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CONSUMPTION-INVESTMENT MODELS WITH CONSTRAINTS*

THALEIA ZARIPHOPOULOU

Abstract. The paper examines a general investment and consumption problem for a single agent who
consumes and invests in a riskless asset and a risky one. The objective is to maximize the total expected
discounted utility of consumption. Trading constraints, limited borrowing, and no bankruptcy are binding, and the
optimization problem is formulated as a stochastic control problem with state and control constraints. It is shown
that the value function is the unique smooth the associated Hamilton-Jacobi-Bellman equation and the optimal
consumption and portfolios are provided in feedback form.
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Introduction. This paper treats a general consumption and investment problem for a
single agent. The investor consumes wealth Xt at a nonnegative rate Ct and distributes it
between two assets continuously in time. One asset is a bond, i.e., a riskless security with
instantaneous rate of return r., The other asset is a stock whose value is driven by a Wiener
process.

The objective is to maximize the total expected (discounted) utility from consumption
over an infinite trading horizon and the total expected utility both from consumption and
terminal wealth in the case of finite horizon. The investor faces the following trading
constraints: Wealth must stay nonnegative, i.e., bankruptcy never occurs, moreover, the
amount 7rt invested in stock must not exceed an exogenous function f(Xt) of the wealth at

any time t. The function f represents general borrowing constraints, which are frequently
binding in practice, such as in portfolio insurance models with prespecified liability flow,
models with nontraded assets, stochastic income and/or uninsurable risks, etc. The pos-
sibility of imposing short-selling constraints, which amounts to requiring 9(xt) <_ 7rt for
some exogenous function 9, is addressed in detail in 1. Finally, the agent is a "small
investor," in that his or her decisions do not affect the asset prices and he or she does not
pay transaction fees when trading.

This financial model gives rise to a stochastic control problem with control variables
consumption rate Ct and portfolio vector (Trt, 7rt), where 7rt and 7rt are the amount of
wealth invested in bond and stock, respectively. The state variable Xt is the total wealth
at time t. Finally, the value function is the maximum total expected discounted utility.

The goal of this paper is to determine the value functions of these control problems,
to examine how smooth they are, and to characterize the optimal policies. The basic tools
come from the theory of partial differential equations, in particular the theory of viscosity
solutions for second-order partial differential equations and elliptic regularity. We first show
that the value functions are the unique constrained viscosity solutions of the associated
Hamilton-Jacobi-Bellman (HJB) equation. Then we prove that viscosity solutions of these
equations are smooth. Finally, we obtain an explicit feedback form for the optimal policies

The paper is organized as follows: In we describe the model and we give a summary
of the history of consumptioninvestment models in continuous-time finance. Sections 2-
5 deal with the infinite horizon model. More precisely, in 2 we describe basic properties of
the value function, and in 3 we characterize the value function as a constrained viscosity
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solution of the HJB equation. Moreover, in 4 we prove that the value function is the
unique constrained solution of the HJB equation. In 5, we show that the value function is
also a smooth solution of this equation and we provide the optimal policies. Finally, in 6
we state results for the finite horizon model.

1. We consider a market with two assets: A bond and a stock. The price Pt of the
bond is given by

po, (po > o),

where r > 0 is the interest rate. The price Pt of the stock satisfies

(1.2) dPt bPt dt + aPt dWt (t O)
e0=p, (p> 0),

where b is the mean rate of return, a is the dispersion coefficient and the process W., which
represents the source of uncertainty in the market, is a standard Brownian motion defined
on the underlying probability space (,F,P). We will denote by Ft the augmentation
under P of F (Ws "0 s t) for 0 < t < +. The interest rate r, the mean rate
of return b, and the dispersion coefficient are assumed to be constant with 0 and

The total cuent wealth Xt + t is the state variable and w and wt are the
amount of wealth invested in bond and stock, respectively; Xt evolves (see [40]) according
to the equation

dXt rXt dt + (b r) dt Ct dt + t dWt (t O)
x0 [0,

where z is the initial endowment of the investor.
The control process are the consumption rate Ct and the pofolio wt. To state their

propeies we introduce the following sets"

E+ zt zt is Ft-progressively measurable process, zt 0 a.s. Vt 0

and z ds < + a.s. Vt 0

zt’zt is Ft-progressively measurable process

ds<+a.s. Vt>0and z

The set N of admissible controls for z [0, +) consists of all pairs (C, ) such
that:

(i) C +,
(ii) .
Moreover; t f(Xt) almost surely for all t 2 0, where the function f’[0, +)

[0, +) has the following propeies"

(1.4) f is increasing, concave, f(0) 0 and

(iii) Xt 0 almost surely for all t 2 0, where Xt is the trajectory given by the state
equation (1.3) using the controls (C, ).



CONSUMPTION-INVESTMENT MODELS 61

The function f represents the borrowing constraints that the investor must meet; these
constraints, are present in models with prespecified liabilities such as problmns of manage-
ment of funds as well as in models with uninsurable risks. The possibility of short-selling
constraints, i.e., 9(z) <_ 7r, is not examined in this paper for the following reasons: First,
if 9 -< 0, the short-selling constraints can be removed because the model is of constant
coefficients with b > r (see, for example, [40] and [8]). Second, if 0 < 9(z) <_ 7r this only
facilitates the analysis presented here and therefore this case is not discussed.

All the results in this paper hold for the case f _= oc, which was studied in [18],
provided that some of the arguments in what follows are slightly modified. We will not

pursue this any further in this paper unless it is necessary for the study of the f oc
case. On the other hand, we will occasionally use some results of [18] only to facilitate
the presentation and avoid lengthy arguments.

The total expected discounted.utility J coming from consumption is given by

J(, C, r) E e-U(C) dt

with (C, rr) .A, where E9 denotes the expectation of 9 with respect to the probability
measure P,/3 > 0 is a discount factor such that

(1.5) /3 > r,

and U is the utility function, which is assumed to have the following properties:

U is a strictly increasing,,, concave C2(0, +oc) function such that

(1.6) U(c) 5_M(I+c)’ with0<3,< and M>0,
U(0) > 0, lim U’(c) +oc, lim U’(c) O.

C---0

The value function is given by

f0(1.7) v(z) sup E e-;tU(Ct) dr.

To guarantee that the value function is well defined when U is unbounded, we assume that

/ > r7 + 7(b- r)/a2(1 -7).

The above condition yields that the value function which coesponds to f + and
U(c) M(1 + c)7, and thereby all value functions, are finite (see [18]).

The goal is to characterize v as a classical solution of the HJB equation, associated
with the control problem, and use the regularity of v to provide the optimal policies.

