which is permitted as explained in [25]1.
As stated in the Introduction, the aim herein is to investigate the spatial and

temporal limits of r(x,t)
x , with r(x, t) as in (22). We first provide an example

which shows that, contrary to classical turnpike results ([12], [3] and others),
these two limits do not in general coincide in the forward setting.

2.1 A motivating example

Case 1: Single Dirac function
The risk preference measure is Dirac, µ = δ 1

1−γ
, γ ∈ (0, 1). From (17) and

(15) we have, for (z, t) ∈ D and (x, t) ∈ D+, respectively,

h(z, t) = e
1

1−γ z− 1
2(1−γ)2

t
and ux(x, t) = xγ−1e−

γ
2(1−γ)

t.

Therefore, the dynamic risk tolerance function is given by r(x, t) = 1
1−γx and

we easily conclude that the spatial and temporal limits are equal, given by (for
fixed t0 and x0, respectively).

lim
x↑∞

r(x, t0)

x
=

1

1− γ
and lim

t↑∞

r(x0, t)

x0
=

1

1− γ
.

Case 2: Sum of two Dirac functions
The risk preference measure is given, for θ, γ ∈ (0, 1) , by

µ = δ 1
1−θ

+ δ 1
1−γ

with
1

1− γ
= 2

1

1− θ
. (27)

To ease the presentation, we set κ = 1
1−θ . Then, (17) yields

h(z, 0) = eκz + e2κz, (28)

and, from (15),

(ux (x, 0))
(−1)

= x− 1
1−θ + x− 1

1−γ . (29)

Therefore, ux(x, 0) = 21−θ
(√

1 + 4x− 1
)θ−1

, and, thus,

lim
x↑∞

ux(x, 0)

xγ−1
= lim

x↑∞

22(1−γ)
(√

1 + 4x− 1
)2(γ−1)

xγ−1
= 1. (30)

Furthermore, (16) and (28) yield, for (z, t) ∈ D,

h(z, t) = eκz−
1
2κ

2t + e2κz−2κ2t, (31)

1It can be also seen directly since, after differentiation, the relevant integrands are jointly
continuous in their respective arguments - see Theorem 24.5 in [1] and the remark following
it .
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and, therefore, for (x, t) ∈ D+,

h(−1)(x, t) =
1

2
κt+

1

κ
ln

2x

1 +
√
1 + 4xe−κ2t

. (32)

Next, we calculate the risk tolerance using (22). Introducing f (x, t) :=
1 +

√
1 + 4xe−κ2t, rewriting (32) as

h(−1)(x, t) =
1

κ
ln

2xe
κ2t
2

f(x, t)
,

and observing from (31) that hz(z, t) = κeκz−
1
2κ

2t + 2κe2κz−2κ2t, we compute

r(x, t) = hz

(
h(−1)(x, t), t

)
= κ exp

(
ln

2xe
κ2t
2

f(x, t)
− 1

2
κ2t

)

+2κ exp

(
2 ln

2xe
κ2t
2

f(x, t)
− 2κ2t

)
= 2κ

x

f (x, t)
+ 8κ

x2

f2 (x, t)
e−κ2t.

Note that, for each x0 > 0, limt↑∞f (x0, t) = 2 while, for each t0 ≥ 0,
limx↑∞

1
f(x,t0)

= 0.

Therefore, limt↑∞
r(x0,t)

x0
= limt↑∞

2κ
f(x,t) = κ. On the other hand, for each

t0 ≥ 0,

lim
x↑∞

r(x, t0)

x
= lim

x↑∞

8κx

f2 (x, t)
e−κ2t = lim

y↑∞

8κy(
1 +

√
1 + 4y

)2 = 2, y = xt0.

In summary, reverting to the original notation, we have that, for each t0 ≥ 0,

lim
x↑∞

r(x, t0)

x
=

2

1− θ
=

1

1− γ
, (33)

while, for each x0 > 0,

lim
t↑∞

r(x0, t)

x0
=

1

1− θ
. (34)

Thus, the spatial and temporal limits of the relative risk tolerance do not coin-
cide.

Next, we make the following two important observations. Firstly, we note
that (27) yields that the support of the measure is

supp (µ) =

[
1

1− θ
,

1

1− γ

]
.

Therefore, the temporal limit (34) coincides with the left end of the support
while the spatial limit (33) with the right end. Secondly, for each x0 > 0, the

11



temporal limit of the ratio h(−1)(x0,t)
t is equal to half of the left end point of the

support, since (32) yields

lim
t↑∞

h(−1)(x, t)

t
=

1

2(1− θ)
.

In section 4 we show that both these properties are always valid. In particular,

we will see that it is precisely the limit of the ratio h(−1)(x,t)
t that plays the key

role in establishing the temporal turnpike property for general risk preference
measures.

To juxtapose the above results with the ones in the classical expected util-
ity setting, we compute analogous quantities and associated limits for the cases
analyzed in [12] and [3] for log-normal markets (Merton problem) because their
optimal feedback portfolio functions resemble the ones with time monotone for-
ward criteria. Without loss of generality, we consider a market with a single
log-normal stock with mean rate of return µ and volatility σ, and a riskless
account of constant interest rate r.

To this end, we fix an investment horizon T > 0 and, in analogy to (29), we

take the terminal inverse marginal utility, IT (x) = (U ′
T )

(−1)
(x) , to be of the

form
IT (x) = x− 1

1−θ + x− 1
1−γ ,

for x > 0 and θ, γ as in (27). This corresponds to terminal marginal utility

U ′
T (x) = 21−γ

(√
1 + 4x− 1

)γ−1
and, thus, in analogy to (30), we have that

lim
x↑∞

U ′
T (x)

xγ−1
= 1.

We consider the value function, denoted by u (x, t;T ) , of the associated
Merton problem, for t ∈ [0, T ] . Letting τ = T − t be the time to the end of
the investment horizon, we deduce, using well known results, that the function
ũ (x, τ) ≡ u (x, T − t;T ) satisfies, for (x, τ) ∈ R+ × [0, T ] and λ = µ−r

σ , the
Hamilton-Jacobi-Bellman equation

ũτ+
1

2
λ2 ũ2

x

ũxx
= 0,

with ũ (x, 0) = UT (x) .
In turn, the inverse spatial marginal value function, ṽ : R+ × [0, T ) → R+

solves ṽτ = 1
2λ

2x2ṽxx + λ2xṽx, with ṽ(x, 0) = IT (x) . We easily deduce that

ṽ(x, τ) = eατx−α + eβτx−2α with α = γ
2(1−γ)2

λ2 and β = 1+γ
(1−γ)2

λ2. Note that

β > 2α. Taking the spatial inverse of ṽ(x, τ) yields

ũx (x, τ) =

(
eατ +

√
e2ατ + 4xeβτ

2x

)1−θ

.

12



Therefore, the related dynamic risk tolerance function r̃ (x, τ) satisfies (using
that 1

r(x,τ) = − ∂
∂x ln ũx (x, τ)),

r̃ (x, τ) =
1

1− θ

(
1

x
− 2eβτ

eaτ
√
e2ατ + 4xeβτ + (e2ατ + 4xeβτ )

)−1

and, thus,

r̃(x, τ)

x
=

1

1− θ

(
1− x

2eβτ

eaτ
√
e2ατ + 4xeβτ + (e2ατ + 4xeβτ )

)−1

.

Direct calculations yield that, for each τ0 > 0 and each x0 > 0, respectively, the
spatial and temporal limits are given by

lim
x↑∞

r̃(x, τ0)

x
=

1

1− γ
and lim

τ↑∞

r̃(x0, τ)

x0
=

1

1− γ
.

