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CONSUMPTION-INVESTMENT MODELS WITH CONSTRAINTS*

THALEIA ZARIPHOPOULOU'

Abstract. The paper examines a general investment and consumption problem for a single agent who
consumes and invests in a riskless asset and a risky one. The objective is to maximize the total expected
discounted utility of consumption. Trading constraints, limited borrowing, and no bankruptcy are binding, and the
optimization problem is formulated as a stochastic control problem with state and control constraints. It is shown
that the value function is the unique smooth the associated Hamilton-Jacobi—Bellman equation and the optimal
¢onsumption and portfolios are provided in feedback form.
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Introduction. This paper treats a general consumption and investment problem for a
single agent. The investor consumes wealth X; at a nonnegative rate C; and distributes it
between two assets continuously in time. One asset is a bond, i.e., a riskless security with
instantaneous rate of return r. The other asset is a stock whose value is driven by a Wiener
process.

The objective is to maximize the total expected (discounted) utility from consumption
over an infinite trading horizon and the total expected utility both from consumption and
terminal wealth in the case of finite horizon. The investor faces the following trading
constraints: Wealth must stay nonnegative, i.e., bankruptcy never occurs, moreover, the
amount 7; invested in stock must not exceed an exogenous function f(X;) of the wealth at
any time t. The function f represents general borrowing constraints, which are frequently
binding in practice, such as in portfolio insurance models with prespecified liability flow,
models with nontraded assets, stochastic income and/or uninsurable risks, etc. The pos-
sibility of imposing short-selling constraints, which amounts to requiring g(x;) < 7 for
some exogenous function g, is addressed in detail in §1. Finally, the agent is a “small
investor,” in that his or her decisions do not affect the asset prices and he or she does not
pay transaction fees when trading.

This financial model gives rise to a stochastic control problem with control variables
consumption rate Cy and portfolio vector (7). m;), where 70 and 7; are the amount of
wealth invested in bond and stock, respectively. The state variable X, is the total wealth
at time ¢. Finally, the value function is the maximum total expected discounted utility.

The goal of this paper is to determine the value functions of these control problems,
to examine how smooth they are, and to characterize the optimal policies. The basic tools
come from the theory of partial differential equations, in particular the theory of viscosity
solutions for second-order partial differential equations and elliptic regularity. We first show
that the value functions are the unique constrained viscosity solutions of the associated
Hamilton—Jacobi—Bellman (HJB) equation. Then we prove that viscosity solutions of these
equations are smooth. Finally, we obtain an explicit feedback form for the optimal policies
(C*,7*).

The paper is organized as follows: In §1 we describe the model and we give a summary
of the history of consumption—investment models in continuous-time finance. Sections 2—
5 deal with the infinite horizon model. More precisely, in §2 we describe basic properties of
the value function, and in §3 we characterize the value function as a constrained viscosity
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solution of the HIB equation. Moreover, in §4 we prove that the value function is the
unique constrained solution of the HIB equation. In §5, we show that the value function is
also a smooth solution of this equation and we provide the optimal policies. Finally, in §6
we state results for the finite horizon model.

1. We consider a market with two assets: A bond and a stock. The price P of the
bond is given by

dP) = rP0dt (t >0)

1.1
(1.D P = po, (po > 0),

where r > 0 is the interest rate. The price P, of the stock satisfies

dPt=thdt+0'Ptth (tZO)
P0=p7 (P>0)7

where b is the mean rate of return, o is the dispersion coefficient and the process W., which
represents the source of uncertainty in the market, is a standard Brownian motion defined
on the underlying probability space (2, F, P). We will denote by F; the augmentation
under P of FtW =0(Ws:0<s<t)for0<t< 4oo. The interest rate r, the mean rate
of return b, and the dispersion coefficient o are assumed to be constant with o # 0 and
b>r>0.

The total current wealth X; = w0 + m; is the state variable and 7 and ; are the
amount of wealth invested in bond and stock, respectively; X; evolves (see [40]) according
to the equation

(1.2)

dXt :’I'Xt dt'f‘(b—'f')ﬂ'r dt—C’t dt+0'7Tt th (t Z 0)

(13) XO =z, ((E (S [O, +OO))

where z is the initial endowment of the investor.
The control process are the consumption rate C; and the portfolio 7;. To state their
properties we introduce the following sets:

Ly = {zt : 2y is Fy-progressively measurable process, z; > 0 a.s. V¢t >0
t
and / zsds < 400 a.s. Vi > 0}
o
M = {2z : 2z is Fi-progressively measurable process

¢
and / 22 ds < 400 as. Vt > 0}.
0

The set A, of admissible controls for x € [0,+00) consists of all pairs (C,m) such
that:

() CeLy,
i) ™ e M.
Moreover; m; < f(X;) almost surely for all ¢ > 0, where the function f : [0, +00) —
[0, +00) has the following properties:

(1.4) f is increasing, concave, f(0) >0 and
' If(z) = fy)| < K|z —y| Vz,y >0

(iii) X, > 0 almost surely for all ¢ > 0, where X; is the trajectory given by the state
equation (1.3) using the controls (C, 7).
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The function f represents the borrowing constraints that the investor must meet; these
constraints, are present in models with prespecified liabilities such as problems of manage-
ment of funds as well as in models with uninsurable risks. The possibility of short-selling
constraints, i.e., g(x) < , is not examined in this paper for the following reasons: First,
if g < 0, the short-selling constraints can be removed because the model is of constant
coefficients with b > r (see, for example, [40] and [8]). Second, if 0 < g(x) < « this only
facilitates the analysis presented here and therefore this case is not discussed.

All the results in this paper hold for the case f = oo, which was studied in [18],
provided that some of the arguments in what follows are slightly modified. We will not
pursue this any further in this paper unless it is necessary for the study of the f = oo
case. On the other hand, we will occasionally use some results of [18] only to facilitate
the presentation and avoid lengthy arguments.

The total expected discounted utility J coming from consumption is given by

+00
J(2,C1) = B / =PUI(CY) dt
0

with (C,n) € A,, where Eg denotes the expectation of g with respect to the probability
measure P, 3 > 0 is a discount factor such that

(1.5) B>,
and U is the utility function, which is assumed to have the following properties:

U is a strictly increasing, concave C?(0, +o0) function such that
(1.6) U(e) M(1+¢)Y withO<y<1 and M >0,
U(0) >0, limOU’(c) = +o0, lim U'(c)=0.
c— C—00

The value function is given by

+o00
(1.7) v(z) = supE/ e PtU(Cy) dt.
Az 0

To guarantee that the value function is well defined when U is unbounded, we assume that
B>ry+ab—r)/o*(1~7).

The above condition yields that the value function which corresponds to f = +oo and
U(c) = M(1 + ¢)?, and thereby all value functions, are finite (see [18]).

The goal is to characterize v as a classical solution of the HIB equation, associated
with the control problem, and use the regularity of v to provide the optimal policies.

We now state the main results.

THEOREM 1.1. The value function v is the unique C*((0,+00))NC([0,+00)) solution
of
(1.8) Bv = w??(ﬁ) [%g%ﬂvm +(b— r)m}x] + rglg())([—cvx + U(c)] + rav,
in the class of concave functions.

THEOREM 1.2. The optimal policies C{ and wf are given in the feedback form
Cf =c*(Xy), my = m*(X}) where

c(z) = (U) '(va(z)) and «*(z) = min {f(x), b1 v(2) } .

02 vg(x)
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We continue with a brief discussion of the history of the model.

