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Abstract

Assuming that the underlying local volatility is a function of stock price and time, we develop an
approach for generating closed form solutions for option values for a certain class of volatility functions.
The class is the set of volatility functions which solve the same partial differential equation as derivative
security values in the Black Scholes model. We illustrate our results with three examples.
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I Introduction

Notwithstanding the recent award of the Nobel prize in economics to Professors Merton and Scholes, op-

tion prices commonly violate the formulas developed in Merton[14] and Black-Scholes[2]. In particular,

Rubinstein[18] has documented a pronounced dependence of implied volatility on the strike of the option,

which has been consistently downward sloping since the crash of 1987. While the source of this volatility

smile is still the subject of much debate, the intransigence of this smile has lead to a resurgence of interest

in option pricing formulas which are capable of simultaneously explaining a cross-section of option prices.

While the volatility smile can be explained using a price process displaying stochastic volatility and/or

jumps (see eg. Bates[1] for references), the hedging arguments underlying these option pricing models

usually require continuous trading in one or more options. Unfortunately, the width of the bid-ask spreads

in many options markets generally renders frequent option trading economically unviable. For such markets,

it therefore seems prudent to first explore the class of option pricing models which permit replication using

dynamic trading in stocks alone. In the diffusion class of such models, this class is characterized by a volatility

function which depends on time, the stock price, and the stock price path (see Hobson and Rogers[11] for

some path-dependent volatility specifications). Further restricting volatility dependence to just time and the

stock price1 has the computational advantage of reducing the dimensionality of the problem. This reduction

can also yield closed form solutions providing further computational advantages.

Although these advantages of price-dependent volatility are well known, there are a limited number of

volatility specifications which yield closed form solutions for options prices. It is well known that the constant,

square root, and proportional volatility models can all be embedded within the constant elasticity of variance

(CEV) model pioneered in Cox[6] (also see Schroeder[19] and Linetsky and Davidoff [13]). Goldenberg[10]

generalizes the CEV model and studies various deterministic time and scale changes of the stock price

process which map it to more tractable processes such as the square root process or standard Brownian

motion. Similarly, Bouchouev and Isakov[4] and Li[12] write the stock price process as various functions of

the standard Brownian motion and time.

A general approach for generating option pricing formulas for price-dependent volatility is in fact implicit
1Note that the volatility follows a stochastic process in this case. However increments in the volatility are perfectly correlated

locally with increments in the stock price.
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in the original Black Scholes paper. By regarding the stock as an option on the assets of the firm, options on

the stock become de facto compound options. In this model, the volatility of the stock depends on the firm

value. If the function relating the stock price to the firm value can be explicitly inverted2, then the stock

volatility can be expressed as an explicit function of the stock price.

This paper takes this economically motivated approach in order to generate closed form solutions for

option prices with smiles. Our only departure is that we take the fundamental driver to be standard Brownian

motion rather than firm value. The primary reason for this departure is analytical convenience, since more

results are known for standard Brownian motion than geometric Brownian motion. When standard Brownian

motion is taken as the fundamental driver, it becomes important to determine the conditions under which

a future stock price depends only on the contemporaneous level of the driving standard Brownian motion,

and thus does not depend on the Brownian path.

The purpose of this paper is to characterize the entire class of volatility functions which permit the

stock price to be transformed into standard Brownian motion by scale changes alone3. Since many results

are known for standard Brownian motion (see eg. Borodin and Salminen [3]), these results can be used to

generate closed form solutions for option prices with smiles. We find that the class of volatility functions

permitting this transformation is characterized by a fully nonlinear partial differential equation (p.d.e.),

which we are nonetheless able to solve analytically. As a result, we explicitly obtain many new volatility

functions which yield closed form solutions for option prices. We illustrate our results by obtaining several

new option pricing formulas, which all involve only normal distribution or density functions.

The outline for this paper is as follows. Section II presents the nonlinear p.d.e. governing volatility,

while Section III appends appropriate boundary conditions and characterizes the unique solution. Section

IV shows how this solution can be used to generate option prices. Section V illustrates with three examples

and the final section summarizes the paper and discusses extensions.
2This explicit invertibility requirement is not met in the Geske model[9].
3In a binomial framework, this is equivalent to assumption 5 in Rubinstein[18] p. 788 that all paths ending at the same

node have the same risk-neutral probability and to the computationally simple criterion in Nelson and Ramaswamy[17].
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II The Nonlinear p.d.e. for Volatility

In this section, we lay out our economic model and present necessary and sufficient conditions on the volatility

function which permit the driving standard Brownian motion to be expressible as a scale change of the stock

price process. Assuming these conditions hold, we also present a formula for this scale change. We show

that the necessary and sufficient condition on the volatility function is that it satisfies a certain nonlinear

p.d.e. The next section describes a simple technique for generating solutions to this p.d.e.

Our economic model assumes frictionless markets, no arbitrage, and that the underlying stock price

process is a one dimensional diffusion starting from a positive value. We assume a proportional risk-neutral

drift of r − q, where r ≥ 0 is the constant risk-free rate and q ≥ 0 is the constant dividend yield. We also

assume that the absolute volatility rate is a positive C2,1 function a(S, t) of the stock price S ∈ (0,∞) and

time t ∈ (0, T ), where T is some distant horizon exceeding the longest maturity of the option to be priced.

Since this process will in general4 have positive probability that the stock price hits zero, we absorb the

stock price at the origin in this event. Let τo denote the first hitting time of the origin and let τ ≡ T ∧ τo

be a bounded stopping time. Let {St : t ∈ [0, τ ]} denote the risk-neutral stock price process:

dSt = (r − q)Stdt + a(St, t)dWt, t ∈ [0, τ ], (1)

where {Wt, t ∈ [0, τ ]} is a standard Brownian motion (SBM) under the risk-neutral measure Q. To ensure

that the forward price process is a martingale5, we assume that for each t, lim
S↑∞

a(S, t) = O(S).

The standard approach to option valuation is to find a function relating the option price to the stock

price. In order to obtain closed form solutions, this approach requires that one know the transition density

of the risk-neutral process (1). For realistic volatility functions, it is in general difficult to determine this

density. In this paper, we take an SBM as the fundamental driver of all stochastic processes of interest.