The two limits are equal and, furthermore, they coincide with the right end
point 1

1−γ .

Motivated by this example, we are investigating the spatial and temporal
asymptotic limits of the dynamic relative risk tolerance function. The coefficient
γ is taken to belong to (0, 1) to simplify the presentation as the case γ ≤ 0 can
be similarly analyzed.

3 Spatial asymptotic behavior of relative risk
tolerance

We examine the spatial asymptotic behavior of the local risk tolerance function
under asymptotic assumptions for large wealth levels of the investor’s initial risk
preferences. In accordance with a similar assumption in [12] and [3], we impose
it on the initial marginal utility ux(x, 0) and not on u(x, 0) itself.

Assumption 1: The initial datum u (x, 0) in (19) is such that, for some
γ ∈ (0, 1) ,

lim
x↑∞

ux(x, 0)

xγ−1
= 1. (35)

We stress that (35) is necessary for the spatial limit (39) to hold in general.
In the next section where we look at the temporal limit, the above property will
be relaxed.

Given the key role that the risk preference measure µ plays, we first examine
what Assumption 1 implies for it. As the next result shows, (35) yields that its
support must be finite with its right boundary equal to 1

1−γ and, furthermore,

µ
({

1
1−γ

})
= 1.

13



Lemma 2 Assumption (35) holds if and only if the risk preference measure µ
in (17) satisfies b = 1

1−γ and µ ({b}) = 1, i.e.

supp (µ) ⊆
(
0,

1

1− γ

]
and µ

({
1

1− γ

})
= 1. (36)

Proof. From (15), (35) and the fact that h(x, 0) is strictly increasing and of
full range, we have

1 = lim
x↑∞

ux(x, 0)

xγ−1
= lim

z↑∞

ux(h(z, 0), 0)

hγ−1(z, 0)
= lim

z↑∞

(
h(z, 0)

e
1

1−γ z

)1−γ

.

Therefore, representation (17) gives

lim
z↑∞

∫ b

a

ez(y−
1

1−γ )µ(dy) = 1. (37)

If a = b = 1
1−γ , then (36) follows directly. If a < b, then it must be that

a ≤ 1
1−γ , otherwise we get a contradiction.
Next, let ε > 0. Then,∫ b

a

ez(y−
1

1−γ )µ(dy) ≥
∫ b

1
1−γ +ε

ez(y−
1

1−γ )µ(dy) ≥ eεzµ

([
1

1− γ
+ ε, b

])
. (38)

Sending ε ↓ 0 and using (37) yields that µ
((

1
1−γ , b

])
= 0, and thus supp(µ) ⊆(

a, 1
1−γ

]
. On the other hand, we have from (37) that

1 = lim
z↑∞

∫ ( 1
1−γ )

−

a

ez(y−
1

1−γ )µ(dy) + µ({ 1

1− γ
}) = µ({ 1

1− γ
}),

and we easily conclude.

Next, we state the main spatial asymptotic result.

Proposition 3 Suppose that the initial utility datum is such that limit (35) is
satisfied. Then, for each t0 ≥ 0, the relative risk tolerance converges to the right
end of the support of the risk preference measure,

lim
x↑∞

r(x, t0)

x
=

1

1− γ
. (39)

Proof. Let t0 ≥ 0. From Lemma 2 we have that

h (z, t0) =

∫ ( 1
1−γ )

−

a

eyz−
1
2y

2t0µ(dy) + e
1

1−γ z− 1
2

1
(1−γ)2

y2t0 .

14



In turn, by dominated convergence we obtain

lim
z↑∞

h(z, t0)

e
1

1−γ z− 1
2

1
(1−γ)2

t0
= 1, (40)

since

lim
z↑∞

h(z, t0)

e
1

1−γ z− 1
2

1
(1−γ)2

t0
= lim

z↑∞

∫ ( 1
1−γ )

−

a

e
z(y− 1

1−γ )− 1
2 t0(y

2− 1
(1−γ)2

)
µ(dy) + 1 = 1.

Therefore, from (15) together with the strict monotonicity and the full range of
h(z, t0), we deduce that

lim
x↑∞

ux(x, t0)

xγ−1e−
γ

2(1−γ)
t0

= 1, (41)

since

lim
x↑∞

ux(x, t0)

xγ−1e−
γ

2(1−γ)
t0

= lim
z↑∞

e−z+
t0
2

(h(z, t0))γ−1e−
γ

2(1−γ)
t0

= lim
z↑∞

(
h(z, t0)

e
1

1−γ z− 1
2 (

1
1−γ )

2
t0

)1−γ

= 1.

Next, we claim that

lim
x↑∞

uxx(x, t0)

xγ−2e−
γ

2(1−γ)
t0

=
1

γ − 1
. (42)

To prove this, it suffices to show that, for each t0 ≥ 0, ux(x, t0) is convex
since the above would then follow from the arguments in Lemma 3.1 in [25]. To
this end, differentiating (15) yields

uxxx (h(z, t0), t0) (hz(z, t0))
2
+ uxx(h(z, t0), t0)hzz(z, t0) = e−z+

t0
2 . (43)

Then, the strict convexity of h and the strict concavity of u give that uxxx (h(z, t0), t0) >
0, and using the strict monotonicity and the full range of h we conclude. Com-
bining (41) and (42) we deduce

lim
x↑∞

r(x, t0)

x
= lim

x↑∞

(
− ux(x, t0)

xuxx(x, t0)

)

= lim
x↑∞

(
− ux(x, t0)

xγ−1e−
γ

2(1−γ)
t0

(
uxx(x, t0)

xγ−2e−
γ

2(1−γ)
t0

)−1
)

=
1

1− γ
.

Assumption (35), or equivalently (36), cannot be relaxed. Indeed, as we will

see in Example 5.2 where we take the measure to be Lebesgue on
[
a, 1

1−γ

]
and,

thus, there is no mass at 1
1−γ , the spatial turnpike property does not hold.
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4 Temporal asymptotic behavior of relative risk
tolerance

We investigate the temporal limit of the relative risk tolerance, r(x0,t)
x0

, as t ↑ ∞
and for each x0 > 0. This is the genuine turnpike analogue of similar results in
classical expected utility models and one of the main findings herein. It shows
that, for each space argument, the relative risk tolerance converges to the left
end of the support of the risk preference measure µ. As in the spatial case,
we first relate the properties of the measure to the asymptotic behavior of the
initial (marginal) utility datum, but now using a weaker than (35) assumption.

Assumption 2: There exists γ ∈ (0, 1) such that, for all γ′ ∈ (γ, 1) ,

lim
x↑∞

ux (x, 0)

xγ′−1
= 0, (44)

while, for all γ′′ ∈ (0, γ) ,

lim
x↑∞

ux (x, 0)

xγ”−1
= ∞. (45)

The above assumption is directly related to a condition (regular variation)
introduced in [6] and [13], for a discrete and a continuous time setting, respec-
tively.

Lemma 4 Assumption 2 is equivalent to the initial marginal utility ux(x, 0) to
be varying regularly at infinity with exponent γ − 1, i.e. for each k > 0,

lim
x↑∞

ux (kx, 0)

ux (x, 0)
= kγ−1.

The proof follows by routine albeit tedious arguments and is omitted.
Assumption 2, weaker than Assumption 1, implies that the measure has

finite support with its right end point being equal 1
1−γ , but without necessarily

having a mass therein. We prove this next.