The single agent consumption-portfolio problem was first investigated by Merton in
1969 and 1971 ([28], [29]). He assumed that the returns of asset prices in perfect mar-
kets satisfy the “geometric Brownian motion” hypothesis and he considered utility func-
tions belonging to the hyperbolic absolute risk aversion (HARA) family, ie., U(c) =
1 — v/~[Bc/1 — v + n]7. Under these assumptions, he found explicit formulae for the
optimal consumption and portfolio in both the finite and infinite horizon case. Moreover,
he showed that the optimal policies are linear functions of the current wealth if and only if
the utility function belongs to the HARA family.

In Merton’s work, the portfolio is unconstrained, which means that unlimited borrowing
and short selling are allowed. Moreover, the consumption process has to stay nonnegative
and bankruptcy should never occur. Extra restrictions on the parameters (3,-y, and 7 were
later imposed by Merton [30] and Sethi and Taksar [34] to meet the above feasibility
conditions.

Another important contribution is the work of Karatzas et al. [18], which is a con-
tinuation of work initiated by Lehoczky, Sethi, and Shreve [25]. Reference [18] examines
a model with constant coefficients when borrowing and short selling are allowed (i.e.,
f = oo) and provides solutions of the Bellman equation in closed form. The possibility of
bankruptcy is treated in this paper as well as in Sethi and Taksar [33]. The special case of
a finite horizon model with constant market coefficients is examined by the same authors
in [19]. The fact that borrowing and short sel\ling are allowed is used strongly in [19] (see
also [4]) to “linearize” the fully nonlinear Bellman equation to get a system of two linear
parabolic equations. Solving these linear equations, they obtain a closed-form solution of
the HIB equation.

The Bellman equation can be also linearized when only short-selling constraints are
imposed; such a model was studied by Shreve and Xu [35], [36] and Xu [39] in a fi-
nite horizon setting in incomplete markets. Such linearization cannot be done if general
borrowing constraints are imposed, which is the case we treat in this paper.

A different approach to studying investment-consumption problems with constraints in
continuous-time finance was introduced by the author in [40], which studies an investment
consumption model with borrowing and short-selling constraints, i.e., 0 < m; < X;. This
new approach is based on the theory of viscosity solutions of nonlinear first- and second-
order partial differential equations and appears to be flexible enough to handle a wide
variety of problems with constraints and related asymptotic problems, e.g., convergence of
numerical schemes, asymptotic behavior, etc.

The asymptotic behavior of the value function and the optimal policies for the model
with constraints and different interest rates were examined by Fleming and Zariphopoulou
in [13]. Moreover, numerical results for the optimal policies and the value function were
obtained by Fitzpatrick and Fleming in [10]. A consumption-investment model with lever-
age constraints (i.e., f(z) =  + L, L > 0) was examined by Vila and Zariphopoulou in
[38].

Finally, a martingale representation technology has been used by Pliska [32], Cox and
Huang [4], Pages [31], and Karatzas, Lehoczky, and Shreve [19] to study optimal portfolio
and consumption policies in models with general market coefficients. Moreover, the case
of incomplete markets with short-selling constraints in the finite horizon setting has been
examined by He and Pearson [15], Xu [39], Shreve and Xu [35], [36], and in the absence
of constraints by Karatzas et al. [20].

After this paper was submitted, the author received a paper by Cvitanic and Karatzas
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[7]. This paper uses martingale and convex duality methods to study a finite horizon model
with nonconstant coefficients and constrained portfolio policies but with utility functions
which are more restrictive than the ones used in this paper; in particular, they only consider
the case of utility functions with Arrow—Pratt index less than one.

2. In this section we derive some basic properties of the value function.

PROPOSITION 2.1. The value function. v is concave and strictly increasing.

Proof. The concavity of v is an immediate consequence of the concavity of the utility
function U and the fact that if (C',7") € A,,, (C*,7?) € A,,, and A € (0,1), then
(AC" + (1 = N)C% A" + (1 = A7) € Ay 4 (1-A)an; the latter follows from the linear
dependence of the dynamics (1.3) with respect to the controls and the state variable.

That v is increasing follows from the observation that A,, C A,, if x, = zp. If v
is not strictly increasing, then it must be constant on an interval, which, by concavity, has
to be of the form [z, 00) for some 2020, i.e., there must exist 7o € [0, 4+00) such that

v(z) = v(ag), for all z = zo. In this case, fix € > 0 and choose (C¢,7°) € Az, such that

+o00
v(zo) = E/ e AU (C) dt + e.
0

U-! [ﬁ (E[Oo e"BtU(Cf)dt+e)]

) > max | Xy, -
r

If

the policy (C,7) = (rz,,0) is in A,,. Therefore

v(zg) < lU(mc )= E/+oo e Pt (ray) dt = v(z)
0 ﬁ 1) = ) 1 - 1)y

which contradicts our assumption. 0

PROPOSITION 2.2. The value function v is uniformly continuous on Q = [0,00) and
v(0) = U(0)/p.

- Proof. Since (0,0) € A, v(0) = U(0)/43. On the other hand, v = w in [0, +00), where
u is the value function with f = +oo studied in [16]. Since (cf. [18]) u(0) = U(0)/3
and u € C([0,+00)), it follows that v(0) = U(0)/8 and v is continuous at z = 0. The
continuity of v in (0, +o0c) follows from concavity.

Finally, since v is uniformly continuous on compact subsets of €2, we remark that its
uniform continuity on € follows from the fact that, by concavity, v is Lipschitz continuous
in [a, +00) with Lipschitz constant of order 1/a for every a > 0. O

PROPOSITION 2.3. The value function satisfies v(x) < 0(z") as © — +oo.

Proof. Since v < u on ), where u is the value function with f = 400 and U(c) =
M(1 4 )7, we only need to check this upper bound for w.

On the other hand, a direct modification of the proof of Theorem 4.5 in [13] yields
that if U ~ ¢7 (as ¢ — 00), then u ~ 27 (as x — o0). a

We conclude this section by stating (for a proof see [1], [26]) a fundamental property
of the value function known as the Dynamic Programming Principle.

PROPOSITION 2.4. If 6 is a stopping time (i.e., a nonnegative F-measurable random
variable) then

7]
Q.1 v(x) = sup E [ / e PU(Cy) dt + e POu(Xp) | (z € Q).
Ax 0
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3. In this section we show that the value function v is a constrained viscosity solution
of the HJB equation associated with the underlying stochastic control problem. The char-
acterization of v as a constrained viscosity solution is natural because of the presence of
the state (X; > 0) and control (m; < f(X})) constraints.

The notion of viscosity solution was introduced by Crandall and Lions [6] for first-
order and by Lions [27] for second-order equations. For a general overview of the theory
we refer to the User’s Guide by Crandall, Ishii, and Lions [5].

Next we recall the notion of contrained viscosity solutions, which was introduced by
Soner [37] and Capuzzo-Dolcetta and Lions [3] for first-order equations (see also Ishii and
Lions [16] and Katsoulakis [21]). To this end, consider a nonlinear second-order partial
differential equation of the form

3.1 F(x,u,ug,uze) =0 in Q,

where € is an open subset of [t and F' : 2 x R x 2 x R — [® is continuous and (degenerate)
elliptic, i.e.,

F(z,t,p, X +Y) < F(z,t,p,X) ifY Z0.

DEFINITION 3.1. A continuous function v : Q — I is a constrained viscosity solution
of (3.1) if and only if

(i) u is a viscosity subsolution of (3.1) on Q, i.e., if for any ¢ € C?*(Q) and any
maximum point zg € Q of u — ¢,

F(x07 u(;vo), Px (l‘o), Prx (‘7"0)) <0;

and

(ii) u is a viscosity supersolution of (3.1) in €, i.e., if for any ¢ € C?(Q2) and any
minimum point xp € 2 of u — ¢,

F(x0,u(wo), ¢ (20), Pax(20)) = 0.