This is similar to the Black Scholes idea of taking a geometric Brownian motion describing the firm value as

the fundamental driver. Of course in both cases, the transition density is very well known. The potential

disadvantage of this approach is that the processes of interest, such as volatility and option prices, are
4Linetsky and Davidov[13] give a complete description of boundary classification behavior for one dimensional time-

homogeneous diffusion processes with constant proportional drift. In our notation, they show that that if a(S) grows as
Sp as S ↓ 0, then for p ≥ 1, the origin is a natural boundary, for p ∈ [ 1

2
, 1), the origin is an exit boundary, while for p < 1

2
,

the origin is a regular boundary point. In the first case, the origin is inaccessible, in the intermediate case, the process must
absorb, and in the final case, a variety of boundary behavior is possible, but we impose absorption.

5See Linetsky and Davidov[13] for a complete description of possible behavior as S ↑ ∞.
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expressed in terms of the unobservable SBM or firm value. This disadvantage is overcome in our case if

the SBM can be expressed in terms of the contemporaneous stock price. Appendix 1 derives the following

necessary condition on the volatility function a(S, t) which permits this representation:

a2(S, t)
2

∂2a(S, t)
∂S2

+ (r − q)S
∂a

∂S
(S, t) +

∂a

∂t
(S, t) = (r − q)a(S, t), S > 0, t ∈ [0, T ]. (2)

Note that (2) is the standard Black Scholes/Merton(BSM) p.d.e. describing the value of a claim a(S, t)

with dividend yield q, when the underlying price process has a diffusion coefficient a(S, t). This fully nonlinear

p.d.e. is a necessary condition on the volatility function a(S, t) in order that the SBM is simply a scale change

of the stock price. Equations (69) and (74) of the appendix imply that the scale change is Wt = w(St, t; S0)

where:

w(S, t; S0) =
∫ S

S0

1
a(Z, t)

dZ +
∫ t

0

[
1
2

∂a(S, s)
∂S

∣∣∣∣
S=S0

− (r − q)S0

a(S0, s)

]
ds. (3)

The converse is proved in Appendix 2: given a local volatility function a(S, t) satisfying the nonlinear p.d.e.

(2), the process Bt ≡
∫ St

S0

1
a(Z,t)dZ +

∫ t

0

[
1
2

∂a(S,s)
∂S

∣∣∣∣
S=S0

− (r−q)S0
a(S0,s)

]
ds is the SBM W .

III A Solution Class for the P.D.E.

This section presents a simple way to generate volatility functions which solve our fundamental non-linear

p.d.e. (2). The next section shows how this technique can also be used to generate closed form option pricing

formulas.

If the SBM Wt is regarded as an increasing function of the stock price, then one can conversely regard the

stock price as the value of a derivative security written on Wt, whose value increases with this underlying.

Taking this approach, let s(w, t), w ≥ L(t), t ∈ [0, T ] be the spatial inverse of w(S, t), i.e.

St = s(Wt, t), t ∈ [0, T ]. (4)

For obvious reasons, we refer to s(·, ·) as the stock pricing function. The lower bound L(t) of the domain

of this function is an absorbing boundary for the SBM. It can be negative infinity, or it can be any known

function of time.

By Itô’s lemma, the stock price process can be written as:

dSt =
[
∂s

∂t
(Wt, t) +

1
2

∂2s

∂w2
(Wt, t)

]
dt +

∂s

∂w
(Wt, t)dWt, t ∈ [0, T ]. (5)
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Equating coefficients on dt in (1) and (5) and using (4) gives a simple linear p.d.e. for the stock pricing

function s(w, t):

∂s

∂t
(w, t) +

1
2

∂2s

∂w2
(w, t) = (r − q)s(w, t), w ≥ L(t), t ∈ [0, T ]. (6)

Equating coefficients of dWt in (1) and (5) and using (4) gives a link between the absolute volatility

function a(S, t) and the stock pricing function s(w, t):

a(s(w, t), t) =
∂s

∂w
(w, t), w ≥ L(t), t ∈ [0, T ]. (7)

Thus, if we can identify a solution s(w, t) to the linear p.d.e. (6), then we obtain a corresponding solution

a(S, t) to the nonlinear p.d.e. (2).

To identify a subset of plausible solutions to (6), consider the terminal and growth conditions:

lim
w↓L(t)

s(w, t) = 0, t ∈ [0, T ], (8)

lim
w↑∞

s(w, t) = O(ew), t ∈ [0, T ], (9)

and:

lim
t↑T

s(w, t) = φ(w), w ≥ L(T ), (10)

where φ(w) is a positive increasing function also satisfying (8) and (9). Since φ(w) is positive and increasing,

a minor extension of the classical results of Widder[20] implies that s(w, t) is also positive and increasing in

w. The lower boundary condition (8) ensures that the stock price absorbs at zero when SBM hits L(t) < 0,

while the the upper boundary condition (9) ensures that the solution is bounded on bounded domains. The

Feynman-Kac theorem can be used to find the continuous solution to the boundary value problem (BVP)

consisting of the p.d.e. (6) and the boundary and terminal conditions (8),(9), and (10):

s(w, t) = e−(r−q)(T−t)EQ
w,t[φ(W a

T )], w ≥ L(t), t ∈ [0, T ], (11)

where {W a
u ; u ∈ [t, T ]} is an SBM absorbing at the lower barrier L(t) < 0 and starting at w > L(t) at time

t. Since s(w, t) is increasing in w ≥ L(t), its spatial inverse w(S, t) exists and is increasing in S > 0.

By (7), the corresponding boundary and terminal conditions for the volatility function are:

lim
S↓0

a(S, t) = 0, t ∈ [0, T ], (12)
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lim
S↑∞

a(S, t) = O
(
ew(S,t)

)
, t ∈ [0, T ], (13)

and:

lim
t↑T

a(S, t) = φ′(w(S, T )), S > 0. (14)

By (4) and (7), a solution class for the nonlinear p.d.e. (2) subject to (12) to (14) is:

a(S, t) =
∂s

∂w
(w(S, t), t) S > 0, t ∈ [0, T ]. (15)

Appendix 2 proves that the boundary value problem consisting of the nonlinear p.d.e. (2) and the boundary

conditions (12) to (14) has a unique solution. It follows that (15) is this unique solution.

IV Option Pricing

This section interprets the SBM Wt and the absolute volatility a(St, t) as prices of certain derivative securities.

It also shows how to generate closed form formulas for transition densities and for option prices. The next

section illustrates our results with three examples.

Before pricing options, it is worth noting that the SBM Wt is the forward price of a claim with the

payoff φ−1(ST ) at its maturity T , where φ−1(·) denotes the inverse of φ(w). The deferral of this exotic’s

premium payment to maturity induces zero drift under Q, while the terminal payoff induces unit volatility.