Lemma 5 Assumption 2 is equivalent to the risk preference measure µ in (17)
having finite support with its right boundary at 1

1−γ , namely,

inf {y > 0 : µ ((y,∞)) = 0} =
1

1− γ
. (46)

Proof. We first show that Assumption 2 implies (46). We know by the results
in [25] that the support of the measure must be of the form (a, b] , with a ≥ 0,
and b ≤ ∞. Using the strict monotonicity and the full range of h (z, 0) , we
deduce from (44) that, for each γ′ ∈ (γ, 1) ,

0 = lim
x↑∞

ux(x, 0)

xγ′−1
= lim

z↑∞

ux(h(z, 0), 0)

(h(z, 0))γ
′−1

= lim
z↑∞

(
h (z, 0)

e
z

1−γ′

)1−γ′

,
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and, thus,

lim
z↑∞

∫ b

a

e
z
(
y− 1

1−γ′

)
µ(dy) = 0. (47)

Therefore, if b ≥ 1, the above gives a contradiction and, thus, it must be that
b < 1.

Next, we assume that there exists γ′ ∈ (γ, 1) such that b = 1
1−γ′ . Then,

for each γ̃ ∈ (γ, γ′) we have that 1
1−γ̃ < 1

1−γ′ and (47) gives that, for ε small
enough,

lim
z↑∞

(∫ ( 1
1−γ̃ +ε)

−

a

ez(y−
1

1−γ̃ )µ (dy) +

∫ b

1
1−γ̃ +ε

ez(y−
1

1−γ̃ )µ (dy)

)
= 0.

Therefore, it must be that µ
([

1
1−γ̃ + ε, b

])
= 0.

Sending ε ↓ 0 gives µ
((

1
1−γ̃ , b

])
= 0, which is a contradiction. Therefore,

we must have b ≤ 1
1−γ . Using (45) and working similarly, we obtain that b ≥ 1

1−γ

and, thus, it must be that b = 1
1−γ .

To show the reverse direction, we first observe that (46) and dominated
convergence yield that, for any ε > 0,

lim
z↑∞

h(z, 0)

e(
1

1−γ +ε)z
= lim

z↑∞

∫ 1
1−γ

a

ez(y−(
1

1−γ +ε))µ(dy) = 0.

Then, choosing γ′ such that 1
1−γ′ =

1
1−γ + ε (i.e. γ′ = 1− 1−γ

1+ε(1−γ) ), we deduce

(44) for all γ′ ∈ (γ, 1). It remains to show (45). Let δ > 0. For z > 0, we have

0 <
e(

1
1−γ −δ)z

h(z, 0)
=

e−
ε
2 z∫ ( 1

1−γ − δ
2 )

−

a
e(y−(

1
1−γ − δ

2 ))zµ(dy) +
∫ 1

1−γ
1

1−γ − δ
2

e(y−(
1

1−γ − δ
2 ))zµ(dy)

≤ e−
δ
2 z∫ ( 1

1−γ − δ
2 )

−

a
e(y−

1
1−γ + δ

2 )zµ(dy) + µ
(
[ 1
1−γ − δ

2 ,∞)
)

≤ e−
δ
2 z∫ ( 1

1−γ − δ
2 )

−

a
e(y−

1
1−γ + δ

2 )zµ(dy) + µ
((

1
1−γ − δ

2 ,∞
)) .

Using (46) for ε = δ
2 , we obtain that µ

((
1

1−γ − δ
2 ,∞

))
> 0. Passing to the

limit above as z ↑ ∞, and using that limz↑∞
∫ ( 1

1−γ − δ
2 )

−

a
e(y−

1
1−γ + δ

2 )zµ(dy) = 0

and dominated convergence, we deduce that limz↑∞
e
( 1
1−γ

−δ)z

h(z,0) = 0. We easily

conclude.
Next, we turn our attention to the left boundary of the support of the risk

preference measure,

a := inf{y ≥ 0 : µ ((0, y]) > 0}. (48)
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We will frequently use the identity

x =

∫ 1
1−γ

a

eyh
(−1)(x,t)− 1

2y
2tµ(dy), (49)

for x > 0, which follows from (17). Herein, h(−1)(x, t) : D+ → R is the spatial
inverse of h, which is well defined since h is strictly increasing for each t ≥ 0.

Lemma 6 Let h(−1) : D+ → R be the spatial inverse of h and a as in (48).
Then, for each x0 > 0, limt↑∞

∂
∂th

(−1)(x0, t) exists and, moreover, for each
t ≥ 0,

a

2
≤ ∂

∂t
h(−1)(x0, t) ≤

1

2 (1− γ)
. (50)

Proof. Let x0 > 0. To simplify the presentation, let f(x, t) := h(−1) (x, t) .
Then, equation (16) gives

ft(x0, t) =
1

2

hzz (f (x0, t) , t)

hz (f (x0, t) , t)
=

1

2

∫ 1
1−γ

a
y2eyf(x0,t)− 1

2y
2tµ (dy)∫ 1

1−γ

a
yeyf(x0,t)− 1

2y
2tµ (dy)

,

and inequality (50) follows, since a ≤ y ≤ 1
1−γ . As mentioned earlier, differenti-

ation under the integrals appearing herein is valid given the properties of their
integrands. Differentiating once more gives

ftt(x0, t) = −
∫ 1

1−γ

a

(
yft(x0, t)− 1

2y
2
)2

eyf(x0,t)− 1
2y

2tµ(dy)∫ 1
1−γ

a
yeyf(x0,t)− 1

2y
2tµ(dy)

< 0. (51)

Therefore, we conclude that ft(x0, t) is bounded from below and decreasing in
t, and hence its limit as t ↑ ∞ exists.

We are now ready to present one of the main findings herein, a result inter-
esting on its own right, that yields the temporal asymptotic behavior as t ↑ ∞
of the ratio h(−1)(x0,t)

t , for each x0 > 0. We show that it converges to half of
the left end of the support of the risk preference measure and, also, provide the
rate of convergence.

Proposition 7 Let h(−1) : D+ → R be the spatial inverse of h and a as in (48).
Then, for each x0 > 0, the following assertions hold:

i) The ratio h(−1)(x0,t)
t converges to a

2 ,

lim
t↑∞

h(−1)(x0, t)

t
=

a

2
. (52)

ii) Let

∆(x0, t) :=
h(−1)(x0, t)

t
− a

2
. (53)
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If a > 0, then

|∆(x0, t)| ≤
1

at
ln

µ
([

a, 1
1−γ

])
x0

 , ∆(x0, t) < 0, (54)

and
x0 ≥ µ ([a, a+∆(x0, t)]) e

1
2 ta∆(x0,t), ∆(x0, t) > 0. (55)

If a = 0+, then ∆(x0, t) > 0 and, moreover, for each θ ∈ (0, 1) ,

x0 ≥ µ ([∆ (x0, t) , (1 + θ)∆ (x0, t)]) e
t∆(x0,t)

1−θ2

2 . (56)

Proof. Part (i):
Let x0 > 0. Recall that, from Lemma 6, limt↑∞ h(−1)(x0, t) exists. Moreover,

rewriting (49) as

x0 =

∫ 1
1−γ

a

e
ty

(
h(−1)(x0,t)

t − 1
2y

)
µ(dy), (57)

we see that limt↑∞ h(−1)(x0, t) = ∞, otherwise, sending t ↑ ∞ we get a contra-
diction.