Remark 1. We say that u € C(R) is a viscosity solution of (3.1) in Q if and only if it
is both sub- and supersolution in 2.

Remark 2. As a matter of fact, we can extend the definition of viscosity subsolutions
(respectively, supersolutions) for upper-semicontinuous (respectively, lower-semicontinuous)
functions.

THEOREM 3.1. The value function v is a constrained viscosity solution of (1.8) on Q.

The fact that, in general, value functions of control problems and differential games
turn out to be viscosity solutions of the associated partial differential equations is a direct
consequence of the principle of dynamic programming and the definition of viscosity so-
lutions (see, for example, Lions [26], Evans and Souganidis [9], Fleming and Souganidis
[12], etc.). The main difficulty, however, in the problem at hand is that the consumption
rates and the portfolios are not uniformly bounded. This gives rise to some serious com-
plications in the proofs of the results of the aforementioned papers. To overcome these
difficulties we need to introduce a number of approximations of the original problem and
make use repeatedly of the stability properties of viscosity solutions.

Proof of Theorem 3.1. We first show that v is a viscosity supersolution of (1.8) in .

Let v € C?(Q) and zy € Q be a minimum of v — ¢; without any loss of generality,
we may assume that

3.2) v(zg) = p(xp) and v > in Q.
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We need to show that
N 1.2 2 _ ] _
(3.3) Bu(xo) > ,,2}%0)[20 TPz (T0) +(b — r)mpe(T0)| + Tzag[ ce(20) + U(c)]
+7‘$0<P:c($0)-

To this end, at (C,7) € A, such that C; = Co,m = w9 < f(zg), for all ¢ > 0. The
dynamic programming principle, together with (3.2), yields

6
(34) v(zg) > E[ /0 e PtU(Co) dt + e*ﬁ%(xg)]

where X. is the trajectory given by (1.3) using the controls (Cy, ) and starting at zo and
6 = min(7, 1), with n > 0 and 7.= inf{t > 0: X; = 0}.
On the other hand, applying Itd’s lemma to g(t, X;) = e Ptp(X;), we get
6
— 1
Ele"p(Xo)] = v(wo) + B / e [—ﬁw(xt) + 50 T0aa(Xi)
0

T (b= r)mogs (X2) — Copal(Xe) + rxtmxt)] d.

Combining the above equality with (3.4) and using standard estimates from the theory of
stochastic differential equations (see [14]), we get

0
1
B [ -0(a0) + 30momstan) + (0 - g (oo
0
0
— Copz(xo) + U(Co) + rxocpl.(xo)] ds + E/ h(s)ds <0,
0
where h(s) = 0(s). Dividing both sides by F(#) and passing to the limit as n — oo yields

Bu(zo) > [%Uzﬂg%x(mo) +(b— T)”O‘Px(xo)] + [~ Copz(z0) + U(Co)] + rzows(zo),

for every pair of constant controls (Cp,7p),Co > 0, and 7y < f(zg); inequality (3.3) then
follows easily.

We next show that v is a viscosity subsolution of (1.8) on Q.

We first approximate v by a sequence of functions (vN'") defined by

+oo
v (z) = sup E e Pt [U(Ct) - lp(Xt)} dt, (x e R)
AN 0 €
for e > 5, N > 0,n > 0, and p(z) = max(0, —z). The set of admissible policies An .,
consists of all pairs (C, ) such that

(i) C € £ and Cy < N almost surely for all ¢ > 0,

@ii) € Mand —n < m < f(Xt) almost surely for all t > 0,n > 0 where the
function f : B — [ (denoted for convenience in the sequel by f) satisfies (1.4) and
coincides with f on [0, 400);

(iif) X is the trajectory given by the state equation (1.3) using the controls (C, 7) and
starting at x € .

It follows from the dynamic programming principle and the definition of viscosity
solution (see [27]), that v?’ '™ is a viscosity solution of

BuNm = max {%azwzvé\’ﬁ +(b— ?")71"051’7"] + maxg< <y [—col;" + U(c)]

—n<n<f(x) : ’ ,

1
+ravl;r — ;p(z) (x € R).
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We next observe that as n — oo,

" — N locally uniformly in I,

(see [22, Chap. 6]) where
+oo 1
oVN@® —sup E e PHU(C,) — =p(X,)| dt zeR
€
An 0 €

and the set Ay of admissible policies is defined in the same way as Ay ,,, but without a
lower bound on 7.
It is immediate that

(3.5) oN = YN inm
B
and
(3.6) oM =N on [0, +00),
where, for z € [0, +00),
+o0

(3.7 vM(X) = sup E / e PtU(Cy) dt

-Az,N 0

and
Aoy ={(C,7) € Ay : C, = N as. Vt = 0}.

Moreover, the vN’s are increasing and concave with respect to z. Both properties follow
as in Proposition 2.1.

Finally, the stability property of viscosity solutions (see [27, Prop. 1.3]) yields that v¥
is a viscosity solution of

ay = wg%)[%azﬂzvgm o= rmoll,] + max [~eol, + U ()]
N 1

+rav., — -p() (x e ).
In the sequel we look at the behavior of the v™’s on [0, +00) as € — 0. Since the only

available bounds on the v"’s are the ones stated above, we employ the limsup operation
introduced by Barles and Perthame [2]. To this end, we define

oV () = limsup v (y) (z €]0,400))

y—x,e—0

and we claim that
(i) vN'" is an upper semicontinuous viscosity subsolution on  of

' + OinaéxN[—cviv’* +U(c)] + ravd” (z €10, +00));
and

(i) vV =N on Q.
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We first obserye that v"V'" is increasing and concave on Q. The first property is an
immediate consequence of the definition. For the concavity we argue as follows: The
concavity of v™¥>" in Q follows from the fact that, since the vN’s are concave in  and
uniformly bounded on €, they converge, as ¢ — 0, locally uniformly to a concave function
which actually coincides with v™V>". It remains to show that

(3.10) oM (1= Nz) > MM (0) 4 (1 - M) (z)

for A € (0,1) and z > 0.
Let (e,) and (y,) € I be sequences such that, as n — oo,€e, — 0,y, — 0, and

oM (0) = limsup,, o, o v (yn). The concavity of v yields

3.11) VN Ay + (1= N)z) = Ml () + (1= Mol (z).
On the other hand,

(3.12) oV () = 61%@5(1:) (z € (0,+00)).

Indeed, let = € [z, x,] with ©; > 0. The concavity of v¥’s and (3.5) yields that the
v!N are locally Lipschitz on [z, x;] with Lipschitz constant L independent of e, i.e.,

v (y) <ol (@) + Ly -2l (2,9 € [or,22]);

therefore

limsup vV (y) < limsupv? ().
e—0,y—ax e—0

Moreover,

limsup v (z) = lim v (z)
e—0 e—0 ~

since the vV’s are increasing in e. Combining the last inequalities we get
oV (2) < liII(l)'UéV(:IZ)
€—

which, together with the definition of oV yields (3.12).
We now observe that, for n large enough, Ay, + (I — M)z > a, for some a > 0.
Sending n — oo in (3.11) and using the properties of (¢, ), (yn), and (3.12) we conclude.
We continue with the proof of (3.9). We need to examine the following cases.
Case 1. f = oo.