Thus, w(St, t) is a standard pricing function relating the time t forward price of the Brownian exotic paying

φ−1(ST ) at T to the time t spot price and time.

The local absolute volatility a(St, t) can also be interpreted as the price process for an exotic equity

derivative. To determine the payoff, note from (14) that the terminal absolute volatility a(S, T ) is the

following function of the terminal spot price ST :

a(ST , T ) = φ′(WT ) =
1

∂φ−1

∂S (ST )
= lim

h↓0
h

φ−1(ST + h) − φ−1(ST )
.

From (2), it is clear that the claim whose value is the local absolute volatility also has a constant proportional

payout of q.

Since we have been able to value these exotic derivatives, it should not be surprising that we can also

value calls of some intermediate maturity M ∈ [0, T ). To relate the call value to the contemporaneous spot
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price, we first determine the function γ(w, t) relating the call value to the price of the SBM Wt and time t.

By Itô’s lemma, this pricing function solves:

1
2

∂2γ

∂w2
(w, t) +

∂γ

∂t
(w, t) = rγ(w, t), w > L(t), t ∈ (0, M), (16)

subject to the boundary conditions:

lim
w↓L(t)

γ(w, t) = 0, lim
w↑∞

γ(w, t) = s(w, t)e−q(M−t) − Ke−r(M−t), t ∈ [0, M ], (17)

where K > 0 is the call strike, and subject to the terminal condition:

γ(W, M) = [s(w, M) − K]+, w > L(M). (18)

By the Feynman-Kac representation theorem, the continuous solution to this BVP is:

γ(w, t) = e−r(M−t)EQ
W,t[s(W

a
M , M) − K]+, w > L(t), t ∈ [0, M ∧ τ), (19)

where recall {Wu, u ∈ [t, M ]} is an SBM absorbing at the lower barrier {L(u), u ∈ (t, T )} and starting at

w ≥ L(t) at time t.

Equation (19) relates the call value to the SBM Wt and time t. To instead relate the call value to the

stock price and time, we assume that L(t) = L, i.e. that the boundary along which the Brownian derivative

vanishes is independent of time. In this case, the probability density function for absorbing SBM is known

and if we let c(S, t) = γ(w(S, t), t) in (19), then:

c(S, t) = e−r(M−t)

∫ ∞

L

[s(z, M) − K]+√
2π(M − t)

{
exp

[
−1

2

(
z − w(S, t)√

M − t

)2
]
− exp

[
−1

2

(
z + w(S, t) − 2L√

M − t

)2
]}

dz,

(20)

for S ≥ 0, t ∈ [0, M ∧ τ). This solution will be an explicit function of S and t if s(z, M) and w(S, t) can both

be written explicitly in terms of their arguments.

Differentiating (20) twice w.r.t. the strike price K gives the risk-neutral probability that the stock price

is at K at time M , given that the stock is at S at time t. Alternatively, the change of variables S = s(w, t)

for the absorbing SBM transition density expresses this probability as:

q(Z, M ; S, t) =
∂w
∂S (Z, M)√
2π(M − t)

{
exp

{
−1

2

[
w(Z, M) − w(S, t)√

M − t

]2
}

− exp

{
−1

2

[
w(Z, M) + w(S, t)√

M − t

]2
}}

.

7



Alternatively, since ∂w
∂S (Z, M) = 1

∂s
∂w

= 1
a(Z,M) , from (7):

q(Z, M ; S, t) =
1

a(Z, M)
√

2π(M − t)

{
exp

{
−1

2

[
w(Z, M) − w(S, t)√

M − t

]2
}

− exp

{
−1

2

[
w(Z, M) + w(S, t)√

M − t

]2
}}

(21)

for S > 0, t ∈ [0, M ∧τ). The density will be positive only if w(S, M) is increasing in S and it will be explicit

only if w(S, M) is explicit in S.

An alternative derivation of the call pricing function C(S, t), S ≥ 0, t ∈ [0, M∧τ) is obtained by integrating

its payoff (S − K)+ against this density, and discounting at the riskfree rate:

C(S, t) = e−r(M−t)
∫ ∞
0 (Z − K)+ 1

a(Z,M)
√

2π(M−t)

{
exp

{
−1

2

[
w(Z, M) − w(S, t)√

M − t

]2
}

− exp

{
−1

2

[
w(Z, M) + w(S, t)√

M − t

]2
}}

dZ. (22)

V Examples

This section first points out the Black-Scholes[2] proportional absolute volatility model and the Cox-Ross[7]

constant absolute volatility model both fit into our framework. It then derives three new examples of

volatility functions which yield closed form solutions for option prices. In general, the examples illustrate

that our technique generates complicated, although realistic, volatility functions. Nonetheless, the option

pricing formulas are all fairly simple and only require evaluating normal distribution and density functions.

The Black Scholes model can be put into our framework by considering an exponential stock payoff

function φ(w) = βeσw, w ∈ <. The stock pricing function then becomes s(w, t) = βe(r−q−σ2
2 )(T−t)+σw, w ∈

<, t ∈ [0, T ]. Evaluating this function at w = Wt then yields a geometric Brownian motion. This process can

never hit zero in contradiction to the reality that firms do go bankrupt. In contrast, Cox and Ross[7] modelled

the stock price as having constant absolute volatility, which allows bankruptcy and induces hyperbolic

“lognormal” volatility. Similarly, the three examples which follow all allow bankruptcy and all have the

required property that L(t) = L.
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V-A Stock Price is Hyperbolic Sine

Instead of taking the stock payoff as exponential, suppose more generally that it is given by the difference

of two exponential functions. Specifically, suppose φ(w) satisfies:

φ(w) =
{

β sinh[α(w − L)] if w > L;
0 if w < L,

(23)

where recall sinh(x) ≡ ex−e−x

2 . Figure 1 graphs this payoff function and its inverse.
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Figure 1: The Stock Payoff Function and Its Inverse

The solution of (6) subject to (8), (9), and (23) is:

s(w, t) = βe−µ(T−t) sinh[α(w − L)], t ∈ [0, T ], w > L, (24)

where:

µ ≡ r − q − α2/2. (25)

Setting s(0, 0) = S0 relates the scaling constant to the initial stock price:

β = S0e
µT csch(−αL), (26)

where csch(x) ≡ 1
sinh(x) . Hence from (4):

St = S0e
µtcsch(−αL) sinh[α(Wt − L)], t ∈ [0, T ]. (27)

Figure 2 graphs this stock pricing function against the driving SBM and time. For each time, the stock price

is an increasing convex function of the SBM, with greater slope and convexity than in the Black Scholes

model with lognormal volatility α.
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Figure 2: The Stock Pricing Function

To express the local volatility in terms of the stock price, solve (24) for w:

w(S, t) = L +
sinh−1

α

(
S

β
eµ(T−t)

)
, S > 0, t ∈ [0, T ). (28)

Differentiating w.r.t. S:

∂w

∂S
(S, t) =

1

α
√

S2 + β2e−2µ(T−t)
. (29)

From (7), the local volatility is just the reciprocal:

a(S, t) = α
√

S2 + β2e−2µ(T−t). (30)

Dividing by the stock price gives the “lognormal” local volatility surface:

σ(S, t) ≡ a(S, t)
S

= α

√
1 +

(
β

Seµ(T−t)

)2

. S > 0, t ∈ [0, τ), (31)

where β is given in (26). Figure 3 graphs this local volatility surface.