We now state the main results.
TOM 1.1. The value function v is the unique C2((0, +))C([0, +)) solution

of

(1.8) v max [22v + (b- r)wv] + max[-cv + U(c)] + rzv
f(z) cO

in the class of concave functions.
THEOREM 1.2. The optimal policies C and are given in the feedback form

; c* (Xt), * (Xt) where

c*(z)-(U’)-l(v(z)) and *(z)-min{f(z) **(.)
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We continue with a brief discussion of the history of the model.
The single agent consumption-portfolio problem was first investigated by Merton in

1969 and 1971 ([28], [29]): He assumed that the returns of asset prices in perfect mar-
kets satisfy the "geometric Brownian motion" hypothesis and he considered utility func-
tions belonging to the hyperbolic absolute risk aversion (HARA) family, i.e., U(c)

-"7/’7[/3c/1 -’7 + r/] ". Under these assumptions, he found explicit formulae for the
optimal consumption and portfolio in both the finite and infinite horizon case. Moreover,
he showed that the optimal policies are linear functions of the current wealth if and only if
the utility function belongs to the HARA family.

In Merton’s work, the portfolio is unconstrained, which means that unlimited borrowing
and short selling are allowed. Moreover, the consumption process has to stay nonnegative
and bankruptcy should never occur. Extra restrictions on the parameters/3, "7, and r/were
later imposed by Merton [30] and Sethi and Taksar [34] to meet the above feasibility
conditions.

Another important contribution is the work of Karatzas et al. [18], which is a con-
tinuation of work initiated by Lehoczky, Sethi, and Shreve [25]. Reference [18] examines
a model with constant coefficients when borrowing and short selling are allowed (i.e.,
f oc) and provides solutions of the Bellman equation in closed form. The possibility of
bankruptcy is treated in this paper as well as in Sethi and Taksar [33]. The special case of
a finite horizon model with constant market coefficients is examined by the same authors
in [19]. The fact that borrowing and short selling are allowed is used strongly in [19] (see
also [4]) to "linearize" the fully nonlinear Bellman equation to get a system of two linear
parabolic equations. Solving these linear equations, they obtain a closed-form solution of
the HJB equation.

The Bellman equation can be also linearized when only short-selling constraints are
imposed; such a model was studied by Shreve and Xu [35], [36] and Xu [39] in a fi-
nite horizon setting in incomplete markets. Such linearization cannot be done if general
borrowing constraints are imposed, which is the case we treat in this paper.

A different approach to studying investment-consumption problems with constraints in
continuous-time finance was introduced by the author in [40], which studies an investment
consumption model with borrowing and short-selling constraints, i.e., 0 <_ 7rt < Xt. This
new approach is based on the theory of viscosity solutions of nonlinear first- and second-
order partial differential equations and appears to be flexible enough to handle a wide
variety of problems with constraints and related asymptotic problems, e.g., convergence of
numerical schemes, asymptotic behavior, etc.

The asymptotic behavior of the value function and the optimal policies for the model
with constraints and different interest rates were examined by Fleming and Zariphopoulou
in [13]. Mt)reover, numerical results for the optimal policies and the value function were
obtained by Fitzpatrick and Fleming in [10]. A consumption-investment model with lever-
age constraints (i.e., f(z) x + L, L > 0) was examined by Vila and Zariphopoulou in
[381.

Finally, a martingale representation technology has been used by Pliska [32], Cox and
Huang [4], Pages [31], and Karatzas, Lehoczky, and Shreve [19] to study optimal portfolio
and consumption policies in models with general market coefficients. Moreover, the case
of incomplete markets with short-selling constraints in the finite horizon setting has been
examined by He and Pearson [15], Xu [39], Shreve and Xu [35], [36], and in the absence
of constraints by Karatzas et al. [20].

After this paper was submitted, the author received a paper by Cvitanic and Karatzas
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[7]. This paper uses martingale and convex duality methods to study a finite horizon model
with nonconstant coefficients and constrained portfolio policies but with utility functions
which are more restrictive than the ones used in this paper; in particular, they only consider
the case of utility functions with Arrow-Pratt index less than one.

2. In this section we derive some basic properties of the value function.
PROPOSITION 2.1. The value function, v is concave and strictly increasing.
Proof. The concavity of v is an immediate consequence of the concavity of the utility

function U and the fact that if (C 7r ) E .Ax,, (C2, 7r2) E .Ax2, and A (0, 1), then
(AC + (1 A)C2, ATv + (1 A)-2) Ax,+(l-)x.; the latter follows from the linear
dependence of the dynamics (1.3) with respect to the controls and the state variable.

<That v is increasing follows from the observation that .A, c tx2 if 3:1 372. If v
is not strictly increasing, then it must be constant on an interval, which, by concavity, has

to be of the form [370, x) for some 37o-->0, i.e., there must exist 37o [0, +x) such that

v(37) v(370), for all 37 37o. In this case, fix e > 0 and choose (C, 7v) A0 such that

If

u-’ z dt +
max x0,

r

the policy (C, ) (rx, O) is in A:,. Therefore

riO
A-

V(Xo) < -U(rxl) ] e-tU(rxl) dt <

which contradicts our assumption.
PROPOSITION 2.2. The value function v is uniformly continuous on ft [0, cx:) and

(0) U(O)/.
Proof. Since (0, O) Ao, v(O) > U(O)/. On the other hand, v u in [0, +), where

u is the value function with f +cx studied in [16]. Since (cf. [18]) u(0) U(O)/
and u C([0, +cx)), it follows that v(0) U(O)/ and v is continuous at x 0. The
continuity of v in (0, +x) follows from concavity.

Finally, since v is uniformly continuous on compact subsets of f, we remark that its
uniform continuity on ft follows from the fact that, by concavity, v is Lipschitz continuous
in [a, +x) with Lipschitz constant of order 1,/a for every a > 0.

PROPOSITION 2.3. The value function satisfies v(x) <_ O(x
Proof. Since v <_ u on $2, where u is the value function with f +cv and U(c)

M(1 + x), we only need to check this upper bound for u.
On the other hand, a direct modification of the proof of Theorem 4.5 in [13] yields

that if U c’ (as c --, oc), then u x (as x - oc). [3

We conclude this section by stating (for a proof see [1], [26]) a fundamental property
of the value function known as the Dynamic Programming Principle.

PROPOSITION 2.4. If 0 is a stopping time (i.e., a nonnegative U-measurable random
variable) then

(2.1) v(x) sup E e-ZtU(Ct) dt + e-v(Xo) (x -).
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3. In this section we show that the value function v is a constrained viscosity solution
of the HJB equation associated with the underlying stochastic control problem. The char-
acterization of v as a constrained viscosity solution is natural because of the presence of
the state (Xt _> 0) and control (Trt <_ f(Xt)) constraints.

The notion of viscosity solution was introduced by Crandall and Lions [6] for first-
order and by Lions [27] for second-order equations. For a general overview of the theory
we refer to the User’s Guide by Crandall, Ishii, and Lions [5].