Let ¢ € C%(Q) and assume that vV~ — ( has a maximum at 0, which can be assumed
to be strict. We need to show

(3.13) g™ (0) < mfx[%azﬂz%z(o) +(b— 7“)779%(02] + maxo<c<n[—cpz(0) + U(c)].

First observe that the concavity and monotonicity of v™¥>" imply ¢,(0) > 0. Inequal-
ity (3.5), along with the fact that the max with respect to 7 in (3.13) is unconstrained, implies
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that (3.13) holds if ¢, (0) = 0. It remains to prove (3.13) if ¢, (0) < 0. To this end, we
first extend ¢ to R in C2(IR) so that for some o > 0,
pez(x) <0 (—a<z<0)
and
v (=) <0 (0) = ¢(0) + p(—a) - a.
Let z. be a maximum point of vY — ¢ over [~a,a]. If . = —a, the choice of ¢
together with (3.6) yields

v (—a) = p(=a) < vl (0) - (0) - a

which is a contradiction. Moreover, 0 being a strict maximum of v’ — ¢ yields z. # «

for € small enough. Since vY is viscosity solution of (3.8) we have

Ip(ad) < max |30t (@) + (b~ rimen(e)]

(3.14) ¢
+ max [—cp.(ze) + U(c)] + rzcps(zc) — Bl (xo).
0<c<N
We next observe that the right-hand side of the above inequality is finite since
Yre(Te) < 0,02(zc) >0 and —vN (2,) < +00, where the latter follows from
v (z) = p(ze) = v (0) = p(0) = v™(0) — p(0).

Let Z be a limit (along subsequence) of the z.’s. The definitions of p and (3.14) yield
T > 0. Actually, 7 = 0.
Indeed,

v (we) = plae) 2 v (0) — ¢(0)

and therefore
oV (Z) — p(@) = 0™ (0) — (0)
which yields T = 0, since 0 is a strict maximum.
Moreover,
lin(l)vé\'(:ve) =7 (0).
Indeed, lim sup,_, vN (z.) < v™>"(0). On the other hand, if lim sup__ 4 v (z.) < v™¥>"(0),
then v™>"(0) — (0) > limsup,_[vN (xc) — ¢(z.)], which is a contradiction. Finally,
passing to the limit in (3.14) as ¢ — 0, we get (3.13).

Working similarly, we show that v™V°" is a viscosity subsolution of (1.8) in (0, +00).
It remains to show that

(3.15) oM =9 on [0, +00).
Since v™¥>" and v" are, respectively, viscosity subsolution of (1.8) on [0, 400) and
supersolution in (0, 4+00), a comparison result similar to Theorem 4.1 (easily modified for
the case the consumption rates are uniformly bounded) implies

(3.16) oV =N on [0, +00)

which together with (3.6) yields (3.15) in (0, +00).
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Finally, the upper semicontinuity of v™>" implies v™¥>" (0) = v (0).
Case 2. f < +o0.

In view of the analysis above, we only have to examine the case p,;(0) =0, i.e., we
need to show

BN (0) < (b= 7)f(0)pz(0) + max [—ep,(0) + U(c)]

0=cEN

where we used that ,(0) > 0. We first observe

U0
5
This follows from the fact that U(0)/6 < v™"(0) < v¥(0) and vX (0) < u(0) = U(0)/8,
where vY is given by (3.7) for f = oo.
Usmg that maxo<.<n[—cpz(0) + U(c)] > U(0), (3.17), and ¢,(0) > 0, we conclude.
We now conclude the proof of the theorem.

In view of the stability properties of viscosity solutions, to conclude the proof of the
theorem we only need to establish that as N — oo,

o™ (0) =

v — v, locally uniformly on Q.

To this end, fix z € Q,¢ > 0, and choose (C¢, 7€) € A, such that
—+o00
(3.17) v(z) < E/ e PtU(CF) dt + e.
0

From the definitions of A, y and A, we have that (C° A N, 7) € A, n. Moreover, since
U is increasing and nonnegative, the monotone convergence theorem yields

+o00 +o0
lim E e PUCEAN)dt=E / e PtU(CF) dt
0

N—o00

which, combined with (3.17) and the definitions of v~ and v, gives

+oo
vV (z) < v(x) < E/ e PU(CE AN)dt +2¢ <oV (z) +2¢ for N > N(e).
0

Therefore, vV — v as N — oo, for each z € Q. On the other hand, since v?V increases with

respect to N and v is continuous, Dini’s theorem implies that vV — v locally uniformly
on Q. g

4. In this section we present a comparison result for constrained viscosity solutions
of (1.8). Comparison results for a large class of boundary problems were given by Ishii
and Lions [16]. The equation on hand, however, does not satisfy some of the assumptions
in [16], in view of the fact that the controls are not uniformly bounded. It is therefore
necessary to modify some of the arguments of Theorem I1.2 of [16] to take care of these
difficulties. For completeness we present the whole proof; we rely, however, on some basic
facts which are analyzed in [14].

THEOREM 4.1. If u is an upper-semicontinuous concave viscosity subsolution of (1.8)
on Q and v is a bounded from below, sublinearly growing, uniformly continuous on Q, and
locally Lipschitz in Q2 supersolution of (1.8) on Q, then u < v on Q.
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Before we begin with the proof of the theorem, we observe that (1.8) can be written
as

4.1 Bu = G(x, Uy, Ugz)

where G : Q0 x [ x B — IR is given by
— 1,22 — —
G(z,p, A) = Wl;]?();)[za A+ (b r)ﬂp] + Tg())([ cp + U(c)] + rap.

An important ingredient of the proof of Theorem 4.1 is the sup- and inf-convolution
approximation of u and v, respectively. Next we recall their definitions and summarize
their main properties. For a general discussion about sup- and inf-convolution as well as
their use in proving comparison results for second-order PDEs we refer to Lasry and Lions
[24], Jensen, Lions, and Souganidis [17], and Ishii and Lions [16].

For € > 0 the € sup-convolution of u is defined by

1 —
4.2) u(z) = sup{u(y) — =z - yF} Vr € Q,
yen €
and, similarly, the € inf-convolution of v by
1 —
4.3) ve(x) = inf {v(z) + =z — z|2} Vo € .
z€Q €

It follows that the sup and inf in the definitions of u° and v, are actually taken for
(4.4) |t —y| < CVe and |z -z < CVe,

where C' = C(z) depends on the coefficients of the sublinear growth of u and v.
Moreover

(i) u® is a viscosity subsolution of
re(z,u ul,ul,) =0 in Q.
where F(z,t,p, A) =min{Bt—G(y,p, A) : ly—2| < Cy/e}and Q. ={x € Q : z > C\/e};
e (ii) v, is a viscosity supersolution of

€ .
F (177 ve»ve,zave,zx) =0 in Qev

where
F(z,t,p, A) = max{Bt — G(y,p, A) : |y — z| < C\/e}.

Proof of Theorem 4.1. We present the proof of the theorem for the case f < +o00. The
case f = oo is discussed at the end of the section.
We argue by contradiction, i.e., we assume that

4.5) sup[u(z) — v(z)] > 0.
€
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Then for sufficiently small 6 > 0

4.6) sup[u(z) — v(z) — 6z] > 0.

zeQ

Indeed, if not, there would be a sequence 6, | O such that sup_ g[u(x) —v(z) —O,2] <0,
which in turn would yield sup_ g[u(z) — v(z)] < 0, contradicting (4.5).