To understand the behavior of this local volatility function, note that the stock pricing function is

proportional to sinh[α(w − L)], which behaves linearly in w for w near L and exponentially in αw for w

large. Thus, the volatility smile is approximately hyperbolic in S (“normal volatility”) for S near zero, while

it is asymptoting to the constant α (“lognormal volatility”) for S high. As S increases from 0 to ∞, the

volatility smile slopes downward in a convex fashion.

Just as α controls the asymptotic height of the volatility smile, the parameter L controls the “at-the-

money” volatility. To see this, note that substituting (26) in (31) and evaluating the volatility function along
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Figure 3: The Local Volatility Surface

S = S0e
µt yields a stationary “at-the-money” volatility of:

σ(S0e
µt, t) = α

√
1 +

(
β

S0eµT

)2

= α

√
1 + csch2(−αL), t ∈ [0, T ],

from (26). Thus, as L ↓ −∞, at-the-money volatility approaches α. Conversely, as L ↑ 0, volatility

approaches infinity6.

To get the risk-neutral density function, evaluate the Brownian pricing function w at (S, t) = (Z, M):

w(Z, M) = L +
sinh−1

α

(
Z

β
eµ(T−M)

)
. (32)

Similarly, evaluating the delta of the Brownian derivative at (S, t) = (Z, M) yields:

∂w

∂S
(Z, M) =

1

α
√

Z2 + β2e−2µ(T−M)
. (33)

Substituting (28), (32), and (33) in (21) implies that the risk-neutral stock pricing density is:

q(Z, M ; S, t) = 1√
2π(M−t)

exp

−1
2

 sinh−1
(

Z
β eµ(T−M)

)
− sinh−1

(
S
β eµ(T−t)

)
α
√

M − t

2
 (34)

− exp

−1
2

sinh−1
(

Z
β eµ(T−M)

)
+ sinh−1

(
S
β eµ(T−t)

)
α
√

M − t

2


 1

α
√

Z2 + β2e−2µ(T−M)
,

for S > 0, t ∈ [0, M ∧ τ). Figure 4 graphs this density (termed the arcsinhnormal) against the future spot

price and time. The downward sloping volatility surface graphed in Figure 3 cancels much of the positive

skewness of the lognormal density leading to a close approximation of a Gaussian density.
6An explanation for the latter result stems from shareholders’ willingness to gamble as bankruptcy becomes more likely.
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Figure 4: The Arcsinhnormal Probability Density Function

Integrating the call’s payoff against this density yields the following pricing formula:

C(S, t) =
e−q(M−t)

2

(
S +

√
S2 + β2e−2µ(T−t)

)
[N(d+ + α

√
M − t) + N(d− − α

√
M − t)]

− β2e−q(M−t)

2e2µ(T−t)

1

S +
√

S2 + β2e−2µ(T−t)
[N(d+ − α

√
M − t) + N(d− + α

√
M − t)]

− Ke−r(M−t)[N(d+) − N(d−)],

where:

d± ≡
± sinh−1

(
S
β eµ(T−t)

)
− sinh−1

(
K
β eµ(T−t)

)
α
√

M − t
.

Figure 5 graphs the call value and time values of this model against the corresponding values in the Black-

Scholes model with the same at-the-money implied volatility. The negative skewness apparent in the volatility

surface and arcsinhnormal density function is manifested in higher out-of-the-money put prices and lower

out-of-the-money call prices. Figure 6 plots the arcsinhnormal call value against the current stock price and

time.
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Figure 5: The Arcsinhnormal Call Value and Time Value vs. Black-Scholes
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Figure 6: The Arcsinhnormal Call Valuation Function

V-B Stock Price is Depressed Cubic

A depressed cubic is a cubic polynomial with the constant and squared term suppressed. For example, the

first two terms in the power series expansion of sinh(x) are given by the depressed cubic x+ x3

6 . Historically,

the first polynomial to be explicitly inverted after the quadratic is the depressed cubic, by Del Ferro around

15007.

Suppose that the final payoff φ(w) is described by the following depressed cubic:

φ(w) =
{

β
[
(w − L)3 + 3(γ − T )(w − L)

]
e(r−q)T if w > L;

0 if w < L,
(35)

for β > 0, γ > T . Figure 7 graphs this payoff function.
7However, the first publication of the solution was by Cardano in 1545, who extended the result to general cubics and to

quartics (see [16]).
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Figure 7: The Stock Payoff Function for the Depressed Cubic (L=-4, γ − T = 1)

The solution of (6) subject to (8), (9), and (35) is:

s(w, t) = β
[
(w − L)3 + 3(γ − t)(w − L)

]
e(r−q)t, w > L, t ∈ [0, T ]. (36)

Setting s(0, 0) = S0 expresses the scaling constant in terms of the initial stock price:

β = − S0

L3 + 3γL
, (37)

where recall L < 0. Figure 8 graphs this stock pricing function against the driving SBM and time. For each

time, the stock price is an increasing convex function of the SBM.
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Figure 8: The Stock Pricing Function (L=-4, γ − T = 1)

To express the local volatility in terms of the stock price, we need to invert the depressed cubic (36).
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Using Cardano’s formula (see [16], pgs.8-10):

w(S, t) = L + 4(S, t), S ≥ 0, t ∈ [0, T ], (38)

where:

4(S, t) ≡ ρ
1/3
+ (S, t) − ρ

1/3
− (S, t), S ≥ 0, t ∈ [0, T ], (39)

and:

ρ±(S, t) ≡ ± S

2βe(r−q)t
+

√(
S

2βe(r−q)t

)2

+ (γ − t)3. (40)