Next we recall the notion of contrained viscosity solutions, which was introduced by
Soner [37] and Capuzzo-Dolcetta and Lions [3] for first-order equations (see also Ishii and
Lions [16] and Katsoulakis [21]). To this end, consider a nonlinear second-order partial
differential equation of the form

(3.1) F x u, Ux Ux 0 in

where f is an open subset of : and F ft x ]E x x ]E . is continuous and (degenerate)
elliptic, i.e.,

F(x,t,p,X+Y) < F(x, t, p, X) ifY >0.

DEFINITION 3.1. A continuous function u" -- ’ is a constrained viscosity solution
of (3.1) if and only if

(i) u is a viscosity subsolution of (3.1) on , i.e., if for any C2() and any
maximum point x0 f of u- ,

F(xo, <_ o;

and
(ii) u is a viscosity supersolution of (3.1) in f, i.e., if for any C2() and any

minimum point x0 f of u ,
 (xo, _> o.

Remark 1. We say that u C(f) is a viscosity solution of (3.1) in f if and only if it
is both sub- and supersolution in f.

Remark 2. As a matter of fact, we can extend the definition of viscosity subsolutions
(respectively, supersolutions) for upper-semicontinuous (respectively, lower-semicontinuous)
functions.

THEOREM 3.1. The value function visa constrained viscosity solution of (1.8) on f.
The fact that, in general, value functions of control problems and differential games

turn out to be viscosity solutions of the associated partial differential equations is a direct
consequence of the principle of dynamic programming and the definition of viscosity so-
lutions (see, for example, Lions [26], Evans and Souganidis [9], Fleming and Souganidis
[12], etc.). The main difficulty, however, in the problem at hand is that the consumption
rates and the portfolios are not uniformly bounded. This gives rise to some serious com-
plications in the proofs of the results of the aforementioned papers. To overcome these
difficulties we need to introduce a number of approximations of the original problem and
make use repeatedly of the stability properties of viscosity solutions.

Proof of Theorem 3.1. We first show that v is a viscosity supersolution of (1.8) in f.
Let C2() and x0 f be a minimum of v- ; without any loss of generality,

we may assume that

(3.2) v(xo) (xo) and v > in f.
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We need to show that

/3v(xo) > max rcr27r2pxx(xo)+(b-r)Trpx(xo)] + max[-c(zo)+ U(c)]
(3.3) f(zo) co

+ rzo (zo).
To this end, at (C,w) o such that Ct Co, wt o f(xo), for all t 0. The
dynamic programming principle, together with (3.2), yields

where X. is the trajectory given by (1.3) using th controls (Co, 0) and starting at z0 and
0 min(, 2), with n > 0 and r,= inf{t > 0"Xt 0}.

On the other hand, applying It6’s lemma to 9(t, Xt) e-t(Xt), we get

10 2zz(Xt)z[-(Xo)] (o) + - -(x,) +

+ (- )o(x,) Co(x) + dr.

Combining the above equality with (3.4) and using standard estimates from the theory of
stochastic differential equations (see [14]), we get

0[ 2wxx(x0)+ (b-r)o(xo)-(o) +

-Co(zo) + (Co) + rzo(zo) + h() as o,

where h(s) O(s). Dividing both sides by E(O) and passing to the limit as n yields

(0 [(0+ (b- 0(0] + -Co(0 + V(Col + o(o,

for every pair of constant controls (C0, o), C0 0, and 0 f(z0); inequality (3.3) then
follows easily.

We next show that v is a viscosity subsolution of (1.8) on .
We first approximate v by a sequence of functions (v,) defined by

v’(x) sup E e-t U(Ct)- p(Xt) at, (x a)
AN,

for > , N > 0, n > 0, and p(x) max(0,-x). The set of admissible policies AN,
consists of all pairs (C, ) such that

(i) C + and Ct N almost surely for all t 0,
(ii) and-n t f(Xt) almost surely for all t R 0, n > 0 where the

function f (denoted for convenience in the sequel by f) satisfies (1.4) and
coincides with f on [0, +);

(iii) Xt is the trajectory given by the stae equation (1.3) using the controls (C, ) and
starting at x .

It follows from the dynamic programming principle and the definition of viscosity
solution (see [27]), that v, is a viscosity solution of

v’ -<<f(x)max[a22v,xN, + (b r)v,Nn] + maxo<<N[--cv + U(c)]

+x2 p(x) (x e a).
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We next observe that as n ,
%N,n

__
vN, locally uniformly in ),

(see [22, Chap. 6]) where

v() sup E e-t U(Ct) p(Xt) dt (x )

and the set AN of admissible policies is defined in the same way as AN,n, but without a
lower bound on 7r.

It is immediate that

(3.5) vN in

and

(3.6) v

where, for x [0, +oc),

(3.7) vN(X) sup Ec[+
J0ix,N

e-tU(Ct)dt

and

Ax,N {(C, -) Ax "Ct < N a.s. Vt > 0}.

Moreover, the v’s are increasing and concave with respect to x. Both properties follow
as in Proposition 2.1.

Finally, the stability property of viscosity solutions (see [27, Prop. 1.3]) yields that vN
is a viscosity solution of

(3.8)

In the sequel we look at the behavior of the v’s on [0, +oc) as --, 0. Since the only
available bounds on the v’s are the ones stated above, we employ the limsup operation
introduced by Barles and Perthame [2]. To this end, we define

vN’* (x) lim sup vff (y) (x [0, +oc))
y O

and we claim that
(i) vN,* is an upper semicontinuous viscosity subsolution on of

(3.9)
(x e [o,

and
(ii) VN’* --’VN on t.
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We first obser,e that VN’* is increasing and concave on f. The first property is an
immediate consequence of the definition. For the concavity we argue as follows: The
concavity of vN,* in ft follows from the fact that, since the vff’s are concave in f and
uniformly bounded on f, they converge, as e 0, locally uniformly to a concave function
which actually coincides with vN,*. It remains to show that

(3.10) vN’* ((1 ,)x) >_ ,kvN’* (0)+(1 -/)vN’* (x)

forAE(0,1) andx>0.
Let (e,) and (y,) E F be sequences such that, as n --, oc, en 0, y, ---, 0, and

vN’* (0) lim SUPv,0,__,0 v(y). The concavity of vN yields

(3.11) vN (/ky, + (1 -/)x) > Av (y) + (1 A)vN (x)

On the other hand,

(3.12) vN’* (z) lim v(x) (x (0,

Indeed, let x [Xl,X2] with xl > 0. The concavity of vN’s and (3.5) yields that the

vN are locally Lipschitz on [xl,x2] with Lipschitz constant L independent of e, i.e.,

vN (y) <_ vN (x) + Lly- x (X, y [Xl, X2]);

therefore.

lim sup v5 (y) <_ lim sup v5 (x).
O y O

Moreover,

lim sup vN (x) lim v (x)
e---,O e--,O

since the v’s are increasing in e. Combining the last inequalities we get

vN’* (x)< lim vff (x)
e---0

which, together with the definition of vN,* yields (3.12).
We now observe that, for n large enough, ,ky + (1 ,k)x > a, for some a > 0.