Since u has, by concavity, sublinear growth and v is bounded from below, there exists
7 € ) such that

4.7 sup[u(z) — v(z) — Oz] = w(T) — v(F) — 67.
TEQ

Next, for § > 0 and 7 > 0 we define ¢ : Q@ x Q — [ by

4
— 0z

o) = ule) - o) - 155 4

and observe that for each fixed 7, ¢ attains its maximum at a point (zg, yo) such that for §
small and some | = {(6) > 0,

(4.8) [yo — xo| < 16.
Indeed, ¢ is bounded and

(4.9) sup p(z,y) > p(x, 2 +4nd) > u(T) — v(T) — 07 — w, (knd)
OxQ

where w, is the modulus of continuity of v and £ > 0. Using (4.6) and (4.7) we get

(4.10) sup ¢(z,y) >0
axn

for 6 and 7 sufficiently small.
Next, let (z,,,y,) be a maximizing sequence for ¢ and observe that

4
u(zyn) — v(yn) — Oz, > ylggﬁ —4n|  asn — oo.

The last inequality, combined with the fact that « has sublinear growth, implies (4.8).

On the other hand, the choice of (z,, y,) and (4.10) yields that the sequence (x,) and,
in view of the above observation, (y,,) are bounded as n — oco. Hence, along subsequences,
(zn, yn) converges to a maximum point of ¢, which we denote by (xg, yo).

We next fix § small enough and we consider for € € (0, 1) the function

4
¢ @) = (o) = ) = | V55— 4n] 6
where u° and v, are, respectively, the e sup- and inf-convolutions of u and v given by (4.3)
and (4.4).

In the sequel we need to study separately the cases T > 0 and T = 0.

Case A. T > 0.

If 6 is small enough it follows that the point (zo,yo) lies in a fixed compact subset
of Q2 x 2. Moreover, the function ¢ achieves its maximum at a point that we denote by
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(Te, T, ), which lies in Q. x €, (see [16]). Since 3 > 0 we can apply Proposition I1.3 of
[14], according to which there exist X, Y, € R such that

Fe(Te, u(Te), wa(Te), Ue) + 6, Xe) <0, F(Ue,ve(¥e), ~wy(Te, Te), —Ye) 2 0

( Xe 0 ) < ( Woo(Tes Ye)  Way(Te, Ye) )
0 Y. - wym(?ﬁ_e»ye) wyy(iﬁ’ye)

where w(z,y) = |(y — x)/6 — 4n|*. Therefore

and

_ — 3
4.11) F. (@,ue(ze),—% (ygm —477) +0,X€> <0,
4(y.—% ;
4.12) F€<y€,ve(ye),—5<ye—6—e—4n) ,-1@) > 0.
Also,
X, 0 12 (7, — T S T
(o v)sw (=) (L 7).

and therefore
4.13) X +Y. <0

We next observe that there exists a constant ¢ > 0 such that
4.14) Y.>ec.

We argue by contradiction. Let us assume that there exists a subsequence (Y, ) such
that lim,,, o Ye, =Y < 0. From the definition of F, we have

B(me) = max [-LoPrYe, = (b—1)7w, (@7,
n<f(Y,)

+maxfewy (Te, ) + U(e)] = rfewy(Te, Te),

for some g. € £ such that |[§, — §.| < Cy/e. Sending €, | 0 and using that v(7,) <
U(N)/B, we get a contradiction.

Therefore, there exists ¥ € Hl.l(*,' or Y = 400 such that lim,oY. = Y (along a
subsequence). Moreover, (4.13) and (4.14) imply that there exists X € Ry or X = —o0
such that lim._,o X, = X (along a subsequence).

Sending € — 0, inequalities (4.11) and (4.12) yield (see [16])

4.15) Bu(zo) < max 32X + (b= r)m(wa (20, 30) + )]

+ g(wz (0, Yo) + 0) + 120 (w2 (20, Y0) + )

and

_12.2 _
(4.16) Bulyo) = ,T'S“f‘}’;“)[ 20°T°Y + (b T)sz(l‘o,yo)]

+ g(wz (0, Yo)) + ryowz (X0, Yo)

where we used that w; (o, Yo) = —wy (o, yo) and g(p) = max.>o[—cp + U(c)].
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We now look at the following cases.
Case (i). X = —oo. Inequalities (4.15) and (4.16) yield

Bu(zo) < g(wz(z0,y0) + 8) + rT0(wa (0, Y0) + 6)

and

Bv(yo) = g(wz(2o,%0)) + rYowz (2o, Yo)-
Therefore,
(4.17) B(u(zo) — v(yo) — 6z0) < r(xo — Yo)wa(Z0, Yo)

where we used that g is a decreasing function and (1.5).
Case (i1)). X < 0. From (}.4), (4.8), and (4.15) we get

Bu(zo) <

1 2.2
max 50 T X + (b — r)mwg(xo, ]+ we (2o, Yo) + 6
WSf(yo)+Kl(9)6[2 ( )Wz (2o, Yo) | + g(wa(zo, yo) + 6)

+ rao(we (0, yo) + 0) + (b — 1)0 £ (20)
which, combined with (4.16), gives
i
Blu(zo) — v(yo) — Ox,) < st(;:;ixm(e)é[iazsz + (b — T)ﬂwz(ﬂfo,yo)]
_ 152,22
ﬂ?ﬂ’;n)[sz Ty + ﬂwm(fﬂo,yo)]

+7(zo — Yo)wz (o, yo) + (b — )0 f(20).

In the sequel we will need the following two lemmas.
LEMMA 4.1. Let p > 0 and X <0,Y > 0 be such that

(4.19) (}g 3)314(_11 ‘11)

with A > 0. Then

(4.18)

420) 7rrnsa;(l [%0’27&’2){ + (b — r)wp] - 7|rnsa(i(2 [—%azﬁzY +(b— r)wp]

< w((ar — a2)?A + (a; — az)p)

where a; > a; and w : [0, +00) — [0, 400) is uniformly continuous with w(0) = 0.
LEMMA 4.2. For fixed n > 0 and 0 > 0, the following holds:

. |Yo — To _
“21) lim ;-47,‘ —o.
Moreover,
(4.22) ‘lelig 161{13 0f(x0(0,6)) = 0.

We now conclude the proof of the theorem and next give the proof of the lemmas.
First observe that (4.17) gives

Bu(T) —v(T) —0F) < ‘[—47»(3/" — ‘”") (y" — %0 —4n>3+wv(kné)+ (@ —47,)]4.

) )
Sending 6 — 0 and using (4.21) we contradict (4.6).
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Next, we use (4.18) and Lemma 4.2 with

2
A g (yo ; To 477) . ar = f(yo) + KI(0)5, ar = fyo)

4 (yo— o ?
= (L0 4y
)

Note that from the definition of g and (4.16) we must have p = w, (o, yo) > 0. We get

3
Yo — To
— 4
-4 )
Yo — Lo

4
: —477. + (b= )0 f (z0) + wy(knb) + (y"—;”l’—%) .

and

_ 2
Blu(@) —v(F) — 07] <w (12K212(0) (2‘1—6—“72 - 4n) +4KI(9)

Yo — To

4
+4r 5

(4.23)

We now use (4.21) and (4.22) and we send first § | O, then 8 | 0, and last | O to
contradict (4.3).

Case B. 7 =0.

Since the proof follows along the lines of Theorem VL5 in [16], modified with argu-
ments similar to the ones in Case A, we only present the main steps.