Differentiating (36) w.r.t. w implies that:

sw(w, t) = 3β
[
(w − L)2 + γ − t

]
e(r−q)t, w ≥ L, t ∈ [0, T ]. (41)

From (7), substituting (38) in (41) determines the absolute volatility:

a(S, t) = 3β[42(S, t) + γ − t]e(r−q)t, S > 0, t ∈ [0, τ), (42)

where β is given in (37). Dividing by the stock price yields the local volatility surface:

σ(S, t) ≡ a(S, t)
S

=
3
S

β[42(S, t) + γ − t]e(r−q)t, S > 0, t ∈ [0, τ). (43)

Figure 9 graphs this local volatility surface.
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Figure 9: The Local Volatility Surface

To understand the behavior of this local volatility function, note that the stock pricing function again

behaves linearly in w for w near L and is dominated by the w3 term for w large. Thus, the volatility smile

15



is approximately hyperbolic in S (“normal volatility”) for S near zero, while it is asymptoting to zero like

1
S1/3 for S high. Thus, as S increases from 0 to ∞, the volatility smile again slopes downward in a convex

fashion. The more negative is L, the smaller is β from (37), and the smaller is volatility from (43). Thus,

the overall level of the volatility is governed by the likelihood of bankruptcy. The function 4(S, t) in (43)

has little time dependence and so the other free parameter γ controls the shape of the volatility function in

the time variable. For interest rates above dividend yields, σ(S, t) is increasing in t and the higher is γ, the

lower is the slope in the time variable.

Substituting (38) in (21) gives the risk-neutral density:

q(Z, M ; S, t) =
1

a(Z, M)
√

2π(M − t)

{
exp

{
−1

2

[4(Z, M) −4(S, t)√
M − t

]2
}

− exp

{
−1

2

[4(Z, M) + 4(S, t)√
M − t

]2
}}

(44)

where a(·, ·) is given in (42) and 4(·, ·) is defined in (39). Figure 10 graphs this density (termed the

depressed cube root density) against the future spot price and time. The downward sloping volatility surface

graphed in Figure 9 again cancels much of the positive skewness of the lognormal density leading to a close

approximation of a Gaussian density.
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Figure 10: The Cube Root Probability Density Function

Integrating the call’s payoff against this density yields the following valuation formula:

C(S, t) = βert−qM
√

M − t
{[

3γ − 2t − M + [4(S, t) −4(K, M)]2 + 34(S, t)4(K, M)
]
N ′(d+)

− [
3γ − 2t − M + [4(S, t) + 4(K, M)]2 − 34(S, t)4(K, M)

]
N ′(d−)

}

16



+Se−q(M−t)[N(d+) + N(d−)] − Ke−r(M−t)[N(d+) − N(d−)],

where:

d± ≡ ±4(S, t) −4(K, M)√
M − t

.

Figure 11 graphs the call value and time values of this model against the corresponding values in the

Black-Scholes model with the same at-the-money implied volatility. The negative skewness apparent in the

volatility surface and density function is once again manifested in higher out-of-the-money put prices and

lower out-of-the-money call prices. Figure 12 plots the call value against the current stock price and time.
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Figure 11: The Depressed Cubic Call Value and Time Value vs. Black-Scholes
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Figure 12: The Call Valuation Function in the Depressed Cubic Model
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V-C Stock Price is Depressed Cubic of Hyperbolic Sine

Our final example synthesizes the previous two. Suppose that the final payoff φ(w) is described by the

following depressed cubic:

φ(w) =
{

β
[
sinh3[α(w − L)] + 3γ sinh[α(w − L)]

]
if w > L;

0 if w < L,
(45)

for β > 0, γ > 0. Figure 13 graphs this payoff function. Note that the payoff b{sinh[α(w − L)]}+ used in
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Figure 13: The Stock Payoff Function for the Depressed Cubic in Hyperbolic Sine(L=-4, α = .1, γ = 1)

the first example can be obtained from (45) by setting γ = b
3β and letting β ↓ 0. Less obviously, the payoff

in the second example can also be obtained from (45) by applying the linear operator 1
3γ+6D3

α + Dα where

Dα denotes differentiation w.r.t. α and letting α ↓ 0.

The solution of (6) subject to (8), (9), and (45) is:

s(w, t) = βe−µ(T−t)
{
sinh3[α(w − L)] + 3p(t) sinh[α(w − L)]

}
, t ∈ [0, T ], w > L, (46)

where µ ≡ r − q − 9
2α2 and p(t) ≡ 1−(1−4γ)e−4α2(T−t)

4 . Setting s(0, 0) = S0 expresses the scaling constant in

terms of the initial stock price:

β =
S0e

µT

sinh3[−αL] + 3p(0) sinh[−αL]
, (47)

where recall L < 0. Figure 14 graphs this stock pricing function against the driving SBM and time. For

each time, the stock price is an increasing convex function of the SBM.

To express the local volatility in terms of the stock price, we need to solve the depressed cubic (46) in
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Figure 14: The Stock Pricing Function (L=-4, α = .1, γ = 1)

sinh[α(w − L)] for w. Again, using Cardano’s formula:

w(S, t) = L +
sinh−1[4(S, t)]

α
S ≥ 0, t ∈ (0, T ), (48)

where again:

4(S, t) ≡ ρ
1/3
+ (S, t) − ρ

1/3
− (S, t) (49)

but now:

ρ±(S, t) ≡ ±Seµ(T−t)

2β
+

√(
Seµ(T−t)

2β

)2

+ p3(t). (50)

Differentiating w.r.t. S implies that:

∂w

∂S
(S, t) =

eµ(T−t)

3αβ
√

1 + 42(S, t)

ρ
1/3
+ (S, t) + ρ

1/3
− (S, t)

ρ+(S, t) + ρ−(S, t)
, S > 0, t ∈ [0, τ ]. (51)

From (7), reciprocating gives the absolute volatility:

a(S, t) =
3αβ

√
1 + 42(S, t)
eµ(T−t)

ρ+(S, t) + ρ−(S, t)

ρ
1/3
+ (S, t) + ρ

1/3
− (S, t)

, S > 0, t ∈ [0, τ), (52)

where β is given in (47) and 4(S, t) is given in (49). Dividing by the stock price yields the local volatility

surface:

σ(S, t) ≡ a(S, t)
S

=
3αβ

√
1 + 42(S, t)

Seµ(T−t)

ρ+(S, t) + ρ−(S, t)

ρ
1/3
+ (S, t) + ρ

1/3
− (S, t)

, S > 0, t ∈ [0, τ). (53)

Figure 15 graphs this local volatility surface.

