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Abstract

In this paper, we provide an explicit pricing algorithm in an incomplete
market framework and we investigate the associated hedging startegies.
We also explore the numeraire consistency of the emerging pricing scheme.

1 Introduction

The classical arbitrage free pricing methodology is based upon the idea of risk
replication. One makes investment allocations in order to dynamically replicate
future liability. Clearly, this approach breaks down when the liability cannot be
hedged completely by taking positions in the market. In such situations, of the
so called incomplete markets, the notion of value itself and the associated risk
management methodology have to be rede�ned.
A successful method for the pricing of unhedgeable risks is based on utility

indi¤erence. The central idea is to replace the traditional replication argument
by the constraint of optimal behavior as an investor. Optimality refers to the
individual risk preferences captured in terms of a utility and the correspond-
ing value function. The price represents the amount which makes the investor
indi¤erent to the various investment opportunities.
This concept of value was introduced originally by Hodges and Neuberger

(1989) in relation to analysis of the transactions costs impact on the price. Lat-
ter on it was also extended to deal with other contexts of incompleteness. Analy-
sis of indi¤erence price properties was based so far on two dual approaches. The
�rst one aims at solving the so called primary expected utility problem. Typ-
ically this approach works well in a Markovian setting in which it is straight-
forward to deduce that the indi¤erence price satis�es a quasi-linear equation.
Probabilistic representations of solutions to such equations can be derived in
some special cases (cf. Musiela and Zariphopoulou (2001)). The dual approach
seems to be more general. It leads to a structural result providing the indi¤er-
ence price representation as a supremum over the set of martingale measures of
the di¤erence between the expected value of the payo¤ and a certain penalty
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function, both depending on the martingale measure (cf. Frittelli (2000), Rouge
and El Karoui (2000)). Unfortunately, none of the above approaches provides
a general algorithm to compute the indi¤erence price or gives a clear intuition
for it.
One may argue that in many respects success of the arbitrage free pricing

methodology lies in its simplicity. The main idea, especially when presented
in the context of a one-period binomial model, is both intuitively obvious and
mathematically trivial (see, for example, Musiela and Rutkowski (1997)). Unfor-
tunately, neither of the above methods provide clear intuition for the indi¤erence
price. The main objective of this paper is to build intuition for this concept of
value. We work with the classical one-period binomial model to which incom-
pleteness is introduced by adding two elementary outcomes to the probability
space. In spirit, this corresponds to the situation in which one considers op-
tions written on a non-traded asset, like in Davis (1999), (2000) or Musiela and
Zariphopoulou (2001), and uses another dependent asset for pricing and risk
management. Alternatively, one can also see this as related to the models with
constraints, like in Rouge and El Karoui (2000).
It turns out that the hedgeable and unhedgeable components of risk are

priced by �nancial markets and insurance valuation methods, respectively. Namely,
the total risk at the end of a time period is conditioned on the hedgeable one
leaving the risk that cannot be hedged. Then, this risk is priced by certainty
equivalent. In the second step, the remaining hedgeable risk is priced by arbi-
trage. This de�nes the total risk at the beginning of the period and the valuation
algorithm may be repeated. The �rst step uses insurance valuation method and
returns a modi�ed payo¤ in line with the preferences. The second step prices
this new payo¤ by arbitrage. Each time reference is made to the same measure
which, on the one hand, does not alter the relevant conditional distribution for
the insurance valuation method and, on the other, posses a martingale property
for the �nancial markets valuation approach. It is the minimal relative entropy
martingale measure. The details are presented in Section 2. Section 3 focuses
on the indi¤erence price dependence on the risk aversion. Hedging related issues
are discussed in Section 4. Numeraire independence of the indi¤erence price and
the associated structure of consistent utilities is addressed in Section 5.

2 Price representation

Consider a one-period model of a market with one riskless asset and two risky
assets, of which only one is traded. For simplicity, consider initially zero interest
rate. The current values of the risky traded and non-traded assets are denoted
by S0 and Y0, respectively. The traded asset value at the end of the period
is denoted by ST . We assume that ST 2

�
Sd; Su

	
with 0 < Sd < Su: The

non-traded asset value YT satis�es YT 2
�
Y d; Y u

	
; Y d < Y u:

Let 
 = f!1; !2; !3; !4g be a probability space and let P be a probability
measure on the ��algebra F =2
 of all subsets of 
: For each i = 1; 2; 3; 4 let
pi = P f!ig > 0: View ST and YT as random variables, i.e., as functions from 
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into R de�ned by

ST (!1) = S
u; YT (!1) = Y

u ST (!3) = S
d; YT (!3) = Y

u

ST (!2) = S
u; YT (!2) = Y

d ST (!4) = S
d; YT (!4) = Y

d:

Clearly, such a model of a market is incomplete. There are four elementary
outcomes in the probability space and only two assets available for trading and
hence there are risk that cannot be hedged. One way to handle such situations
is to use the price concept based on utility indi¤erence. Below we recall the
familiar de�nition.
Consider a portfolio consisting of � shares of stock and the amount � invested

in the riskless asset. The current value X0 = x of this portfolio is equal to
� + �S0 = x. Its wealth XT at the end of the period is given by

XT = � + �ST = x+ � (ST � S0) :

Consider now a claim G settling at the end of the period, at time T: Mathe-
matically speaking, G is just a random variable de�ned on 
 with values in R,
namely G (!i) = gi for i = 1; 2; 3; 4: In pricing of G; we need to specify our risk
preferences. We choose to work with exponential utility of the form

�e�
x; x 2 R; 
 > 0:

Optimality of investments, which will ultimately yield the price ofG; is examined
via the value function

VG (x) = sup
�
EP

�
�e�
(XT�G)

�
= e�
x sup

�
EP

�
�e�
�(ST�S0)+
G

�
: (1)

De�nition 1 The indi¤erence price of the claim G is de�ned as the amount �
for which the two value functions VG and V0, de�ned in (1) and corresponding
to the claims G and 0, respectively, coincide. Namely, � is the amount which
satis�es

V0 (x) = VG (x+ �) (2)

for any initial wealth x:

As already mentioned before, there is a general structural result which gives
a probabilistic representation of �. In order to present it we begin with a
characterization of all equivalent martingales measures. Recall that the measure
Q on 
 is an equivalent martingale measure if Q f!ig = qi > 0; q1+q2+q3+q4 =
1 and

EQST = S0: (3)

Obviously, condition (3) holds if and only if

Su (q1 + q2) + S
d (q3 + q4) = S0
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or equivalently if and only if

q1 + q2 = q =
S0 � Sd
Su � Sd : (4)

Consequently, the set Qe of equivalent martingale measures coincides with the
following set of vectors in R4+

Qe = f(q1; q2; q3; q4) : q1 + q2 + q3 + q4 = 1; q1 + q2 = qg ; (5)

where q is de�ned in (4).
Recall also that the relative to P entropy of Q is de�ned by

H (Q jP ) =
4X
i=1

qi log
qi
pi
: (6)

Therefore the martingale measureQ 2 Qe with the minimal relative to P entropy
is given by the solution to the problem

H (Q jP ) = min
Q2Qe

H (Q jP ) :

It is straightforward to see that Q f!ig = q0i ; i = 1; :::; 4; where

q01 = q
p1

p1 + p2
; q02 = q

p2
p1 + p2

; q03 = (1� q)
p3

p3 + p4
; q04 = (1� q)

p4
p3 + p4

; (7)

while q is de�ned in (4). Consequently, the minimal level of the relative entropy
is

H (Q jP ) = q log q

p1 + p2
+ (1� q) log 1� q

p3 + p4
(8)

Using the above notation we are now ready to present the general structural
result (see for example Delbaen et al. 2002). Namely, the indi¤erence price �
of the claim G is given by the following formula

� = sup
Q2Qe

�
EQG�
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(H (Q jP )�H (Q jP ))

�
: (9)

Remark 2 The above representation of the indi¤erence price is valid in general
incomplete models, where the discounted price process are only assumed to follow
locally bounded semimartingales. This clearly demonstrates universality of the
indi¤erence price concept. Unfortunately, formula (9) cannot be used directly
to compute �. Also, it does not provide a clear intuition for this new concept of
value.

Consider, for example, a claim of the form G = g1 (ST ) : Clearly in this case
the indi¤erence price must coincide with the arbitrage free price for there is
no risk that cannot be hedged. Indeed one can construct a nested complete
one-period binomial model. Namely, let 
0 = f!01; !02g, where !01 = f!1; !2g
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and !02 = f!3; !4g ;set p0 = p1 + p2 and view ST as a random variable de�ned
on 
0 with the values ST (!01) = S

u and ST (!02) = S
d. Obviously, the arbitrage

free price is equal to qg (Su) + (1� q) g
�
Sd
�
, where q is given in (4) and it

coincides with the indi¤erence price calculated using (9), characterization of the
equivalent martingale measures (4) and the de�nition (6).
Consider now a claim of the form G = g2 (YT ) and assume for simplicity

that the random variables ST and YT are independent under the measure P.
Intuitively, in this case the presence of the traded asset should not a¤ect the
price. Indeed, working directly with the value function (1) and the de�nition
(2) it is straightforward to deduce that

� =
1



logEPe


g2(YT ):

Therefore, the indi¤erence price coincides with one of the actuarial valuation
principles, namely, certainty equivalent. Note however that this representation
of the price does not follow from (9) trivially.
The situation gets even more complicated when one considers a claim of the

form
G = g1 (ST ) + g2 (YT ) :