Sending n ---. oc in (3.11) and using the properties of (e), (y), and (3.12) we conclude.
We continue with the proof of (3.9). We need to examine the following cases.
Case 1. f oc.
Let C2() and assume that vN,* - has a maximum at 0, which can be assumed

to be strict. We need to show

2-2(3.13) 3vN’* (0) < max cr x(0) + (b- r)x(0), + maxo<<N[-Cx(O) + U(c)].

First observe that the concavity.and monotonicity of vN,* imply (0) > 0. Inequal-
ity (3.5), along with the fact that the max with respect to r in (3.13) is unconstrained, implies
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that (3.13) holds if g)xx(0) >= 0. It remains to prove (3.13) if z(0) < 0. To this end, we
first extend g) to ]E- in C2() so that for some c > 0,

and

() < 0 (-, _< _< o)

N(_) < ,(0) (0) + (--.) .
Let x, be a maximum point of v - over [-, ]. If x, "-, the choice of

together with (3.6) yields

v(-) (-) (o) (o)

which is a contradiction. Moreover, 0 being a strict maximum of vn,* yields z,
for small enough. Since vff is viscosity solution of (3.8) we have

-p(x,) mx a(3.14) e
+ mx [-(,) + v()] + ,z(,) (,).

0<c<N

We next observe that the right-hand side of the above inequality is finite since
x(x) < 0, (x) > 0 and --vU(x) < +oc, where the latter follows from

(x,) (,) >_ N (0) (0) >_ u (0) (0).

Let be a limit (along subsequence) of the x.’s. The definitions of p and (3.14) yield
Y >_ 0. Actually, Y 0.

Indeed,

and therefore

5() (o) >_ 5(o) (o)

VN’* (’) (-)

__
VN’* (0) (0)

which yields --0, since 0 is a strict maximum.
Moreover,

im v
N (x) vN’* (0).

Indeed, lim sups_.0 v(x) <_ vN,* (0). On the other hand, if lim sup__.o vN(x) < vN,* (0),
then vN,* (0)- ?(0) > limsupo[vN(x)- g(x)], which is a contradiction. Finally,
passing to the limit in (3.14) as e -- 0, we get (3.13).

Working similarly, we show that vN,* is a viscosity subsolution of (1.8) in (0,
It remains to show that

(3.15) vv’* vu on [0, +oc).

Since vv,* and Vu are, respectively, viscosity subsolution of (1.8) on [0, +oc) and
supersolution in (0, +oc), a comparison result similar to Theorem 4.1 (easily modified for
the case the consumption rates are uniformly bounded) implies

(3. 6) VN’* <----: VN on [0, +oc)

which together with (3.6) yields (3.15) in (0,
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Finally, the upper semicontinuity of vN,* implies vN,* (0) vN (0).
Case 2. f < +.
In view of the analysis above, we only have to examine the case xx(O) -O, i.e., we

need to show

flyN’* (0) <_ (b- r)f(0)px(0) + max [-epx(0) + U(c)]
0-_<c<=N

where we used that pz(0) > 0. We first observe

N NThis follows from the factthat U(O)/ < vN, (0) < v(0) and v(0) < u(0) U(O)//3,
N is given by (3.7) for fwhere

Using that max0<c<N[--cp(0)+ U(c)] > U(0), (3.17), and (0) > 0, we conclude.
We now conclude the proof of the theorem.
In view of the stability properties of viscosity solutions, to conclude the proof of the

theorem we only need to establish that as N

V
N

V, locally uniformly on .
To this end, fix x ft, > 0,. and choose (C’, 7r’) E 4 such that

+cx
(3.17) v(x) <_ E e-Ztu(C) dt + .
From the definitions of ,Az,N and 4 we have that (C A N, 7r) E ,A,N. Moreover, since
U is increasing and nonnegative, the monotone convergence theorem yields

e-tU(C A N)dt E foo+ e-ZtU(C)dt

which, combined with (3.17) and the definitions of vN and v, gives

(x)<_ f0 e-tu(c A N) dt + 2 <_ vN (x) + 2 for N >_ N().

Therefore, vN -- O as.N oc, for each x . On the other hand, since ON increases with
respect to N and v is continuous, Dini’s theorem implies that vN --+ v locally uniformly
on 9t.

4. In this section we present a comparison result for constrained viscosity solutions
of (1.8). Comparison results for a large class of boundary problems were given by Ishii
and Lions [16]. The equation on hand, however, does not satisfy some of the assumptions
in [16], in view of the fact that the controls are not uniformly bounded. It is therefore
necessary to modify some of the arguments of Theorem II.2 of [16] to take care of these
difficulties. For completeness we present the whole proof; we rely, however, on some basic
facts which are analyzed in [14].

THEOREM 4.1. If u is an upper-semicontinuous concave viscosity subsolution of (1.8)
on f and v is a boundedfrom below, sublinearly growing, uniformly continuous on f, and
locally Lipschitz in ft supersolution of (1.8) on ft, then zt <_ v .on ft.
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as
Before we begin with the proof of the theorem, we observe that (1.8) can be written

(4.1)

where G" $2 ]’ ]: -- ] is given by

r_

G(x,p,A) max [-azTrzA + (b- r)Trp| + max[-cp + U(c)] + ’xp.
r<_f(x) 1-" c>_O

An important ingredient of the proof of Theorem 4.1 is the sup- and inf-convolution
approximation of u and v, respectively. Next we recall their definitions and summarize
their main properties. For a general discussion about sup- and inf-convolution as well as
their use in proving comparison results for second-order PDEs we refer to Lasry and Lions
[24], Jensen, Lions, and Souganidis [17], and Ishii and Lions [16].

For e > 0 the sup-convolution of u is defined by

yEV

and, similarly, the e inf-convolution of v by

{ }(4.3) v,(x) inf v(z) + -Ix- zl 2 Vx f.
zEf2

It follows that the sup and inf in the definitions of u and v are actually taken for

(4.4) z -Yl-< Cx/c and

where C C(x) depends on the coefficients of the sublinear growth of u and v.
Moreover
(i) u is a viscosity subsolution of

,ux,Uxx)-0 inf,

where F’(z, t, p, A) min{/t-G(y, p, A) ly-zl < Cv/} and [2 {x C f2" x > Cv}"
and

(ii) v is a viscosity supersolution of

F(x,v,V,x,V,xx)-0 in

where

F(z,t,p,A)- max{fit-G(y,p,A)’]y-zl < Cv}.