Next, let

A(x0) := lim
t↑∞

h(−1)(x0, t)

t
= lim

t↑∞

∂

∂t
h(−1)(x0, t), (58)

where the last inequality follows from L’Hôpital’s rule and the full range of h.
Inequality (50) then gives

a

2
≤ A(x0) ≤

1

2(1− γ)
. (59)

We claim that, for each x0, A (x0) <
1

2(1−γ) . We look at the following three
cases.

a. If a = 1
1−γ , then a = b and h(−1)(x0, t) = lnx1−γ

0 + 1
2

1
(1−γ) t, and the

result follows directly.
b. If 0 < a < 1

1−γ , we argue by contradiction assuming that there exists x0

such that A (x0) =
1

2(1−γ) . Then, for ε > 0, there exists t0(x0, ε)) such that, for
t ≥ t0,

−ε ≤ h(−1)(x0, t)

t
− 1

2(1− γ)
≤ ε.

In turn, for δ > 0 small enough, the above inequality and (49) give

x0 ≥
∫ ( 1

1−γ −2ε−δ)
−

a

ety(
1

2(1−γ)
−ε− 1

2y)µ(dy) +

∫ 1
1−γ

1
1−γ −2ε−δ

ety(
1

2(1−γ)
−ε− 1

2y)µ(dy),
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which yields a contradiction as t ↑ ∞. Next, assume that there exists x0 > 0
such that

a

2
< A(x0) <

1

2(1− γ)
.

Then, for ε, δ > 0 small enough, we have

a < 2(A(x0)− ε)− δ < 2(A(x0)− ε) <
1

1− γ
. (60)

From (49), we deduce that, for t ≥ t0(ε, x0),

x0 ≥
∫ 1

1−γ

a

et(y(A(x0)−ε)− 1
2y

2)µ(dy). (61)

If µ ({a}) ̸= 0, then x0 ≥ e
ta
2 (2(A(x0)−ε)−a)µ({a}), and sending t ↑ ∞ yields a

contradiction. If µ ({a}) = 0, then

x0 ≥
∫ 1

1−γ

a

et(y(A(x0)−ε)− 1
2y

2)µ(dy) ≥
∫ 2(A(x0)−ε)−δ

a

et(y(A(x0)−ε)− 1
2y

2)µ(dy).

Next, we consider the quadratic B (y) := y(A(x0)− ε)− 1
2y

2.
We have that B (y1) = B (y2) = 0, for y1 = 0 and y2 = 2 (A(x0)− ε) ,

B (y) > 0, for 0 < y < 2 (A(x0)− ε) , and B(y) achieves a maximum at y∗ =
A(x0)− ε.

We also look at its minimum y∗ = mina≤y≤2(A(x0)−ε)−δ B(y) and claim that
y∗ = 2(A(x0)− ε)− δ. Indeed, if 0 < a ≤ y∗, choosing δ < a, direct calculations
yield that B(a) > B(y∗). If y

∗ < a, then (60) yields that a < y∗ < y2 and, thus,
the minimum also occurs at y∗. Clearly, because y1 < y∗ < y2, we have that
B(y∗) =

1
2δ (2(A(x0)− ε)− δ) > 0. Therefore, for t ≥ t0(x0, ε),

x0 ≥
∫ 2(A(x0)−ε)−δ

a

etB(y∗)µ(dy). (62)

As t ↑ ∞, the right hand side of (62) converges to ∞, unless it holds
that µ ([a, 2(A(x0)− ε)− δ]) = 0. Sending δ ↓ 0 and ε ↓ 0, we obtain that
µ([a, 2A(x0)]) = 0, which, however, contradicts (48). Therefore, it must be
that, for each x0 > 0, A(x0) ≤ a

2 , and we easily conclude.
c. If a = 0+, similar arguments yield that for every θ ∈ (0, A (x0)] it must

be that µ([θ, 2A(x0)]) = 0. Sending θ ↓ 0 yields µ ((0, A (x0)]) = 0, which
contradicts (48).

Part ii).
We first assume that a > 0 and look at the following cases for ∆ (x0, t) ,

defined in (53).
If ∆ (x0, t) < 0, (49) yields

x0 =

∫ 1
1−γ

a

ety(∆(x0,t)+
1
2 (a−y))µ(dy)
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≤ eta∆(x0,t)

∫ 1
1−γ

a

e
1
2 ty(a−y)µ (dy) ≤ eta∆(x0,t)µ

([
a,

1

1− γ

])
,

and (54) follows.
If ∆ (x0, t) > 0, then (52) yields that, for ε small enough and t ≥ t0 (x0, ε)

large enough, the inequality 0 < h
(−1)

(x0,t)
t − a

2 < ε holds. Choosing ε such that

ε < 1
2(1−γ) −

a
2 yields 0 < h

(−1)
(x0,t)
t − a

2 < 1
2(1−γ) −

a
2 , and using that a < 1

1−γ
gives

a

2
+

h(−1) (x0, t)

t
≤ 1

1− γ
.

In turn, from (49) we deduce that

x0 ≥
∫ a

2+
h(−1)(x0,t)

t

a

e
ty

(
h(−1)(x0,t)

t − y
2

)
µ (dy) .

The quadratic H(y) := y
(

h(−1)(x0,t)
t − y

2

)
in the above integrand becomes

zero at y1 = 0 and y3 = 2h(−1)(x0,t)
t > a and, therefore, its minimum occurs

at one of the end points, a or a
2 + h(−1)(x0,t)

t . Note that a < a
2 + h(−1)(x0,t)

t <
y3. If the minimum occurs at a, then H(a) = a∆(x0, t) , while if it occurs

at a
2 + h(−1)(x0,t)

t , then H
(

a
2 + h(−1)(x0,t)

t

)
= 1

2

(
a
2 + h(−1)(x0,t)

t

)
∆(x0, t) >

1
2a∆(x0, t) .

Combining the above gives

x0 ≥
∫ a

2+
h(−1)(x0,t)

t

a

e
1
2 ta∆(x0,t)µ (dy) = µ ([a, a+∆(x0, t)]) e

1
2 ta∆(x0,t).

Finally, let a = 0+. Then, ∆ (x0, t) =
h
(−1)

(x0,t)
t .

Recall that limt↑∞ h(−1)(x0, t) = ∞ and, thus, h(−1)(x0,t)
t > 0, for t large.

For ε ∈
(

h
(−1)

(x0,t)
t , 2

h
(−1)

(x0,t)
t

)
, we then have

x0 ≥
∫ ε

h
(−1)

(x0,t)
t

e
ty

(
h(−1)(x0,t)

t − y
2

)
µ (dy) ≥

∫ ε

h
(−1)

(x0,t)
t

e
tε

(
h(−1)(x0,t)

t − ε
2

)
µ (dy) .

Setting ε = (1 + θ) h
(−1)

(x0,t)
t , inequality (56) follows.

We are now ready to prove one of the main results herein. It yields the
temporal limit of the relative dynamic risk tolerance and, also, provides the
related rate of convergence.

Theorem 8 Let a be the left end of the support of the risk preference measure
µ and ∆(x0, t) as in (53). Then, for each x0 > 0,

lim
t↑∞

r (x0, t)

x0
= a. (63)
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Furthermore, there exists a function G (x0, t) , given by

G (x0, t) :=


∫ 1

1−γ

a
(y − a)e−ty( y−a

2 )µ(dy), if ∆(x0, t) < 0

2∆ (x0, t)x0 +
∫ 1

1−γ

a+2∆(x0,t)
(y − a)ety(

2∆(x0,t)+a−y
2 )µ(dy), if ∆(x0, t) > 0,

satisfying limt↑∞ G (x0, t) = 0 and, for t large enough,

0 ≤ r(x0, t)− ax0 ≤ G (x0, t) . (64)

Proof. Differentiating (15) gives

uxt(x0, t) =

(
1

2
− ∂

∂t
h(−1)(x0, t)

)
ux(x0, t).