First, we work as in Theorem VL5 in [16], with h = —o0 and w as before, to get the
existence of X.,Y. € It such that

Pu(Te) < G(Ze, wa(Te, Ue) + 0, Xo),

,8’()6(:(76) 2 G(gev _wy(jevye)a _ye)a

and

l:Xs 0 } < |: wxz(féaye) wxy(feage)
0 )/E wy:c (TE 9 —ge) wyy (EE b ye)

for some Z, §, € R, where |Z, — T| < Cy/€ and |j, — y| < C+/e for some positive
constant C' independent of ¢, 6, and 7).

Next, working as in Case A we pass to the limit as € | 0 and using Lemma 3.2 we
derive (4.23) for T = 0. Finally, we use (4.21) and (4.22) and we send first 6 | O, then
6 | 0 and last n | O to conclude.

Proof of Lemma 4.1. We first observe that (4.18) yields
(4.24) X+Y <o

Let 7w} and 7r2, satisfying 7 < a; and m3 < a,, be the points where the constrained
maxima of [§0?7%X + (b — r)wp] and [—10?n?Y + (b — r)mp] are, respectively, achieved.
We look at the following cases.

Case 1. 7 = a; and 75 = ap. Then

% w2 X + (b — r)wp] — max [—%0271'2}/ +(b— r)ﬂp]
o} (aiX + a3Y) + (b—r)plar — az).

(4.25) [
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Multiplying both sides of (4.19) by the positive definite matrix
Sl
ajay a3

%(a%X + a%Y) < %(al —a,)?A

and taking the trace, yields

which, combined with (4.25), gives (4.20).
Case 2.

* (b—T)p
e ax

Then, the maxima are unconstrained and we easily get

and T = %.

max [%027r2X +(b— r)wp] — max [—%azﬂzY +(b— r)wp] < mf.x[%ozﬂz(X + Y)] =0

where we used (4.24).
Case 3. mf = —(b—r)p/0*X < a; and 7; = a,. Then

1 25 I G A (e L]
max [20 X + (b r)vrp} = sy < 5P

and

1 1
max |:-—§0'27T2Y +(b— 7‘)71'])} = —EozagY + (b —r)azp.

w<ap

If Y = 0, (4.20) follows immediately. If Y > 0, then by assumption, (b — r)p/c?Y > a,.
Therefore,

(b—r) 1 (b—r) 1 (b—r)
5 WP —Eazagy + (b—r)azp| = 3 pla; —ax) + Eoza%Y -5 —@p
b—r 1
= ( ) )p(al —a) + Eaz[azazY —(b—r)p]
b—r
< (—2—)17((11 — ap).
Case 4. 77 = a; and 75 = (b—r)p/c*Y . This case is easily reduced to Case 2. 0

Proof of Lemma 4.2. Relation (4.21) follows directly from (4.7) and (4.8). To show
(4.22), since f is Lipschitz, it suffices to show limg o limsjo 02¢(6, ) = 0. Indeed, from
(4.7) we have

(4.26)  u(xg) — v(zo) — 0x0(0,6) > [W(T) — v(T) — OFT] — wy (K1(0)6) — wy(knd)

which in turn implies (for fixed 6) sups. o zo(0,6) < +o0.

Therefore, there exists Zo(6) such that lims_oxo(6,6) = Zo(#). The limit here is
taken along subsequences which, to simplify notation, we denote the same way as the
whole family. By sending § — 0, (4.26) combined with (4.5) implies

4.27) uw(To) — v(To) — 0To > [u(z) —v(z) — 2] VY € Q.
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We now send § — 0. If limg o 0o = o # 0, again along subsequences, (4.27) yields
supg[u — v] — o > supg(u — v] which implies supg{u — v] < 0, which contradicts (4.5). O
Remark. In the case f = oo, we assume

sup[u(z) — v(z) — 02°] > 0
for some 6 € (7, 1), and we argue as before.

S. In this section we show that the value function is a smooth solution of the Hamilton—
Jacobi-Bellman equation and we characterize the optimal policies.

THEOREM 5.1. The value function v is the unique continuous on [0, +00) and twice
continuously differentiable in (0, +00) solution of (1.8) in the class of concave functions.

Before we go into the details of the proof of the theorem we describe the main ideas.
We will work in intervals (x;,x;) C [0,400) and show that v solves a uniformly elliptic
HIB equation in (z;,x,) with boundary conditions v(z,) and v(x;). Standard elliptic
regularity theory (cf. Krylov [23]) and the uniqueness result about viscosity solutions will
yield that v is smooth in (zy, ).

We next explain how we come up with the uniformly elliptic HIB equation. Formally,
according to the constraints, the optimal 7* is either f(z), if

b—1r vy(x) b—r v.(x) . b—1 vy(x)
o? Uwz(x) 2 flz) or = o? 'Uzz(x), - o? U:mc(x)

< fl@).

In the second case, we want to get a positive lower bound of 7* in [z, z]. Since v, is
nonincreasing and strictly positive, it is bounded from below away from zero. Therefore,
it suffices to find a lower bound for v .

An important feature of the proof is the approximation of v by a family of smooth
functions (v¢) which are solutions of a suitably regularized equation. Next, we define the
v¢’s and discuss their main properties.

Let W/ be a Wiener process which is independent of W; and is defined on some
probability space (', F', P'). We consider the process W; = (W;, W}!), which is a
Wiener process, on (2 x Q',F,P x P') and F = o(F x F') where o(F x F') is the
smallest o-algebra which contains F' x F'!. Let € be a positive number. A real process
(C¢, 7€) which is F;-progressively measurable is called an admissible policy if:

+oo
@) Cf>0 as. Vt>0 and Cids < +00  as.
0
+o0
(ii) / (m€)%ds < 00 as. and 7§ < f(XF) as.Vt >0 where f satisfies
0
(1.4);

(iii) X; >0 as.Vt>0, where X is the trajectory given by the state equation

dX§ = [rX{ + (b—r)nf — Cfldt + on§dW, + oeXsdW/ (¢t > 0)
X§ =z (2€]0, +00))

using the controls (C€, 7€).
We denote by AS the set of admissible policies. We define the value function v* by

+o0
ve(z) = supE/ e PtU(C)dt,
4z Jo
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where U is the usual utility function. Using arguments similar to those in Propositions 2.1
and 2.2 we can prove that v¢ is concave, strictly increasing in z, and uniformly continuous
on Q.

Using a variation of Theorems 3.1 and 4.1, we have that the value function v¢ is the
unique constrained viscosity solution on Q of the equation

1

5.1) Bv= max |z} (7? + Ex?)vs, + (b— r)mvl | + max[—cvs + U(c)] + rave.

T T x T
r<f(z) |2 ¢>0

We next consider a sequence (v§) with

+o0o

v (z) = sup E/ e PtU(Cy)dt (zell).
At Jo

The set A*L of admissible policies consists of pairs (C*, 7%) such that C&L reL

are Fi-progressively measurable satisfying (i), (ii), and also —L < ﬁf’L almost surely for
allt >0,

Working as in Theorems 3.1 and 4.1, we get that v{, is the unique constrained viscosity
solution of €2 of

(5.2) fvf, = —Lgragxf(w) [%szzvi,m +(b— T)in,m]
+ m>a\())([—cv‘L’x + U(C)] + Tx'UGL,z

and, also, the unique viscosity solution (see [16]) of

— 1522 —
(5.3) + mg())([—cuz + U(c)] + rau, (ze[T), 1))
u(zy) = v (zr),  u(zz) = v ().