To understand the behavior of this local volatility function, note that the stock pricing function again

behaves linearly in w for w near L and thus is approximately hyperbolic in S (“normal volatility”) for S
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Figure 15: The Local Volatility Surface

near zero. The behavior for large stock prices is quite complicated, but graphical analysis indicates that the

volatility reaches a minimum and slopes upwards for sufficiently large S. In contrast to the first two models,

this third model has three free parameters α, L, and γ, allowing a wide variety of shapes.

Substituting (48) in (21) gives the risk-neutral density:

q(Z, M ; S, t) = 1

a(Z,M)
√

2π(M−t)
·

{
exp

{
−1

2

[
sinh−1[4(Z, M)] − sinh−1[4(S, t)]

α
√

M − t

]2
}

− exp

{
−1

2

[
sinh−1[4(Z, M)] + sinh−1[4(S, t)]

α
√

M − t

]2
}}

, (54)

where a(·, ·) is given in (42) and 4(·, ·) is defined in (49). Figure 16 graphs this density (termed the depressed

cube root arcsinh density) against the future spot price and time. The downward sloping volatility surface

graphed in Figure 15 again cancels much of the positive skewness of the lognormal density leading to a close

approximation of a Gaussian density.

Integrating the call’s payoff against this density yields the following valuation formula:

C(S, t) =

β

{
e−µ(T−t)−q(M−t)

8

[
4(S, t) +

√
42(S, t) + 1

]3 [
N(d+ + 3α

√
M − t) + N(d− − 3α

√
M − t)

]
−3[1 − 4p(M)]

e−(r−α2
2 )(M−t)−µ(T−M)

8

[
4(S, t) +

√
42(S, t) + 1

] [
N(d+ + α

√
M − t) + N(d− − α

√
M − t)

]
+3[1 − 4p(M)]

e−(r−α2
2 )(M−t)−µ(T−M)

8
1

4(S, t) +
√42(S, t) + 1

[
N(d+ − α

√
M − t) + N(d− + α

√
M − t)

]
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Figure 16: The Cube Root ArcSinh Probability Density Function

−e−µ(T−t)−q(M−t)

8
1[

4(S, t) +
√42(S, t) + 1

]3

[
N(d+ − 3α

√
M − t) + N(d− + 3α

√
M − t)

]
−Ke−r(M−t)[N(d+) − N(d−)],

where d± ≡ ± sinh−1[4(S,t)]−sinh−1[4(K,M)]

α
√

M−t
. Figure 17 graphs the call value and time values of this model

against the corresponding values in the Black-Scholes model with the same at-the-money implied volatility.

The negative skewness apparent in the volatility surface and density function is once again manifested in

higher out-of-the-money put prices and lower out-of-the-money call prices.
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Figure 17: The Depressed Cubic Arcsinh Call Value and Time Value vs. Black-Scholes

Figure 18 plots the call value against the current stock price and time.
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Figure 18: The Call Valuation Function in the Depressed Cubic in Hyperbolic Sine Model

VI Summary and Extensions

Assuming that the underlying local volatility is a function of stock price and time, we developed an approach

for generating closed form solutions for option values when the volatility solves a certain nonlinear partial

differential equation. The approach involves specifying a stock payoff function which has the key property

that the stock pricing function can be explicitly calculated and inverted. We illustrated our results with

three examples.

All three examples can be generalized. The first one involving the difference of two exponentials can be

generalized to a payoff of the form:

φ1(w) =
P4(eα(w−L))

enα(w−L)
, (55)

where P4 is a polynomial of at most degree 4, α is a nonnegative constant, L is a negative constant, and

n = 0, 1, 2, 3, or 4. The coefficients of the polynomial should be chosen so that the payoff and the stock

pricing function are monotonic. To invert the stock pricing function, the quartic root formula would be

used. Similarly, the second example, which involved the depressed cubic, can be generalized to a payoff of

the form:

φ2(w) =
P4(w − L)
(w − L)n

, (56)

where again the payoff and stock pricing function should be monotonic. Galois theory can be used to

generate polynomials in eα(w−L) or in (w −L), which are of higher order than quartic and whose roots may
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be computed. The third example involves composing two explicitly invertible maps, and nothing prevents

composing more complex functions such as φ1 and φ2 or having multiple compositions.

Further extensions to this analysis would include developing pricing formulas for path-dependent options

such as American or barrier options. For example, to extend our first illustration to down barrier options,

note from (25) that if α =
√

2(r − q), then µ = 0 and so the stock price process in (27) becomes:

St = S0csch(−αL) sinh[α(Wt − L)], t ∈ [0, T ]. (57)

Since St hits some lower barrier H when the SBM hits a constant barrier, the joint density for the minimum

stock price and the final stock price is easily determined analytically. To deal with up barrier options,

the transition density for SBM absorbing at both lower and upper barriers would be used. To analytically

approximate American options, the randomization technique discussed in Carr[5] could be used.

For stock or option payoff functions which are intractable analytically, the present analysis has impli-

cations for numerical analysis. If the volatility function satisfies the nonlinear p.d.e. (2), then a change of

independent variables simplifies the standard valuation p.d.e. so that the underlying has unit diffusion and

zero drift. European option values can therefore be obtained by quadrature, which can be applied recur-

sively for Bermudan or compound options. American values can be obtained by the standard finite difference

scheme for the heat equation (with a time and state dependent potential term). Alternatively, Monte Carlo

simulation can be enhanced by simulating (absorbing) SBM rather than a complicated stock price process.

A generalization of the present analysis would change the clock as well as the scale. A deterministic

time change allows the driver to be an Ornstein Uhlenbeck process, since it is a deterministic time and scale

change of SBM. A deterministic time change would also bring the time-dependent Black Scholes analysis

into the framework. The generalization of the representation formula Wt = w(St, t; S0), appearing in (64) of

Appendix 1, is:

Wt′ = w(St, t), (58)

where:

t′ = θ(t), (59)

with θ(t) an increasing differentiable function satisfying θ(0) = 0 and θ′(t) > 0 for t ∈ [0, T ].