Moreover, (13) and (22) imply that ut(x0, t) = − 1
2ux(x0, t)r(x0, t) and, in turn,

utx (x0, t) = −1

2
uxx (x0, t) r (x0, t)−

1

2
ux (x0, t) rx (x0, t) .

Combining the above we deduce

1

2
rx(x0, t) =

∂

∂t
h(−1)(x0, t), (65)

and from Proposition 7 and (58) we obtain that

lim
t↑∞

rx(x0, t) = lim
t↑∞

2
∂

∂t
h(−1)(x0, t) = a.

On the other hand,

lim
c↓0+

∫ x0

c

rx(x, t)dx = r(x0, t)− lim
c↓0+

r(c, t).

Using the fact that, for all t ≥ 0, limx↓0 r(x, t) = 0, we get that, for x0 > 0,
r(x0, t) =

∫ x0

a
rx(x, t)dx. Finally, we deduce from (65) and (51) that rxt (x0, t) <

0, and thus, for x0 > 0, we have, for y ∈ (0, x0], that rx(y, t) ≤ rx(x0, 0).
However, for each x0 > 0, rx(x0, 0) < ∞. This follows directly from (23), (17)
and the full range of h (x, 0), since

rx (h (z, 0) , 0) =
hzz (z, 0)

hz (z, 0)
=

∫ 1
1−γ

a
y2eyz−

1
2 t

2yµ (dy)∫ 1
1−γ

a
yeyz−

1
2 t

2yµ (dy)
≤ 1

1− γ
.

Using dominated convergence and passing to the limit as t ↑ ∞ in (65), we
deduce (63).

Next, we give an alternative convergence proof which also yields the rate of
convergence. First note that

r(x0, t)− ax0 ≥ 0. (66)
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This follows directly from (23) and (17) since

r (x0, t) =

∫ 1
1−γ

a

yet(y
h(−1)(x0,t)

t − 1
2y

2)µ(dy) ≥ a

∫ 1
1−γ

a

et(y
h(−1)(x0,t)

t − 1
2y

2)µ(dy).

Furthermore, from (23), (17) and (53), we have

r(x0, t)− ax0 =

∫ 1
1−γ

a

(y − a)ety(
2∆(x0,t)+a−y

2 )µ(dy) ≥ 0. (67)

If ∆ (x0, t) < 0 (which occurs only if a > 0, as shown in the previous proof),
the above equality yields

r(x0, t)− ax0 ≤
∫ 1

1−γ

a

(y − a)e−ty( y−a
2 )µ(dy),

and (64) follows directly with G (t) :=
∫ 1

1−γ

a
(y − a)e−ty( y−a

2 )µ(dy).

Let ∆ (x0, t) > 0 and a > 0 or a = 0+. If a = 1
1−γ , then the result follows

trivially.
For 0 ≤ a < 1

1−γ , observe that for t large enough, 0 < a+ 2∆(x0, t) <
1

1−γ

and, thus, representation (67) gives

r (x0, t)− ax0 =

∫ (a+2∆(x0,t))
−

a

(y − a)ety(
2∆(x0,t)+a−y

2 )µ(dy)

+

∫ 1
1−γ

a+2∆(x0,t)

(y − a)ety(
2∆(x0,t)+a−y

2 )µ(dy).

Introduce C1 (x0, t) :=
∫ (a+2∆(x0,t))

−

a
(y − a)ety(

2∆(x0,t)+a−y
2 )µ(dy) and observe

that

C1 (x0, t) ≤ 2∆ (x0, t)

∫ (a+2∆(x0,t))
−

a

ety(
2∆(x0,t)+a−y

2 )µ(dy) ≤ 2∆ (x0, t)x0,

where we used (49). Thus,

lim
t↑∞

C1 (x0, t) = 0. (68)

Let also C2 (x0, t) :=
∫ 1

1−γ

a+2∆(x0,t)
(y − a)ety(

2∆(x0,t)+a−y
2 )µ(dy) and

F (y, t, x0) := (y − a) ety(
2∆(x0,t)+a−y

2 ), y ∈
[
a+ 2∆(x0, t) ,

1

1− γ

]
.

Then, F (a+ 2∆(x0, t) , t, x0) = 2∆ (x0, t) and, thus,

lim
t↑∞

F (a+ 2∆(x0, t) , t, x0) = 0.
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Furthermore, for each y ∈
(
a+ 2∆(x0, t) ,

1
1−γ

]
, we also have limt↑∞ F (y, t, x0) =

0. In turn, dominated convergence gives

lim
t↑∞

C2 (x0, t) = 0. (69)

Setting G (x0, t) := C1 (x0, t) + C2 (x0, t) , and using (68) and (69), we obtain
(64).

5 Examples

We present two representative examples in which the risk preference measure is,
respectively, a sum of Dirac functions and the Lebesgue measure. The first one
generalizes the results in subsection 2.1 while the second demonstrates that the
spatial turnpike property fails if there is no mass at the right end of the support
of the risk preference measure.

5.1 Finite sum of Dirac functions

We assume that, for some γ ∈ (0, 1) , the risk preference measure is given by

µ =

N∑
n=1

δyn
, 0 < y1 < · · · < yN =

1

1− γ
.

Then, h(z, 0) =
∑N

n=1 e
ynz and, thus, limz↑∞ h(z, 0)e−yNz = 1. In turn, (15)

yields

lim
x↑∞

ux (x, 0)

xγ−1
= 1,

which confirms the results of Lemma 2. Furthermore, we easily obtain (cf. (17))
that, for (z, t) ∈ D,

h(z, t) =

N∑
n=1

exp

(
ynz −

1

2
y2nt

)
. (70)

Therefore, for x > 0,

x =

N∑
n=1

exp

(
ynt

(
h(−1)(x, t)

t
− 1

2
yn

))
. (71)

We first provide the temporal and spatial asymptotic behavior of h(−1)(x, t)
for large t and large x, respectively.
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5.1.1 Temporal asymptotics of h(−1)

We claim that, for each x0 > 0, as t ↑ ∞,

h(−1)(x0, t) =
1

2
y1t+

1

y1
lnx0 + o(1). (72)

Indeed, the limit in (52) gives

lim
t↑∞

(
h(−1)(x0, t)

t
− 1

2
yn

){
< 0, 1 < n ≤ N

= 0, n = 1
.

Therefore, as t ↑ ∞, all terms in (71) vanish except for the first one. In turn,

x0 = lim
t↑∞

exp

(
y1h

(−1)(x0, t)−
1

2
y21t

)
, (73)

and taking logarithm and rearranging terms yields (72). Note, also, that for
each t > 0,

h(−1)(x0, t)−
1

2
y1t ≤

1

y1
log x0. (74)

5.1.2 Spatial asymptotics of h(−1)

We claim that, for each t0 ≥ 0, as x ↑ ∞,

h(−1)(x, t0) = (1− γ) lnx+
1

2 (1− γ)
t+ o(1). (75)

We first establish that, for each t0 ≥ 0,

lim
x↑∞

h(−1)(x, t0)

lnx
= 1− γ, (76)

independently of t0. Indeed, fix t0 ≥ 0, let δ ∈ (0, 1
1−γ ) and assume that

lim inf
x↑∞

h(−1)(x, t)

lnx
<

1
1

1−γ + δ
.