On the other hand, (5.3) admits a unique smooth solution » which is also the unique
viscosity solution; therefore, v§ is smooth which, together with the fact that v§ is increasing
and concave, yields that v§ is also smooth solution of

_ 122
Bu = Osﬂmg}((x) [50 T Uz + (b — r)vrux]
+ m;i())([—cum + U(c)] + rauy
u(z) = vg(z),  u(zz) = v (@)

We next observe that there exists w concave such that v{ — w, as L — oo, locally
uniformly in 2. Therefore, w is a constrained viscosity solution of (5.1) and, by uniqueness

of viscosity solution, it coincides with v¢. This also implies that v¢ is a viscosity solution
of

Bu= max [%azwzum +(b— r)wuw]
0<w< f(x)
(5.4) + m>a())([—cum +U(c)] + rau,
Cc

w(zy) = vé(z), u(z) = v¢(x2).

Equation (5.4) admits a unique smooth solution which is the unique viscosity solution.
Therefore v¢ is smooth.
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Proof. Consider an interval [z;,z2] C [0,400) and let [T, %] and [X, X;] with
X > 0 be such that [z, 23] C [Z1,%2] C [X1, X2]. Since v is concave and increasing, its
first and second derivatives exist almost everywhere. Without any loss of generality, we
can assume that v, (X,) and v,(X;) exist. The reason for this will become apparent in the
sequel.

We are now going to prove that the optimal portfolio 7€ of the approximating problem
is bounded from below by a positive number which is independent of € (of course it may
depend on (x,z;)). To this end, it suffices to show that

b— €
' Vs Z¢>0 on [z, x2].

2 €
g Uiz

We first show that v¢ — v locally uniformly on €. Indeed, v¢ and v¢ are bounded
locally by u and w/x where u is the value function with f(x) = +o0o and € = 0. This
follows from the fact that v¢ < u¢ < u (where u¢ is the value function with f(z) = 400
and € > 0), which can be proved by using a similar comparison result as in Theorem 4.1.
Therefore, there exists a subsequence {v*»} and a function w such that v** — w locally
uniformly in €. Moreover, an argument similar to the proof of Proposition 2.2 yields that
lim,_,g v¢(z) = U(0)/3 uniformly in ¢, therefore w(0) = U(0)/[.

Using a variation of Proposition 1.3 in [27] we get that w is a constrained viscosity
of (1.8). Moreover, since w is concave, using Theorem 4.1 we get that it is the unique
constrained viscosity solution of (1.8). Therefore, we conclude that all subsequences have
the same limit which coincides with v. Using that v — v locally uniformly and the fact
that v¢ and v are concave, we get that lim._,ovS(zg) = v.(x¢) at any point xy where
vy (o) exists. Taking into account that v¢ is nondecreasing in [ X, X;], we conclude that
there exist positive constants Ry = R;([X,, X2]) and R, = Ry([ X, X3]) such that

(5.5) R <vi(z) <R, on [CL",IEQ].
We next show that there exists a constant R = R([X, X3]) such that
(5.6) [vS. ()] > R on [zy,x,].

To this end, let ¢ : Bt — BT be as follows:
(i) ¢ € C§° (i.e., ¢ is a smooth function with compact support);
(i) ¢ =1 on [z1,22],{ =0 on B\[Z|,T,], and 0 < { < | otherwise;
(iii) ¢z < MCP,|Cpe) < MCP with O <p < 1 and M > 0.
From now on, for simplicity we suppress the e-notation. We next consider a function
Z : (X1, X;] — Ik given by Z(x) = (*v2, +\v2 — pv, where A and y are positive constants
to be chosen later. We are interested in looking at the maximum of Z on [X, X,]. The
following cases can happen.
Case 1. The function Z attains its maximum at a point zo ¢ supp ¢. Then using (ii)
and that v > 0,v, > 0, we get

V2 (x) < M(zo) + pv(z) Va € [z, 2]
which implies (5.6).

Case 2. The function Z attains its maximum at the point o € supp (. In this case
we have

(5.7) Zo(m) =0 and  Zup(20) < 0
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where

(5-8) Zy = 20CaVhy + 20 000Vaga + 2MaVzs — 0o
and

(5.9) Zw = 202, + 2CCunt2, + BCCotaVnae + 2002,

+ 20020 Vpar + 2002, + 2M000000 — UWUss

We examine each of the following cases separately.
Case 2(a).

0 € A = {336 [x1,22] : ——b—r v3(2) <f(:c)}.

o vg,(x)

In this case the Bellman equation has the form

2
1
(5.10) Bu = —’y;}—z + 50005 — ol (v2) + U(I(v2) + v,
xrxr

with v = (b—r)%/202. Here we used that max.>o[—cp + U(c)] = —pI(p) + U(I(p)) with
I = (U’)~". After differentiating (5.10) twice and rearranging the terms we get:

2 2,2
viv 1 VY
— T :zcxacac _ 5620,21:21}3““lc — T 3za:a: — _,szz
(5.11) - o Vs
) VgV VU
+ me[z'f' _ 2,)/ + 620'2] + 27 Tv TTT 3,}/ zv3zzz
Tx

T
+ Vpga[rr — I(vg) + 2620%x] — 02, I (v,).

On the other hand, (5.7) yields

UHED) 1555
— |: Uilx(x—-—o) + 56 ag ‘Tojl sz(fl:()) Z 0

which, combined with (5.9), yields

2 2 2,2
Vg 1 2. 2.2 2 VgVzaza 1 2.2.2 VaVgza
- [’7_ + 55 o Zzz = 2< Vg _717 — R€ 0 X VUggax — Y3

Uz Ve 2 V3
+ 220, | —yvs — l6202:1:211 — @fﬂ + ﬁ + lezazxzv
(5.12) i M B xx — U%z HY - ) Tz

Vs Vpaa
— 2920 — 0?2?22, — 2903 Coe — T2 02 (aaVl, — 87((

Vg
2,22 22,222 2.2.2,2
— dx°eo Cvaszzzz_G o T Uzzz_)\l’ €0 Ve ZO,

where all the expressions are evaluated at x.
Using (5.10), (5.11), and

— _1222 _Ui'U.rmz_ [ '—I( )+22]
(5.13) Tz zeam”mz Y5 = Vzz|TT V) + €0

+Ux(r - 3’7) — Bug
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which follows from differentiating (5.10) once and rearranging terms, we obtain from (5.12):

—28¢%02, + 2C2(2r — 2y + €20H)v2, + 4y P pae — 6’y(2 vzv ixz
+ 2C V30 Vgaz [rx — I(vg) + 2€6%0%x] — 2<2vim1’(vw)m
+ 200,05 [re — I(vg) + €0%a] + 2A(r = 37)v} — 20303 + 27#%
+ pg[—re + I(vy)] — pU(I(vy))
+ Buv = 296302 — otad(Rod, — 202G — o (G, — 870

2.2 2 2,2 2.2 2 2
— 422202 ((VpaVprs — €20°T gcvxm—)\a;eav > 0.

v vl‘il::t

x
A further calculation yields that at z,

(rz — I(vg) + €0%2)(2CPV00Vazs + 2M02000 — pU2) + 2C2 €202 0022 Vns

2.2
€0
+ 620'2/141‘1)93 — Zﬁgzvfm —4 (’)’ —7r = T) 'Uwg; + 4'}'( VeV
2 2 2

— 6K (2T " m — 2ABv2 — 2A(3y — 1)Vl + P + ZW%— — pU(I(vz))
xrx rxr
VU
= 29C30} = 29CGaav; — #1¢ 4 0% G v lVae = (P
- )‘Uazc ]” 6202 2 %vazr:x zxzcgzzv > 2C2 3 I/(v:c)'