23



Then the generalization of (3) is readily obtained:

w(S, t) =
√

θ′(t)
∫ S

S0

1
a(Z, t)

dZ +
∫ t

0

√
θ′(s)

[
1
2

∂a(S, s)
∂S

∣∣∣∣
S=S0

− (r − δ)S0

a(S0, s)

]
ds, S > 0, t ∈ [0, T ). (60)

The generalization of the nonlinear p.d.e. (2) for the absolute volatility function a(S, t) is:

a2(S, t)
2

∂2a(S, t)
∂S2

+ (r − q)S
∂a

∂S
(S, t) +

∂a

∂t
(S, t) =

[
r − q +

θ′′(t)
2θ′(t)

]
a(S, t), S > 0, t ∈ (0, T ). (61)

The generalization of the p.d.e. (6) for the stock pricing function s(w, t) is:

∂s

∂t
(w, t) +

θ′(t)
2

∂2s

∂w2
(w, t) = (r − δ)s(w, t), w ≥ L(t), t ∈ [0, T ], (62)

while the link (7) between the absolute volatility a(S, t) and the stock pricing function s(x, t) generalizes to:

a(s(w, t), t) =
∂s

∂w
(w, t)

√
θ′(t), w ≥ L(t), t ∈ [0, T ]. (63)

A powerful alternative to a time change is a change of probability measure. To retain the path-

independence property, one would quanto the Brownian derivative security into a second derivative security

written on the stock. It can be shown that for any pair of time and space-dependent drift and volatility

functions, a change of scale and measure can be developed which reduces the drift to zero and the absolute

volatility to unity. Since the rate used to discount the stock payoff function will in general be state-dependent,

the generalization of the linear p.d.e. (6) for the stock pricing function will in general be a nonlinear reaction

diffusion equation.

In this paper, all three examples took the stock payoff to be an odd function of absorbing Brownian

motion, which was equivalent on the relevant domain to the same function of standard Brownian motion.

Drivers other than standard Brownian motion could also be considered. For example, one could consider

the stock as an even function (eg. square, fourth power, or hyperbolic cosine) of reflecting Brownian motion,

or more generally of a Bessel process. Other functions of multi-dimensional SBM can also be considered

instead of the radius. Alternatively, the stock price process could depend on the driver’s path statistics such

as the extrema or local time. Stochastic time changes of standard Brownian motion can make the driver a

pure jump Levy process. In the interests of brevity, these extensions are best left for future research.
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Appendix 1: Necessity of Fundamental PDE for Path Independence

This appendix proves that the necessity of the PDE (2) in order that the standard Brownian motion be a

function of the stock price and time. Let w(S, t) denote a C2,1 function defined on the domain S > 0 and

t ∈ [0, T ] which for each t, maps the stock price S to the SBM W , i.e.:

Wt = w(St, t). (64)

Since Wt is SBM, a necessary condition on w(S, t) is that W0 = 0, which implies:

w(S0, 0) = 0. (65)

We further require that for each t, w is monotonically increasing in S and that the map be onto a region

[L(t),∞), where L(t) ∈ [−∞, 0) is some lower bound on the realizations of Wt. Applying Itô’s lemma to

(64) yields:

dWt =
[
∂w

∂t
(St, t) + (r − q)St

∂w

∂S
(St, t) +

a2(St, t)
2

∂2w

∂S2
(St, t)

]
dt + a(St, t)

∂w

∂S
(St, t)dWt. (66)

Since Wt is SBM, a necessary condition on w and a is that the diffusion coefficient in (66) be equal to

one:

∂w

∂S
(S, t)a(S, t) = 1, (67)

or equivalently:

∂w

∂S
(S, t) =

1
a(S, t)

. (68)

Integrating yields:

w(S, t; S0) =
∫ S

S0

1
a(Z, t)

dZ + w(S0, t), (69)

where for b > a,
∫ a

b
h(x)dx ≡ − ∫ b

a
h(x)dx and recall w(S0, 0) = 0.

Differentiating (68) w.r.t. S gives:

∂2w

∂S2
(S, t) = − 1

a2(S, t)
∂a(S, t)

∂S
, (70)

and differentiating (69) w.r.t. t gives:

∂w

∂t
(S, t) = −

∫ S

S0

1
a2(Z, t)

∂a

∂t
(Z, t)dZ +

∂w

∂t
(S0, t). (71)
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Since Wt is an SBM, a further necessary condition on w and a is that the drift coefficient in (66) be zero:

[
∂w

∂t
(S, t) + (r − q)S

∂w

∂S
(S, t) +

a2(S, t)
2

∂2w

∂S2
(S, t)

]
= 0. (72)

Substituting (71), (68), and (70) in (72) and simplifying gives:

−
∫ S

S0

1
a2(Z, t)

∂a

∂t
(Z, t)dZ +

∂w

∂t
(S0, t) + (r − q)S

1
a(S, t)

− 1
2

∂a(S, t)
∂S

= 0, (73)

Since this equation holds for all S, in particular it holds at S = S0, which in turn yields:

∂w

∂t
(S0, t) =

1
2

∂a(S, t)
∂S

∣∣∣∣
S=S0

−(r − q)S0
1

a(S0, t)
.

Integrating w.r.t. time and imposing (65):

w(S0, t) =
∫ t

0

[
1
2

∂a(S, s)
∂S

∣∣∣∣
S=S0

− (r − q)S0

a(S0, s)

]
ds. (74)

Note from (72), (69) and (74) that Wt = w(St, t) is the forward price at t of a claim with final payment:

w(ST , T ) =
∫ ST

S0

1
a(Z, T )

dZ +
∫ T

0

[
1
2

∂a(S, t)
∂S

∣∣∣∣
S=S0

− (r − q)S0

a(S0, t)

]
dt.

at T .

Differentiating (73) w.r.t. S gives:

− 1
a2(S, t)

∂a

∂t
(S, t) + (r − q)

1
a(S, t)

− (r − q)S
1

a2(S, t)
∂a

∂S
(S, t) − 1

2
∂2a(S, t)

∂S2
= 0.