Proof of Theorem 4.1. We present the proof of the theorem for the case f < +x. The
case f is discussed at the end of the section.

We argue by contradiction, i.e., we assume that

(4.5) sup[u(x)- v(x)] > 0.
xEg
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Then for sufficiently small 0 > 0

(4.6) sup[u(x) v(z) Oz] > O.

Indeed, if not, there would be a sequence 0n ,L 0 such that SUPxE-[u(x v(x) Onx] <_ O,
which in turn would yield SUPx-[u(x -v(x)] _< 0, contradicting (4.5).

Since u has, by concavity, sublinear growth and v is bounded from below, there exists
N E f such that

(4.7) sup 0.1

Next, for 5 > 0 and r/> 0 we define " f x f --, k by

4

and observe that for each fixed r/, attains its maximum at a point (x0, y0) such that for 5
small and some l(O) > O,

(4.8) lYo xo] _< 15.

Indeed, g) is bounded and

(4.9) sup (x, y) _> (x, x + 4r/5) _> u() v() 05 wv(kr/5)
x

where w, is the modulus of continuity of v and k > O. Using (4.6) and (4.7) we get

(4.10) sup (x, y) > 0
x

for 6 and 7! sufficiently small.
Next, let (x,, y,) be a maximizing sequence for p and observe that

Yn Xn

The last inequality, combined with the fact that u has sublinear growth, implies (4.8).
On the other hand, the choice of (z,, Yn) and (4.10) yields that the sequence (z,) and,

in view of the above observation, (Yn) are bounded as n oc. Hence, along subsequences,
(zn, Yn) converges to a maximum point of , which we denote by (x0, Y0).

We next fix 6 small enough and we consider for e E (0, 1) the function

v) w-(x)
y--x

47
4

where u and v are, respectively, the e sup- and inf-convolutions of u and v given by (4.3)
and (4.4).

In the sequel we need to study separately the cases 5 > 0 and 0.
Case A. > 0.
If 5 is small enough it follows that the point (x0, Y0) lies in a fixed compact subset

of $2 x $2. Moreover, the function achieves its maximum at a point that we denote by
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(,, if,), which lies in f, ft (see [16]). Since/3 > 0 we can apply Proposition 11.3 of
[14], according to which there exist X,, Y E ]R such that

Also,

and therefore

+O,X,) <0,

,-Y) >o.

(4.13) X, + Y, < O.

We next observe that there exists a constant c > 0 such that

(4.14) Y _> c.

We argue by contradiction. Let us assume that there exists a subsequence (Y,,) such
that lim,,__,0 Ye, Y < 0. From the definition of F, we have

/v()> max [-1/2a27r2y,-(b-r)Trwu(,-)]
r<_f( y,)

+ max[(, ,) + U(c)]- ,w,(, ,)
c>O

for some if, E [2 such that [f- 9,1 <- Cv. Sending en + 0 and using that v(f) <
U(N)//3, we get a contradiction.

Therefore, there exists Y $0+ or Y +oc such that limo Y Y (along a
subsequence). Moreover, (4.13) and (4.14) imply that there exists X - or X -oe
such that lim0X X (along a subsequence).

Sending e -- 0, inequalities (4.11) and (4.12) yield (see [16])

(4.15)
Zu(zo) <

v_
max |+cr27r2X + (b- r)Tr(wx(xo, Yo) + 0)[

<f(xo)

+ ((xo, o)+ o) + xo(x(Xo, o)+ o)

and

(4.16)
Zv(yo) >_ max [-1/2crzTrzY + (b-r)rWx(Xo, Yo)]r_<f(yo)

+ (x(Zo, o)) + oWx(Xo, o)

where we used that wx(xo, Yo) -wy(xo, Yo) and g(p) maxc>_o[-cp + U(c)].
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We now look at the following cases.
Case (i). X -. Inequalities (4.15) and (4..16) yield

(o) _< ((o, uo)+ 0)+ o((o, uo)+ 0)

and

(o) > a(x(Xo, o)) + UoWx(Xo, o).

Therefore,

(4.17) Z((xo) (o) Oxo) <_ (xo Vo)x(Xo, o)

where we used that g is a decreasing function and (1.5).
Case (ii). X <_ O. From (1,.4), (4.8), and (4.15) we get

Zu(xo) <_ + + +max
7r<_f(yo)WKl(O)6

+ rxo(wx(Xo, Yo) + O)+ (b- r)Of(xo)

which, combined with (4.16), gives

(4.18)

Z[(xo) (o) Oxo] <_

In the sequel we will need the following two lemmas.
LEMMA 4.1. Let p > 0 and X <_ 0, Y >_ 0 be such that

(4.19) (X 0 ) <A( -1 )0 Y -1

with A > O. Then

max 0"271-2X + (b r) 7rp max
(4.20) -<,, 7r_<a2

<_ co((a a2)2A +(a -.a2)p)

where a > a2 and co "[0, +x) [0, +cxz) is uniformly continuous with co(O) O.
LEMMA 4.2. For fixed l > 0 and 0 > O, the following holds:

(4.21) lim Yo xo
6o

4r/ O.

Moreover,

(4.22) lim lim Of (xo(O, 6)) O.
o.o 6.o

We now conclude the proof of the theorem and next give the proof of the lemmas.
First observe that (4.17) gives

/3(u()-v()-0) < -4r Yo xo Yo xo-4r/

Sending 6 -- 0 and using (4.2 !) we contradict (4.6).

( )14+w,(k5) + Yo xo
-4rl
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Next, we use (4.18) and Lemma 4.2 with

( )2A=-212 Yo- xo _4 a f(yo) + Kl(O), a2 f(yo)

and

4 (yo- x0-4r/)
Note that from the definition of g and (4.16) we must have p- wx(x0, Yo) > 0. We get

/3[u(5) v(5) 05] <_ (12K212(0 Y0 - xo
47 + 4K/(0)

y0 - x0

+ 4r Yo- Zo o- :cO
_4r + (b- r)Of(zo) +a(kr) + o :co _4r

(4.
We now use (4.21) and (4.22) and we send first . 0, then 0 , 0, and last r . 0 to

contradict (4.3).
Case B. - O.
Since the proof follows along the lines of Theorem VI.5 in [16], modified with argu-

ments similar to the ones in Case A, we only present the main steps.
First, we work as in Theorem V|.5 in 16], with h _= -oc and w as before, to get the

existence of X, Y .i such that

and

[Xc0 Yc0 ] < [wxx(,) wxy(,)
x(,) ,(,)

for some Y%, E , where ]: 1 -< Cv/ and ] yc[ < Cv for some positive
constant C independent of , 5, and

Next, working as in Case A we pass to the limit as e J. 0 and using Lemma 3.2 we
derive (4.23) for 0. Finally, we use (4.21) and (4.22) and we send first 0 .L 0, then
6 ,L 0 and last 7 ,L 0 to conclude.