(5.14)
If A(7) = 2¢%V00Va0e + 2A\V0V0 — v, (5.7) and (5.8) imply

A(o) = —2¢(0) e (€0) V3, (20)-
Then (5.14) becomes
=202, (re — I(vy) + 0?z) — 26¢*03, — 2ABv; + pfv — 2A(3y — r)v}
2

2’Y,U| |~ pU (I(vg)) — 2vC20E — 02?2, — €070 CCoavl, — 27CCaavs
II

62 2 2 2 ’U v
+ [-—4 o e __g_) C? .t 40, Vgy — 6y(2—EEEE Uz :mm; 4 8y(C( mcx}

2¢
+€202$2 [(4CC$ - ? !walvzxm - sziaxc - )‘vim] + 6202/”%

> 2¢% 03, ' (vg).-
(5.15)
Let

'U Umxx

6202 2,2 2 2V “xlzTT i:m:
B(.’E) =-4 S _2_— Vex + 47( Vg Vgxa — 6 C 'U +8 CC:E

and
= 2¢? 2,2 2
C(CB) - 4CC€E - 7 I'U;mclvam:x - C Vegr — )\’sz
Let ¢ sufficiently small and 6 € (0, %). Using the Cauchy-Schwartz inequality we get

(5.16) Bx ><C(Cw( $(20) 2 (50 + (a0) muo))

for some positive constant C.
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A similar argument yields

2
5.17) Clao) < 12, (x0) [(zcm(m - oy —/\].

We next choose A so that A > 4¢2 + (2/2%) on [Z},72]. Then C(zo) < 0. If we leave
out all the negative terms in (5.15) and use (5.16) and (5.17) we get

v2,,(20)[—2¢(0) G (o) [rxo — I(vz(0))) + 2e202 0]
—ezx(z)azC(xo)sz(wo) + C¢*(z0))
.18 rodan) [0 — 2 (0] o)
+u[Bu(x0) 4 2€02Tov,(10))]
> 2¢(0)?03, (20) I’ (v (z0)).

We now return to the e-notation. From (5.5) we have

(5.19) I(vS(w)) < I(Ry)
and
(5.20) [ (vg(20))| < [I'(R2)I-

From (5.18), (5.19), and (5.20) we get that for some constants ky, k;, k3, and k4,
Vg0 (0)2 k1€ (20) e (20) | + ka€(20)|Caw (@0)] + CCP(20)] + ka > ka(0)?[v5, (o) .
Using property (iii) of ¢ with p = % we obtain
(5.21) C1v5, (20)°[¢(20)? + ¢ (w0)' ™) + k 2 ks((w0)* 05, (20)

for some C; > 0. Now if w(zg) = ¢2(20)|vS, (z0)]?, then w(xo)?/? = ¢(wo)*/?|vE,, (x0) .
In view of property (ii) of ¢, (5.21) yields

2C'|w(x0)2/3 - k > k3w(:co),
for some k > 0 and, therefore,
w(wo) <N

where N = N(C, K, K3) is independent of e.
Thus

(V) 4+ M) — pvf < N3 4 A (20))? — pvt(zo) on [z, 23],
i.e., there exists a constant L, independent of e, such that
[ve,| < Lyon [z, z)].
Case 2b.

b—r vi(x)

ToeA) = {ze[:m,xz] P - @ > f(ac)}




82 THALEIA ZARIPHOPOULOU

In this case,

€ b—r Rz
[0S (xo)| < Ly on [z, z2] where L, = 7m
Therefore,
(5.22) [vi.| < R on [zy,z2].
where R = max(L;, L,), independent of e.
Combining (5.5) and (5.22) we see that
b—r v . b—r R
— o >B>0 on|z,z,] with B= = R
Let us now consider the equation
=, n 176 + € Ntan £ 0y
(5.23) + m>a(>)([—cuz +U(c)] + reu,

u(zy) = v(xy), ul(x) =v(x2) (zelzy,x2]).

In view of the above analysis, we know that v¢ solves (5.23). Let ¢ — 0. Since v — v,
locally uniformly, v is a viscosity solution of

_ 122 _
Bu = Bgr;rlg);(x) [20 T Ugy + (b r)wuz]
(5.24) + m>a())([—cuz + U(c)] + rauy(ze[zy, x2])
cz

u(xy) =v(xy), u(z) =v(x).

On the other hand, (4.21) admits a unique smooth solution « (see [23]) which is the unique
viscosity solution (see [16, Thm. I1.2]); therefore v is smooth. 0
THEOREM 5.2. The feedback optimal controls C* and ©* are given by
b—r v(x)
0% vgpe(x)’

c*(z) = I(vg(x)) and 7*(x)= min {— f(:c)} for x > 0.

The state equation (1.3) has a strong unique solution X, corresponding to Cf = c*(X})
and T = 7*(X}) and starting at x > 0 at t = 0, which is unique in probability law up to
the first time T such that X} = 0.

Proof. The formulae for 7* and C* follow from a standard verification theorem (see
[11]) and the equation. We now show that 7* and C* are locally Lipschitz functions of z.
It is clear that v, is locally Lipschitz because in any compact set K there exists a constant
C = C(K) such that |v,,| < C(K), (zeK). Therefore C* is locally Lipschitz. Moreover,
from the Bellman equation we have that

Vge = H(a:,v,vx)

where
Hiz,v,0,) = 280 =0 =1 (@) ;1?(;()?) — U(I(v2) + rav,]
it T )

02 Uy
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and

b—r v2 i b—r v,

Hw,v,v2) = = 202 Bu —ravg + v,1(vy) — U(L(vy)) 02 g < /(@)

Since v, is locally Lipschitz we get that v,, is also locally Lipschitz. Therefore (see
Gikhman and Skorohod [14]) equation (1.3) has a unique strong solution X in probability
law up to the first time 7 such that X} = 0. O

6. In this section we discuss the finite horizon model and we state results about the
value function and the optimal policies.

The investor starts at time ¢ € [0,7") with an initial endowment x, consumes at rate
C; and invests 70 (respectively, ) amount of money in bond (respectively, in stock) for
t < s < T. The prices of the bond and the stock satisfy the same equations as in the
infinite horizon case. The wealth of the investor X, = 7r2 + 7ms(t < s < T) satisfies the
state equation

©.1) dXs =rXsds+ (b—r)msds — Cyds + oms dW (t<s<T)
’ Xi==x (z > 0).

The agent faces the same constraints as in the infinite horizon case. In other words,
the wealth must stay nonnegative; the agent cannot consume at a negative rate and must
meet borrowing constraints (75 < f(X,) fort < s <T).

The total utility coming both from consumption and terminal wealth is

J(z,t,C,w)=F

T
/ U(Cy)ds + @(XT)]

where U is the usual utility function and ® is the bequest function which is typically
concave, increasing, and smooth.
The value function is

Az, t) = sup J(z,t,C,m)
Afet)

where A, ;) is the set of admissible controls.
In the sequel we state the main theorems. Since the proofs are modifications of the
ones given in the previous sections they are not presented here.

THEOREM 6.1. The value function is the unique continuous on 0 x [t,T] and
C*Y(Q x (t,T)) solution of

I
62 vy + nrgnfl()g;) [iozwzvm + (b — r)wvz] + r?g())([—cvx +U(c)] +rav, =0

v(z,T) = ®((z)

in the class of concave (with respect to the space variable x) functions.
THEOREM 6.2. The feedback optimal controls C* and ©* are given by C} = c¢*(X/,t)
and Ty = 7 (X}, t) where C*(z,t) = (U') " (vy(z,t)) and

b_rw,f(x)} for x> 0.

02 Vgy(x,t)

7" (x,t) = min {—
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