Multiplying by −a2(S, t) produces the desired fundamental p.d.e. (2) for the absolute volatility:

a2(S, t)
2

∂2a(S, t)
∂S2

+ (r − q)S
∂a

∂S
(S, t) +

∂a

∂t
(S, t) = (r − q)a(S, t), S > 0, t ∈ [0, T ]. (75)
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Appendix 2: Sufficiency of Fundamental PDE for Path Indepen-

dence

This appendix proves that if a positive function a(S, t) satisfies the nonlinear PDE (2), then there exists a

function w(S, t) increasing in S, such that the process:

Bt ≡ w(St, t), t ∈ [0, τ ], (76)

is the driving SBM, i.e. Bt = Wt for all t ∈ [0, τ ]. This function is given by:

w(S, t) =
∫ S

S0

1
a(Z, t)

dZ +
∫ t

0

[
1
2

∂

∂S
[a(S, s)]

∣∣∣∣
S=S0

− (r − q)S0

a(S0, s)

]
ds, S > 0, t ∈ [0, T ′]. (77)

To prove this result, Itô’s lemma applied to (76) implies that for t ∈ [0, τ ]:

dBt =
[
σ2(St, t)

2
∂2w

∂S2
(St, t) + (r − q)St

∂w

∂S
(St, t) +

∂w

∂t
(St, t)

]
dt +

∂w

∂S
(St, t)a(St, t)dWt. (78)

For B to be SBM, we need to show that its drift is zero:

a2(S, t)
2

∂2w

∂S2
(S, t) + (r − q)S

∂w

∂S
(S, t) +

∂w

∂t
(S, t) = 0, S > 0, t ∈ [0, τ ], (79)

that its volatility is unity:

∂w

∂S
(S, t)a(S, t) = 1, S > 0, t ∈ [0, τ ], (80)

and that its initial level is zero:

B0 = s(S0, 0) = 0. (81)

Differentiating (77) w.r.t. S:

∂w

∂S
(S, t) =

1
a(S, t)

, S > 0, t ∈ [0, τ ], (82)

so (80) holds. Furthermore, since a(S, t) is assumed positive, the function w is increasing in S. Evaluating

(77) at (S, t) = (S0, 0) implies (81) also holds. To show that (79) also holds, divide (2) by a2(S, t):

1
2

∂2a

∂S2
(S, t) +

(r − q)S
a2(S, t)

∂a

∂S
(S, t) − r − q

a(S, t)
+

1
a2(S, t)

∂a

∂t
(S, t) = 0, S ≥ 0, t ∈ [0, τ). (83)

Integrating both sides w.r.t. S implies:

1
2

∂a

∂Z
(Z, t)

∣∣∣∣Z=S

Z=S0

− (r − q)Z
a(Z, t)

∣∣∣∣Z=S

Z=S0

+
∫ S

S0

1
a2(Z, t)

∂a

∂t
(Z, t)dZ = 0, S ≥ 0, t ∈ [0, τ), (84)
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where the constant of integration has been set to zero. Multiplying through by −1 implies that for S ≥

0, t ∈ [0, τ):

−a2(S, t)
2

∂a
∂S (S, t)
a2(S, t)

+
(r − q)S
a(S, t)

+
1
2

∂

∂S
[a(S, t)]

∣∣∣∣
S=S0

− (r − q)S0

a(S0, t)
−

∫ S

S0

1
a2(Z, t)

∂a

∂t
(Z, t)dZ = 0. (85)

Differentiating (82) w.r.t. S:

∂2w

∂S2
(S, t) = −

∂a
∂S (S, t)
a2(S, t)

, S > 0, t ∈ [0, τ ], (86)

Differentiating (77) w.r.t. t:

∂w

∂t
(S, t) =

1
2

∂a

∂S
(S, t)

∣∣∣∣
S=S0

− (r − q)S0

a(S0, t)
−

∫ S

S0

1
a2(Z, t)

∂a

∂t
(Z, t)dZ, S > 0, t ∈ [0, τ ]. (87)

Substituting (82),(86), and (87) in (85) gives (79).
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Appendix 3: Uniqueness of Solutions for Fundamental PDE

In this appendix, we provide a uniqueness result for the solutions of (75) governing the absolute volatility.

Theorem: Let a : [0, +∞) × [0, T ] → < be a solution of:

a2(S, t)
2

∂2a(S, t)
∂S2

+ (r − q)S
∂a

∂S
(S, t) +

∂a

∂t
(S, t) = (r − q)a(S, t), (88)

with:

a(0, t) = 0, t ∈ [0, T ] and a(S, T ) = g(S), (89)

with g ∈ C2(0, +∞), g(0) = 0 and g(x) ∼ 0(x) for x large. Then a is a unique solution of (88) and (89) in

the class of functions satisfying a(S, t) ∼ 0(S) for S large and |(a2(S, t))ss| ≤ C for (S, t) ∈ [0, +∞) × [0, T ]

and some given constant C.

Proof: First, we observe that if we let ã(x, t) ≡ e(r−q)(T−t)a(S, t) and x ≡ Se(r−q)(T−t), then ã(x, t) solves:

ã2(x, t)
2

∂2ã

∂x2
(x, t) +

∂ã

∂t
(x, t) = 0, (90)

and also satisfies the conditions (89).

In view of the above observation, it suffices to establish the uniqueness result for the solutions of (90)

instead of (88). To this end, we define F : [0, +∞) × [0, T ] → [0, +∞) to be

F (x, t) = ã2(x, t). (91)

Direct calculations yield that F solves the quasi-linear equation:

Ft(x, t) +
1
2
F (x, t)Fxx(x, t) = F 2

x (x, t) (92)

F (0, t) = 0, t ∈ [0, T ], and F (x, T ) = g2(x). (93)

From the assumptions on ã, we get that F (x, t) ∼ 0(x2) for x large and that F (x, t)xx ≤ C for (x, t) ∈

[0, +∞) × [0, T ). Using a variation of the results of Fukuda, Ishii, and Tsutsumi[8], we get that (92) has a

unique solution. Therefore, if a1(x, t) and a2(x, t) are two solutions of (88), satisfying also (89), the above

uniqueness result yields that

a2
1(x, t) = a2

2(x, t). (94)
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Next, we look at the difference G(x, t) = a1(x, t) − a2(x, t). Differentiation and use of (88) yield:

Gt(x, t) = (a1(x, t))t − (a2(x, t))t

= −1
2
a2
1(x, t)(a1(x, t))xx +

1
2
a2
2(x, t)(a2(x, t))xx

= −1
2
a2
1(x, t)Gxx(x, t) − 1

2
(a2(x, t))xx(a2

1(x, t) − a2
2(x, t))

= −1
2
a2
1(x, t)Gxx(x, t).

Therefore, G solves:

Gt(x, t) +
1
2
a2
1(x, t)Gxx(x, t) = 0 (95)

with:

G(0, t) = 0 and G(x, T ) = 0.

Working as above for Ĝ(x, t) = a2(x, t) − a1(x, t) yields that Ĝ solves:

Ĝt(x, t) =
1
2
a2
2(x, t)Ĝxx(x, t) (96)

which, in view of (94), coincides with (95). Moreover, Ĝ(0, T ) = 0 and Ĝ(x, T ) = 0. We can easily verify

that equation (95) (or (96)) admits a comparison principle and we readily conclude that a1(x, t) = a2(x, t)

for (x, t) ∈ [0, +∞) × [0, T ].
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