Proof of Lemma 4.1. We first observe that (4.18) yields

(4.24) X / Y _< 0.

Let 7r* and 7t"2,* satisfying -* _< a and 7r2. _< a2, be the points where the constrained
r 2 2 (b r) [-5maxima of [Sa 7r X + 7rp] and cr27r2y + (b- r)Trp] are, respectively, achieved.

We look at the following cases.
Case 1. 7r- a and 7r- a2. Then

(4.25)
max a2r2X+(b-r)rp -max -0- - Y+7r_al 71-_a2

2 2 (b )p(aaX + aY) + r a2).
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Multiplying both sides of (4.19) by the positive definite matrix

a a2 a
and taking the trace, yields

(a a):A;(aX2 + aY) <_

which, combined with (4.25), gives (4.20).
Case 2.

(b r)p
and 7I"271-1 0-2X 0-2]7.

Then, the maxima are unconstrained and we easily get

(b- r)rrpmax 0-271.2X - max 0-271.2y + (b r)Trp < max

where we used (4.24).
Case 3. 7r -(b- r)p/0-2X < a, and 7r a2. Then

[ ] (b- r)2p2 (b- r)a,
max 0-27l-2X + (b- r)Trp <
7r<a, 20-2X 2

and

max[ 10-2 2y+(b r)rrp]- 10-2
<2 -2 rr -- aY / (b- r)a2p.

If Y 0, (4.20) follows immediately. If Y > 0, then by assumption, (b- r)p/0-2Y > a2.
Therefore,

(b-r) [10-2aY + (b_ r)a2p] (b-r) 12 2y (b- r
alp- --- ----p(al a2)+ 20- a22 2

a2p

(b-r) p(a, a2) + -ga2[0-2a2Y (b- r)p]

(b-r)< ----p(a, a2).

Case 4. rc" al and 7r (b-r)p/0-2Y. This case is easily reduced to Case 2. 71

Proof of Lemma 4.2. Relation (4.21) follows directly from (4.7) and (4.8). To show
(4.22), since f is Lipschitz, it suffices to show limo,o limes,o Ozo(O, 5) 0. Indeed, from
(4.7) we have

(4.26) u(zo) v(zo) Ozo(O,

which in turn implies (for fixed 0) sup6>0 zo(O, 5) < +oc.
Therefore, there exists 2o(0) such that lim6+ozo(0,6) 20o(0). The limit here is

taken along subsequences which, to simplify notation, we denote the same way as the
whole family. By sending 5 --+ 0, (4.26) combined with (4.5) implies

(4.27) >_ o.1 w
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We now send 0 -- 0. If lim00 00 a - 0, again along subsequences, (4.27) yields
sup[u v] a _> sup[u v] which implies sup[u v] <_ 0, which contradicts (4.5). 71

Remark. In the case f x, we assume

sup[u(x)- v(x) -Ox6] > 0

for some 6 E (7, 1), and we argue as before.

5. In this section we show that the value function is a smooth solution of the Hamilton-
Jacobi-Bellman equation and we characterize the optimal policies.

THEOREM 5.1. The value function v is the unique continuous on [0, +cx) and twice

continuously differentiable in (0, +cxz) solution of (1.8) in the class of concave functions.
Before we go into the details of the proof of the theorem we describe the main ideas.

We will work in intervals (x,x2) C [0, +cx) and show that v solves a uniformly elliptic
HJB equation in (x,x2) with boundary conditions v(xl) and v(x2). Standard elliptic
regularity theory (cf. Krylov [23]) and the uniqueness result about viscosity solutions will
yield that v is smooth in (x l, x2).

We next explain how we come up with the uniformly elliptic HJB equation. Formally,
according to the constraints, the optimal 7r* is either f(x), if

b- r vx(x) > f(x) or
b- r Vx(X)

Vxx(X)- 2 xx(X)’
if

b r v(x) < f(x).Vx(X)-

In the,second case, we want to get a positive lower bound of 7r* in [Xl,X2]. Since Vx is
nonincreasing and strictly positive, it is bounded from below away from zero. Therefore,
it suffices to find a lower bound for Vxx.

An important feature of the proof is the approximation of v by a family of smooth
functions (v") which are solutions of a suitably regularized equation. Next, we define the
v"s and discuss their main properties.

Let W be a Wiener process which is independent of Wt and is defined on some
probability space (fl, F !, pi). We consider the process Wt (Wt, Wt ), which is a
Wiener process, on (f fl, if, P P) and ff a(F FI) where a(F F) is the
smallest, a-algebra which contains F F!. Let e be a positive number. A real .process
(C’, 7r’) which is Ft-progressively measurable is called an admissible policy if:

+cx
(i) C > 0 a.s.’v’t > 0 and Cds < +x a.s.;

(ii) (Tr)2d8 < +x a.s. and 7r <_ f(X) a.s. ’v’t > 0 where f satisfies

(1.4);

(iii) X > 0 a.s. Vt 0, where X is the trajectory given by the state equation

dX [rX + (b- r)Tr C]dt + aTrdWt + aeXdWt (t > O)
x x (x[O, +))

using the controls (C", 7r’).
We denote by .A the set of admissible policies. We define the value function v" by

v(x) sup E e-tU(C)dt,
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where U is the usual utility function. Using arguments similar to those in Propositions 2.1
and 2.2 we can prove that v is concave, strictly increasing in x, and uniformly continuous
on f.

Using a variation of Theorems 3.1 and 4.1, we have that the value function v is the
unique constrained viscosity solution on f of the equation

/3v" ,<f(x)max [a(rr: + ex)Vx + (b- r)rrv] + max[-cv + U(c)] +

We next consider a sequence (v) with

,,;(x) sue z -Z’u(G)dt

The set ,Ae’L of admissible policies consists of pairs (C‘’L, rr‘’L) such that Ce’L, 7fe’L

are Ft-progressively measurable satisfying (i), (ii), and also -L < 7r’L almost surely for
allt >0,

Working as in Theorems 3.1 and 4.1, we get that v is the unique constrained viscosity
solution of f of

(5.2)
[1 0.27.r.2V "-}- (b- r)rcvmax

-L<Tr< f(x)

+ max[-cv, + U(c)] + rzv"Lc>O ,x

and, also, the unique viscosity solution (see [16]) of

(5.3)
[’flu max 727r2Uxx + (b- r)rrux

-L<rr<f(x)

+ max[-CUx + U(c)] + rxu(x[x,,x2])
c>O

?-t(Xl) V(Xl), ?-/,(X2) V(X2).

On the other hand, (5.3) admits a unique smooth solution u which is also the unique
viscosity solution; therefore, v, is smooth which, together with the fact that v, is increasing
and concave, yields that v, is also smooth solution of

u-- max [1/2o27r2l,xx--(b--T)Trx]O<rr<f(x)

+ max[-cUx + U(c)] + rXUx
c>O

’/.Z(Xl) V(Xl), /t(X2) V,(X2).