Then, using (71) and that h(−1)(x, t0) > 0 for large x, we obtain

1 = lim inf
x↑∞

1

x

N∑
n=1

exp

(
yn lnx

h(−1)(x, t0)

lnx
− 1

2
y2nt0

)

≤ N lim inf
x↑∞

x
1

1−γ

(
h(−1)(x,t0)

ln x −1

)
< N lim inf

x↑∞
x
− δ

1
1−γ

+δ = 0,

which yields a contradiction. Since δ is arbitrary, we deduce that

lim inf
x↑∞

h(−1)(x, t0)

lnx
≥ (1− γ) . (77)
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Similarly, assume that, for δ ∈
(
0, 1

1−γ

)
,

lim sup
x↑∞

h(−1)(x, t0)

lnx
>

1
1

1−γ − δ
.

Then, using (71) once more, we get a contradiction since

1 ≥ lim sup
x↑∞

1

x
exp

(
1

1− γ
lnx

h(−1)(x, t0)

lnx
− 1

2

(
1

1− γ

)2

t0

)

= lim sup
x↑∞

x
1

1−γ
h(−1)(x,t0)

ln x −1e−
1
2 (

1
1−γ )

2
t0 = ∞,

where we used that 1
1−γ

1
1

1−γ −δ
= δ(1−γ)

1−δ(1−γ) > 0. Since δ is arbitrary, we deduce

that

lim sup
x↑∞

h(−1)(x, t0)

lnx
≤ 1− γ, (78)

and we easily conclude.
Next, we rewrite (71) as

1 =

N∑
n=1

exp

(
ynh

(−1)(x, t0)−
1

2
y2nt0 − lnx

)

=

N∑
n=1

exp

(
yn lnx

(
h(−1)(x, t0)

lnx
− 1

yn

)
− 1

2
y2nt0

)
. (79)

Note that from (76), we have

lim
x↑∞

(
h(−1)(x, t0)

lnx
− 1

yn

){
< 0, 1 ≤ n < N

= 0, n = N.
.

Therefore, as x ↑ ∞, the first N − 1 terms in (79) vanish, and we deduce that

1 = lim
x↑∞

exp

(
1

1− γ
h(−1)(x, t0)− lnx− 1

2

(
1

1− γ

)2

t0

)
,

and (75) follows.

5.1.3 Spatial and temporal asymptotics of risk tolerance

From (23) and (70), we deduce that the dynamic risk tolerance function is given
by

r(x, t) =

N∑
n=1

yn exp

(
ynh

(−1)(x, t)− 1

2
y2nt

)
. (80)
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Let t0 ≥ 0. From (80), we get

lim
x↑∞

r(x, t0) = lim
x↑∞

N∑
n=1

yn exp

(
yn((1− γ) lnx+

1

2 (1− γ)
t0)−

1

2
y2nt0

)
,

and we easily deduce that, as x ↑ ∞,

r(x, t0) =

N∑
n=1

yn exp

(
1

2
ynt0(

1

1− γ
− yn)

)
x(1−γ)yn + o(1).

Next, let x0 > 0. From (80),

r(x0, t) ≤
N∑

n=1

yn exp

(
yn(

1

2
y1t+

1

y1
lnx0)−

1

2
y2nt

)

= y1x0 +

N∑
n=2

yn exp

(
1

2
yn(y1 − yn)t

)
x

yn
y1
0 ,

and, therefore, as t ↑ ∞,

r(x0, t) = y1x0 +O
(
e

1
2y2(y1−y2)t

)
.

In summary, for each x0 > 0 and each t0 ≥ 0, respectively,

lim
x↑∞

r (x, t0)

x
=

1

1− γ
= yN and lim

t↑∞

r(x0, t)

x0
= y1, (81)

and these spatial and temporal limits are consistent with the findings in Propo-
sition 3 and Theorem 8.

5.2 Lebesgue measure

We assume that the risk preference measure µ is Lebesgue on
[
a, 1

1−γ

]
, with

a = 0+ or a > 0 and, thus, it has continuous support without a mass at its right
end for the spatial turnpike limit to hold. The analysis that follows is tedious
so, to ease the presentation, some intermediate steps are omitted.

Case 1: a > 0.
From (17), h(z, 0) =

∫ 1
1−γ

a
eyzdy and, thus, (6) yields

lim
x↑∞

ux (x, 0)

xγ−1
= 1.

We introduce the functions φ(z) := e−
z2

2 and Φ(z) :=
∫ z

−∞ φ(y)dy, z ∈ R.
Then,

h(z, t) =

∫ 1
1−γ

a

eyz−
1
2y

2tdy =
ez

2/2t

√
t

∫ b
√
t−z/

√
t

a
√
t−z/

√
t

φ(y)dy. (82)
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We also have, for x ≥ 0,

x =

∫ 1
1−γ

a

e
yt

(
h(−1)(x,t)

t − 1
2y

)
dy =

1√
t
e

h(−1)(x,t)2

2t

∫ 1
1−γ

√
t−h(−1)(x,t)√

t

a
√
t−h(−1)(x,t)√

t

φ(y)dy.

(83)

5.2.1 Temporal asymptotics of h(−1)

We show that, for each x0 > 0, as t ↑ ∞,

h(−1)(x0, t) =
1

2
at+

1

a

(
ln t+ lnx0 + ln

a

2

)
+ o(1). (84)

For this, we first establish that

x0 = lim
t↑∞

ea(h
(−1)(x0,t)− 1

2at)

1
2at

. (85)

To this end, using (83) and that, for z < 0,

Φ(z) ≤ −φ(z)

z
, (86)

we obtain, for t large enough,

x0 ≤ 1√
t
exp

((
h(−1)(x0, t)

)2
2t

)
Φ

(
−a

√
t+

h(−1)(x0, t)√
t

)

≤ 1√
t

1

a
√
t− h(−1)(x0,t)√

t

exp

((
h(−1)(x0, t)

)2
2t

)
φ

(
−a

√
t+

h(−1)(x0, t)√
t

)

=
1

at− h(−1)(x0, t)
ea(h

(−1)(x0,t)− 1
2at).

Proposition 7 yields

x0 ≤ lim inf
t↑∞

ea(h
(−1)(x0,t)− 1

2at)

1
2at

. (87)

Next we show that

x0 ≥ lim sup
t↑∞

ea(h
(−1)(x0,t)− 1

2at)

1
2at

,

which together with (87) will establish (85). To this end, we use that, for any
β > α > 0, the inequality

Φ(β)− Φ(α) ≥ 1

β
φ(α)− φ(β) (88)
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holds. Let 1 < k < 1
a(1−γ) . From (83) and the above inequality, we have that,

for t large enough,

x0 =
1√
t
e
(h(−1)(x0,t))

2

2t

(
Φ(ka

√
t− h(−1)(x0, t)√

t
)− Φ(a

√
t− h(−1)(x0, t)√

t
)

)

≥ 1√
t

1

ka
√
t− h(−1)(x0,t)√

t

e
(h(−1)(x0,t))

2

2t

×
(
φ(a

√
t− h(−1)(x0, t)√

t
)− φ(ka

√
t− h(−1)(x0, t)√

t
)

)

=
ea(h

(−1)(x0,t)− 1
2at) − eka(h

(−1)(x0,t)− 1
2kat)

kat− h(−1)(x0, t)
.

From Proposition 7 and since k > 1, we obtain that

lim
t↑∞

eka(h
(−1)(x0,t)− 1

2kat)

kat− h(−1)(x0, t)
= lim

t↑∞

eka
2t(

h(−1)(x0,t)
at − k

2 )

at
(
k − h(−1)(x0,t)

at

) = 0.

Therefore,

x0 ≥ lim sup
t↑∞

1

kat− h(−1)(x0, t)

(
ea(h

(−1)(x0,t)− 1
2at) − eka(h

(−1)(x0,t)− 1
2kat)

)

≥ lim sup
t↑∞

ea(h
(−1)(x0,t)− 1

2at)

kat− h(−1)(x0, t)
− lim

t↑∞

eka(h
(−1)(x0,t)− 1

2kat)

kat− h(−1)(x0, t)

= lim sup
t↑∞

ea(h
(−1)(x0,t)− 1

2at)

kat− h(−1)(x0, t)
,

and sending k ↓ 1 we conclude.
Next, we utilize the Lambert W function, W (x), defined as the inverse of

F (x) = xex. Setting

δ (x0, t) := h(−1)(x0, t)−
1

2
at,

we deduce from (85) that there exists ε (t) with limt↑∞ ε (t) = 0, such that

eaδ(x0,t)

1
2at− δ(x0, t)

= (1 + ε (t))x0.

Rewriting yields

a(
1

2
at− δ(x0, t))e

a( 1
2at−δ(x0,t)) =

a

(1 + ε (t))x0
e

1
2a

2t,
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and, therefore,

δ(x0, t) =
1

2
at− 1

a
W

(
a

(1 + ε (t))x0
e

1
2a

2t

)
.

It was established in [4] that the asymptotic expansion of W (x), for large x, is
given by

W (x) = lnx− ln lnx+ o(1).

Thus,

δ(x0, t) =
1

2
at− 1

a
ln

(
a

(1 + ε (t))x0
e

1
2a

2t

)
+
1

a
ln ln

(
a

(1 + ε (t))x0
e

1
2a

2t

)
+ o(1)

=
1

a

(
ln

x0

a
+ ln (1 + ε (t)) + ln

(
1

2
a2t+ ln

a

(1 + ε (t))x0

))
+ o(1).

Using that, as t ↑ ∞, ln(1 + ε(t)) = o(1) and that

ln

(
1

2
a2t+ ln

a

(1 + ε (t))x0

)
= ln(

1

2
a2t) + o(1),

assertion (84) follows.

5.2.2 Spatial asymptotics of h(−1)

We show that, for each t0 ≥ 0, as x ↑ ∞,

h(−1)(x, t0) =
1

2(1− γ)
t0 + (1− γ)

(
lnx+ ln lnx− ln

1

1− γ

)
+ o(1). (89)

We first establish that

lim
x↑∞

h(−1)(x, t0)

lnx
= (1− γ) . (90)

Indeed, let f(z, t) := 1
z e

1
1−γ z− 1

2 (
1

1−γ )
2
t. Then,

lim
z↑∞

h(z, t0)

f(z, t0)
= lim

z↑∞

∫ 1
1−γ

a

zez(y−
1

1−γ )− 1
2 (y

2−( 1
1−γ )

2
)t0dy

= lim
z↑∞

(∫ 1
1−γ

a

(z − yt0)e
z(y− 1

1−γ )− 1
2 (y

2−( 1
1−γ )

2
)t0dy

+

∫ 1
1−γ

a

yt0e
z(y− 1

1−γ )− 1
2 (y

2−( 1
1−γ )

2
)t0dy

)

= lim
z↑∞

(
1− e(a−

1
1−γ )x− 1

2 (a
2−( 1

1−γ )
2
)t0
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+

∫ 1
1−γ

a

ytez(y−
1

1−γ )− 1
2 (y

2−( 1
1−γ )

2
)t0dy

)
= 1,

where we used that a < 1
1−γ and monotone convergence. Therefore, for each

t0 ≥ 0,

lim
z↑∞

h(z, t0)

f(z, t0)
= 1. (91)

We now use an auxiliary result on inverses of asymptotic functions from [9]
(Theorem 2(i)) to prove (90) by verifying the necessary assumptions. To this
end, let g(z) := (1− γ) ln z, z ≥ 0, and notice that, for large z,

g(f(z, t0)) = − (1− γ) ln z + z − 1

2 (1− γ)
t0 ∼ z.

Thus, limz↑∞ z−1f(z, t0) = 1. Since, on the other hand, limz↑∞ f(z, t0) = ∞,
we deduce that f (−1)(x, t) ∼ g(x), as x ↑ ∞. Moreover, g(x) is strictly increas-

ing and the ratio gx(x,t)
g(x,t) ∼ 1

x ln x = O( 1x ) for sufficiently large x. It, then, follows

from the aforementioned result that limx↑∞
g(x)

h(−1)(x,t0)
= 1 and (90) follows.

Next, we establish that, for each t0 ≥ 0,

lim
x↑∞

e
1

1−γ (h(−1)(x,t0)− 1
2

1
1−γ t0)

x lnx
= 1− γ. (92)

Indeed, if t0 = 0, we have from (83) that

x =

∫ 1
1−γ

a

eyh
(−1)(x,0)dy =

1

h(−1)(x, 0)

(
e

1
1−γ h(−1)(x,0) − eah

(−1)(x,0)
)
, (93)

and (90) yields

lim
x↑∞

e
1

1−γ h(−1)(x,0)

x lnx
= lim

x↑∞

e
1

1−γ h(−1)(x,0)(1− e(a−
1

1−γ )h(−1)(x,0))

xh(−1)(x, 0)

h(−1)(x, 0)

lnx
= 1−γ.

For t0 > 0, we deduce from (83) that

x =
1√
t0
e
(h(−1)(x,t0))

2

2t0

(
Φ

(
1

1− γ

√
t0 −

h(−1)(x, t0)√
t0

)
− Φ

(
a
√
t0 −

h(−1)(x, t0)√
t0

))
.

(94)
Then, for large x,

1 ≤ 1

x
√
t0

exp

((
h(−1)(x, t0)

)2
2t0

)
Φ

(
1

1− γ

√
t0 −

h(−1)(x, t0)√
t0

)

≤ 1

x

1
h(−1)(x,t0)√

t0
− 1

1−γ

√
t0

exp

((
h(−1)(x, t0)

)2
2t0

)
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× 1√
t0
φ

(
1

1− γ

√
t0 −

h(−1)(x, t0)√
t0

)
=

e
1

1−γ (h(−1)(x,t0)− 1
2

1
1−γ t0)

x(h(−1)(x, t0)− 1
1−γ t0)

.

In turn,

1 ≤ lim inf
x↑∞

(
e

1
1−γ (h(−1)(x,t0)− 1

2
1

1−γ t0)

xh(−1)(x, t0)

h(−1)(x, t0)

h(−1)(x, t0)− 1
1−γ t0

)

= lim inf
x↑∞

e
1

1−γ (h(−1)(x,t0)− 1
2

1
1−γ t0)

xh(−1)(x, t0)
lim
x↑∞

(
h(−1)(x, t0)

h(−1)(x, t0)− 1
1−γ t0

)
,

and, thus,

1 ≤ lim inf
x↑∞

e
1

1−γ (h(−1)(x,t0)− 1
2

1
1−γ t0)

xh(−1)(x, t0)
. (95)

Next, we use the inequality

Φ(b)− Φ(a) ≥ φ(a)− φ(b)

b
, for a < b < 0, (96)

and deduce from (94) that, for large x,

1 ≥ 1

x
exp

((
h(−1)(x, t0)

)2
2t0

)
1√
t0

1

a
√
t0 − h(−1)(x,t0)√

t0

×
(
φ

(
a
√
t0 −

h(−1)(x, t0)√
t0

)
− φ

(
1

1− γ

√
t0 −

h(−1)(x, t0)√
t0

))

=
e

1
1−γ (h(−1)(x,t0)− 1

2
1

1−γ t0)

x(h(−1)(x, t0)− at0)
− ea(h

(−1)(x,t0)− 1
2at0)

x(h(−1)(x, t0)− at0)
.