We next observe that there exists w concave such that v, w, as L --, , locally
uniformly in f. Therefore, w is a constrained viscosity solution of (5.1) and, by uniqueness
of viscosity solution, it coincides with v’. This also implies that v is a viscosity solution
of

(5.4)

flU-- max [1/2ff27r21Zxxq-(b-r)TrZtx]
O<Tr<f(x)

+ max[-cu + U(c)] + rxu,:
c>O

(,) ,(,), (_) ,(:).

Equation (5.4) admits a unique smooth solution which is the unique viscosity solution.
Therefore v is smooth.
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Proof Consider an interval [3:1,3:2] C [0,-J-OO) and let [,,2] and [Xl,X2] with

X1 > 0 be such that [3:1,3:2] C [i,2] C IX1, X2]. Since v is concave and increasing, its
first and second derivatives exist almost everywhere. Without any loss of generality, we
can assume that vx(Xl) and vx(X2) exist. The reason for this will become apparent in the
sequel.

We are now going to prove that the optimal portfolio 7r of the approximating problem
is bounded from below by a positive number which is independent of (of course it may
depend on (Xl,X2)). To this end, it suffices to show that

b-r vx
0-2 Vxx

> c > 0 on [3:1,3:2].

We first show that v -- v locally uniformly on . Indeed, v and v are bounded
locally by u and u/3: where u is the value function with f(3:) +c and e 0. This
follows from the fact that v <_ u _< u (where u is the value function with f(3:)
and e > 0), which can be proved by using a similar comparison result as in Theorem 4.1.
Therefore, there exists a subsequence {v’ } and a function w such that v’ w locally
uniformly in . Moreover, an argument similar to the proof of Proposition 2.2 yields that
lim_0 v(3:) U(O)//3 uniformly in , therefore w(0) U(O)/.

Using a variation of Proposition 1.3 in [27] we get that w is a constrained viscosity
of (1.8). Moreover, since w is concave, using Theorem 4.1 we get that it is the unique
constrained viscosity solution of (1.8). Therefore, we conclude that all subsequences have
the same limit which coincides with v. Using that v -+ v locally uniformly and the fact
that v and v are concave, we get that lim_o v(3:0) v(3:0) at any point 3:0 where
vx(3:0) exists. Taking into account that v. is nondecreasing in [X, X2], we conclude that
there exist positive constants RI RI([X,X2]) and R2 R2([XI,X2]) such that

(5.5) , _< v() <_ 2 on [,21.

We next show that there exists a constant R- R([X, X2]) such that

(5.6) Iv(x)l > R on

To this end, let (" :+ --+ >’+ be as follows"
(i) ( C (i.e., ( is a smooth function with compact support);
(ii) ( on [3:!, 3:2], ( -0 on F\[Y, Y2], and 0 <_ ( < otherwise;
(iii) ICx] <- M(p, Ixxl <_ M(p with 0 < p < and M > 0.
From now on, for simplicity we suppress the e-notation. We next consider a function

Z’[X1, X2] - >’ given by Z(x) (2Vx2 + Av2 #v, where A and # are positive constants
to be chosen later. We are interested in looking at the maximum of Z on [X, X2]. The
following cases can happen.

Case 1. The function Z attains its maximum at a point xo supp (. Then using (ii)
and that v > 0, v > 0, we get

’O2xx(X) . /’V2x(XO) + #V(X) VX [XI,X2]

which implies (5.6).
Case 2. The function Z attains its maximum at the point x0 supp (. In this case

we have

(5.7) Zx(xo) 0 and Zx(xo) < 0
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where

(5.8) Zz-2x 2
Vxx / 22VxxVxxx / 2Avxvxx

and

(5.9) Zx 2 2 22xVxx / 2xxVxx + 8xVxxVxxx + 22 2Vxxx
/ 22VxxVxxxx / 2AV2xx + 2AVxVxxx #Vxx.

We examine each of the following cases separately.
Case 2(a).

xo A {x [Xl,X2]
b- r v(x)
y2 < f(x) fv(x)

In this case the Bellman equation has the form

(5.10)
2

20.2X2 VxI(vx) + U(I(vx)) + rxvxv - v___x + V
Vxx

with -y (b- r)2/202. Here we used that max.>o[-cp + U(c)] -pI(p) / U(I(p)) with
I- (U’) -1. After differentiating (5.10) twice and rearranging the terms we get:

(5.11)

2VxVxxxx
V2xx

On the other hand, (5.7) yields

2 (Xo) (20.2X] Zx 0Vx + (zo) >2x(.o)
which, combined with (5.9), yields

VxVxxxx 20.2 VxVxx
YVxxv----x / g20"2x2 Zxx 22Vxx -y

32 2 X2Vxxxx *y
V3xx

xVxxx V 22X2(5.12) + 2AVx -7Vx e22X2Vxx --7 V + P Vxx + Vxx
2

2 2 22X2 C..2 Vxx2 2v X22 2 VxVxxx27.v. xx 2xxVxx 8
--2e22zzzzz_ e2222vzzz2 z222vzz2 O,

where all the expressions are evaluated at x0.
Using (5.10), (5.11), and

2

f.2 VxVxxx
(5.13) "yv 7

2
X
2
V ")/V2z------7

+vx(r 33’) Vx
Vxx[rX I(Vx) / 20"2X]
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which follows from differentiating (5.1 O) once and rearranging terms, we obtain from (5.12):

2 2
2 2 VxVxxx--2 Vxx + 2(2(2r 2-]- 2 2 2e O" )Vxx + 4")’2VxVxxx 6/"2

V2xx
+ 22VzxVxzz[rz I(vz) + 2e2a2z] --2(2vzzI3 (Vx)

2
2 2kflVx + 2y# vx

Vxz
+ #v[-rx + I(v)]- #U(I(vx))-- O" X QxVxx

4X2e2(y2xVmmVmxm 2 2 22 2 2 2e a X gxVxxx /X22 0.(7 Vxx

2VxVxxx

A further calculation yields that at x0,

(rx- I(vx) + e2a2x)(2(2V.xVx.x + 2AVzVxx #Vx) + 22e-22XVxxVxxx
20.2XVx 2 2 2 22fl Vx. 4 r

2 vxx + 42VxVxxx
2 2 2

62xx 2 2(z ) + + 2vu ,u((x))Vx Vxx
2

22 2(GxV V.Vxx. e2a2x2 222ZGVx 8+ [4;x]Vx.]Vxxx Vxx.
Vxx

Ix] 2 2222 : 22 : 2:,().aXxVxx- aX(xxV.
(5.4)
If A(x) 2(2V.xV.x + 2V.Vx pVx, (5.,7) and (5.8) imply