Proceeding with analogous convergence arguments we used to establish (95),
we obtain that

1 ≥ lim sup
x↑∞

e
1

1−γ (h(−1)(x,t0)− 1
2

1
1−γ t0)

xh(−1)(x, t0)
. (97)

Combining (95) and (97), we obtain (92). Taking the logarithm of both sides of
(92) gives

lim
x↑∞

(
1

1− γ

(
h(−1)(x, t0)−

1

2 (1− γ)
t0

)
− lnx− ln lnx

)
= ln

1

1− γ
,

and (89) follows.
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5.2.3 Temporal and spatial asymptotics of risk tolerance

We first observe that (23) and (82) yield

r(x, t) =

∫ 1
1−γ

a

1

t
(yt− h(−1)(x, t))eyh

(−1)(x,t)− 1
2y

2tdy (98)

+
h(−1)(x, t)

t

∫ 1
1−γ

a

eyh
(−1)(x,t)− 1

2y
2tdy

=
ea(h

(−1)(x,t)− 1
2at)

t
− e

1
1−γ (h(−1)(x,t)− 1

2(1−γ)
t)

t
+

h(−1)(x, t)

t
x.

We show that, for each x0 > 0, as t ↑ ∞,

r(x0, t) = ax0 −
(
1

2
ax0

) 1
a(1−γ)

t
1

a(1−γ)
−1e

1
2(1−γ)

(a− 1
1−γ )t (99)

+
x0

at
(ln t+ lnx0 + ln

a

2
) + o(1).

From (84), we obtain that

lim
t↑∞

e
1

1−γ (h(−1)(x0,t)− 1
2(1−γ)

t)

t

= lim
t↑∞

exp

(
1

1− γ
(h(−1)(x0, t)−

1

2 (1− γ)
t− (1− γ) ln t)

)
= lim

t↑∞
exp

(
1

1− γ
(h(−1)(x0, t)−

1

2
at− 1

a
ln t)− 1

2

1

1− γ
(

1

1− γ
− a)t

)
e(

1
a(1−γ)

−1) ln t

= lim
t↑∞

exp

(
1

a (1− γ)
(lnx0 + ln

a

2
) +

1

2 (1− γ)
(a− 1

1− γ
)t

)
t

1
a(1−γ)

−1

= lim
t↑∞

(
1

2
ax0

) 1
a(1−γ)

t
1

a(1−γ)
−1e

1
2(1−γ)

(a− 1
1−γ )t.

Furthermore,

lim
t↑∞

h(−1)(x0, t)

t
x0 =

1

2
ax0 + lim

t↑∞

(x0

at
(ln t+ lnx+ ln

a

2
)
)
,

and we easily conclude.
Next, we establish the spatial asymptotics of r (x, t) for large x.
If t0 > 0, we easily deduce from (98) that, as x ↑ ∞,

r(x, t0) =
1− γ

t0
x ln lnx+

1

t0
((1− γ)x lnx)

a(1−γ)
e

1
2a(

1
1−γ −a)t0 (100)
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+
1

2 (1− γ)
x− 1− γ

t0
x ln

1

1− γ
+ o(1).

If t0 = 0,

r(x, 0) =
1

1− γ
x−

(
1

1− γ
− a

)
eah

(−1)(x,0)

h(−1)(x, 0)
,

and, thus, for large x,

r(x, 0) =
1

1− γ
x(1− 1

lnx
) + o(1). (101)

In summary, we have, for each x0 > 0,

lim
t↑∞

r(x0, t)

x0
= a,

which is in accordance with the results of Theorem 8. From (100) and (101),
we obtain that for t0 > 0 and t0 = 0, respectively,

r(x, t0) ∼
1− γ

t0
x ln lnx and r(x, 0) ∼ 1

1− γ
x.

Therefore, the spatial turnpike property (39) fails, for the risk preference mea-
sure lacks a Dirac mass on the right end point for Proposition 3 to hold.

Case 2: a = 0
If the risk preference measure is Lebesgue on (0, 1

1−γ ], we obtain, for t0 ≥ 0,

the same spatial asymptotics for h(−1) and r, and the lack of the spatial turnpike
limit, as in the case a > 0.

For the temporal asymptotics of h(−1), we claim that, for each x0 > 0,

h(−1)(x0, t)

t
=

√
ln t+ 2 lnx− ln 2π√

t
+ o(

1√
t
). (102)

To see this, notice that (83) becomes x0 =
∫ 1

1−γ

0 ey(h
(−1)(x0,t)− 1

2yt)dy. Taking
logarithm of both sides yields

2 lnx0 =

(
h(−1)(x0, t)√

t

)2

− ln t (103)

+2 ln

(
Φ

(√
t(

1

1− γ
− h(−1)(x0, t)

t
)

)
− Φ

(
−h(−1)(x0, t)√

t

))
.

Next, we claim that l := lim inft↑∞
h(−1)(x0,t)√

t
= ∞. Indeed, if l < ∞, then as

t ↑ ∞, (103) would give

2 lnx0 = l2 − lim
t↑

ln t+ 2 ln(1− Φ(−l)) = −∞,
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which is a contradiction. Therefore, it must be that l = ∞, which combined

with the fact that limt↑∞
h(−1)(x0,t)

t = 0, implies that the third term on the right

hand side of (103) converges to 2 ln
√
2π. Thus,

2 lnx0 = lim
t↑∞

((
h(−1)(x0, t)√

t

)2

− ln t+ 2 ln
√
2π

)

from which we deduce that h(−1)(x0, t) =
√

t(ln t+ 2 lnx− ln 2π) + o(
√
t), and

we easily conclude. The rest of the analysis follows easily.

6 Conclusions and extensions

We studied turnpike-type limiting properties of the dynamic relative risk tol-
erance function in an Ito-diffusion market and under time monotone forward
performance criteria. We showed that, contrary to turnpike results in the clas-
sical expected utility framework, the asymptotic temporal and spatial limits in
the forward setting do not in general coincide. Rather, they depend critically on
the left and right points of the support of the underlying risk preference mea-
sure. The spatial limit coincides with the right end point of the support while
the temporal one with the left end point. Central role in the analysis is played
by the asymptotic properties of the spatial inverse of the underlying space-time
harmonic function.

There are various extensions of both the results and the setting we investi-
gated herein. Firstly, one may study the asymptotic properties of the optimal
wealth and optimal portfolio policy processes provided in (21). Naturally, their
asymptotic study will involve the long term behavior of both the market and
the investor-specific inputs.

In a related direction, an interesting problem is how to construct investment
policies that yield a targeted long-term wealth distribution. In a static model,
elicitation of risk preferences from desired distributions was studied in [28] and
in a dynamic setting in [18], where markets were assumed to be log-normal and
the analysis was done in both the classical and the forward setting. However,
in the latter work, there is a strong model commitment which is not a realistic
assumption for long-term portfolio management. In the Ito-diffusion market we
consider herein, the model is adaptively updated. Preliminary results on the
above questions can be found in [10].

Another line of research would be to study spatial and temporal turnpike
properties under forward performance criteria with non-zero volatility. In this
case, the closed form solutions we used herein do not hold and analogous ex-
pressions are not known to date. In Markovian models, one may reduce the
forward SPDE derived in [24] to a finite dimensional ill-posed HJB equation
(see, among others, [24][26] and [27]) which can be, in turn, used to analyze the
related feedback functions. On the other hand, these ill-posed equations do not
admit comparison results which makes the analysis quite challenging.
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