A(xo) -2(xo)(xo)v2(xo).
Then (5.14) becomes

>_ 22 VxxI’(vx).
(.)
Let

and

-2(xV2xx(rX I(v.) -1- 2(T2X) 22%x2 2AflV2x + #fly 2(3-y r)V2x
2Vx 2 2 20.2X2 2 2 20.2X2 2xVxx Vxx2q,# ]Vxxi pU(I(v.)) (x 2"/.xV2x

2 2 2VxVxxx VxVxxx2a2" (QV2 if- 4")’2VxVxxx 6")’2 V2xx
}- 8"[x

iVxx2]2 i vii vx -22Vxxz tV2x ] q_ (
2 (T2#XVx

2(y2 ) 2 2 2
2 2B(x) -4 ")’ r

2 vxx -ff 4*y2VxVxxx 6q’2 VxVxxx q- 8"yxVxVxxxx

C(x) (4(x 2C2) 2 2vxxx ,2xx

Let e sufficiently small and 0 E (0, 1/4). Using the Cauchy-Schwartz inequality we get

(5.I6) B(xo) < C (2x(XO) 2 2 )o ,,(o) + (xo)xx(XO)

for some positive constant C.



CONSUMPTION-INVESTMENT MODELS 81

A similar argument yields

(5.17) C(xo) <_ 2 ,XVx(Xo) 2x(Xo) (xo)
xo

We next choose A so that A > 42 + (2/x) on [,, 52]. Then C(xo) <_ O. If we leave
out all the negative terms in (5.15) and use (5.16) and (5.17) we get

(5.18)

We now return to the e-notation. From (5.5) we have

(5.19) I(vx(XO)) < I(R,)

and

(5.20) II’(v;(xo))l <

From (5.18), (5.19), and (5.20) we get that for some constants kl,k2, k3, and k4,

V;x(XO)2[k,C(xo)lCx(Xo)l + k2C(xo)lCxx(Xo)l + C2(xo)] nl- k4 k3(xo)2lV;x(XO)l 3.

Using property (iii) of ( with p- we obtain

(5.21) Civ;x(XO)2[(xo)2 -t--((X0) 1+1/31 q- ]g k3((xo)2lV;x(XO)l

for some C, > 0. Now if w(xo) C2(xo)lVx(XO)13, then w(xo)2/3 C(xo)4/3lvx(xo)l 2.
In view of property (ii) of (, (5.21) yields

2ClW(Xo)2/3 -1-- >_ k3W(X0),

for some k > 0 and, therefore,

w(xo) <_ N

where N N(C, K,/3) is independent of e.
Thus

(Vx)2 -+- A(V;) 2
ttv <_ N2/3 -+- A(v(xo))2 #ve(Xo)on [x,, x2],

i.e., there exists a constant L, independent of e, such that

Vxxl<_ L on [x,z2].

Case 2b.

zoeA2 {xe[xl,x2]" b- r v(x) > f(x)}0-2 (x)-Vxx
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In this case,

b-r R2
0-2 f(x)"

Therefore,

(5.22)

where R max(L, L2), independent of e.

Combining (5.5) and (5.22) we see that

b-r v
>B>O

0-2
with B- b-rR

0-2 R

Let us now consider the equation

(5.23)

In view of the above analysis, we know that v solves (5.23). Let e -+ 0. Since v v,
locally uniformly, v is a viscosity solution of

(5.24)

On the other hand, (4.21) admits a unique smooth solution u (see [23]) which is the unique
viscosity solution (see [16, Thm. II.2])" therefore v is smooth. 1

THEOREM 5.2. The feedback optimal controls C* and 7r* are given by

c*(x) I(v.(x)) and 7r*(x) min { b-r0.2 Vxx(x) f(x)} for x>O.

The state equation (1.3) has a strong unique solution X[, corresponding to C; c* (X[)
and % (X; and starting at z > 0 at t O, which is unique in probability law up to

the first time 7- such that X. -O.
Proof The formulae for 7r* and C* follow from a standard verification theorem (see

11 ]) and the equation. We now show that 7r* and C* are locally Lipschitz functions of z.
It is clear that Vx is locally Lipschitz because in any compact set K there exists a constant
C C(K) such that IVxx] <_ C(K), (xeK). Therefore C* is locally Lipschitz. Moreover,
from the Bellman equation we have that

vxx-H(x,V, Vx)

where

2[fly (b- r)f(X)Vx + v.I(v.) U(I(vx)) + rxvx]

if

0.2f(x)2
b-r Vx >_f(x)0.2 xx
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and

2 b-r
H(x v Vx)-

b-r v
< f(x).

2or2 /v- rxvx +vI(vx) U(I(vx))
if

2 Vxx

Since vx is locally Lipschitz we get that Vxx is also locally Lipschitz. Therefore (see
Gikhman and Skorohod [14]) equation (1.3) has a unique strong solution X" in probability
law up to the first time r such that X_ -0.

6. In this section we discuss the finite horizon model and we state results about the
value function and the optimal policies.

The investor starts at time t E [0, T) with an initial endowment x, consumes at rate
0 (respectively, 7rs) amount of money in bond (respectively, in stock) forCs and invests

t < s < T. The prices of the bond and the stock satisfy the same equations as in the
0 (t <_ <_ T) satisfies theinfinite horizon case. The wealth of the investor X % / 7r s

state equation

(6.1) dXs rX,ds + (b- r)Trds C,ds + cr%dW
Xt z (x > 0).

(t<s<T)

The agent faces the same constraints as in the infinite horizon case. In other words,
the wealth must stay nonnegative; the agent cannot consume at a negative rate and must
meet borrowing constraints (Tr, <_ f(X) for t <_ s <_ T).

The total utility coming both from consumption and terminal wealth is

J(x,t,C, Tr)=E[ttT +

where U is the usual utility function and is the bequest function which is typically
concave, increasing, and smooth.

The value function is

A(x, t) sup J(x, t, C, 7r)
A(x,t)

where A(x,t) is the set of admissible controls.
In the sequel we state the main theorems. Since the proofs are modifications of the

ones given in the previous sections they are not presented here.
THEOREM 6.1. The value function is the unique continuous on f x It, T] and

C2,1 (’ x (t, T)) solution of

(6.2)

[-_

vt + max -}cr2r2Vxx + (b- r)rVx| + max[-cVx + U(c)] + rXVx
r<_f (x) I_" -3 c>O

in the class of concave (with respect to the space variable x)functions.
THEOREM 6.2. The feedback optimal controls C* and 7r* are given by C c* (X, t)

7r* C* U -1and 7r (X;, t) where (x, t) (Vx(X, t)) and

7r* (z, t) min { b r vx(x’ t) }r2 -i-,-D’ f(x) for x > O.
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