One could be tempted to price G by �rst pricing g1 (ST ) by arbitrage, next
pricing g2 (YT ) by certainty equivalent, and adding the results. Intuitively this
should work when ST and YT are independent, however this also cannot work
under strong dependence between the two variables, for example when YT is a
function of ST :
To get a better intuition for what happens we will analyze further the value

function (1). Elementary transformations lead to the following expression

VG (x) = e
�
x sup

�

�
�e�
�(S

u�S0) (e
g1p1 + e

g2p2)

�e�
�(S
d�S0) (e
g3p3 + e


g4p4)
�
:

The optimal number of shares �0 which maximizes VG (x) can be calculated by
simple di¤erentiation, it is equal to

�0 =
1


 (Su � Sd) log
(Su � S0) (e
g1p1 + e
g2p2)
(S0 � Sd) (e
g3p3 + e
g4p4)

: (10)

Further straightforward but tedious calculations lead to the following represen-
tation of the value function

VG (x) = �e�
x
1

qq (1� q)1�q
(e
g1p1 + e


g2p2)
q
(e
g3p3 + e


g4p4)
1�q

; (11)

where

q =
S0 � Sd
Su � Sd : (12)
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For G = 0 the value function takes the form

V0 (x) = �e�
x
(p1 + p2)

q
(p3 + p4)

1�q

qq (1� q)1�q
: (13)

It easily follows from the de�nition of the indi¤erence price (2) and the
representations (11) (13) of the relevant value functions that

� =
1




�
q log

e
g1p1 + e

g2p2

p1 + p2
+ (1� q) log e


g3p3 + e

g4p4

p3 + p4

�
: (14)

As expected the pricing formula depends on both, the historical probabilities
pi and the risk neutral probability q associated with the nested complete one-
period Cox-Ross-Rubinstein model. In the remaining part of this section we
will derive an alternative to (9) and intuitively more meaningful probabilistic
representation of the indi¤erence price �.
From now on it will be convenient to think that the claim G is in fact a

function, say g; of ST and YT : Consistently with the previous notation G =
g (ST ; YT ) and g (Su; Y u) = g1; g

�
Su; Y d

�
= g2; g

�
Sd; Y u

�
= g3; g

�
Sd; Y d

�
=

g4: Note that the expressions involving the historical probabilities can be written
in terms of the conditional expectations, namely

e
g1p1 + e

g2p2

p1 + p2
= EP

�
e
G jST = Su

�
and

e
g3p3 + e

g4p4

p3 + p4
= EP

�
e
G

��ST = Sd � :
A simple way to represent the price � with respect to one probability distribution
is to identify an equivalent martingale measure Q0 with the same conditional
distribution of the non-traded asset given the traded asset as for the historical
measure P. More speci�cally, take the martingale measure Q0 for which

Q0 fYT = Y u jST = Su g =
q01
q
=

p1
p1 + p2

or q01 = q
p1

p1 + p2

Q0
�
YT = Y

d jST = Su
	
=
q02
q
=

p2
p1 + p2

or q02 = q
p2

p1 + p2

Q0
�
YT = Y

u
��ST = Sd	 = q03

1� q =
p3

p3 + p4
or q03 = (1� q)

p3
p3 + p4

Q0
�
YT = Y

d
��ST = Sd	 = q04

1� q =
p4

p3 + p4
or q04 = (1� q)

p4
p3 + p4

:

Obviously, as evidenced by (7) Q0= Q and hence it coincides with the minimal
relative entropy martingale measure. We summarize our results in the Proposi-
tion below
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Proposition 3 The indi¤erence price of the claim G = g (ST ; YT ) is given by
the following expression

� = EQ

�
1



logEQ

�
e
G jST

��
;

where Q is the minimal relative entropy martingale measure, i.e.,

Q f!1g = q
p1

p1 + p2
;Q f!2g = q

p2
p1 + p2

;

Q f!3g = (1� q)
p3

p3 + p4
;Q f!4g = (1� q)

p4
p3 + p4

;

and

q =
S0 � Sd
Su � Sd :

Remark 4 Note that the pricing algorithm seems to be intuitively obvious. One
should condition the total risk at the end of a time period on the hedgeable one
in order to extract the risk that cannot be hedged. Then, price that risk by
certainty equivalent, and in the second step, price the remaining hedgeable risk
by arbitrage. It is also clear that one should not alter the conditional distribution
from its historical values. Indeed, all relevant to the pricing market information
has been already extracted.

To illustrate further intuitively natural properties of the indi¤erence price,
consider the claim of the form G = g1 (ST ) + g2 (YT ). Simple calculations show
that the price � is equal to

� = EQ (g1 (ST )) + EQ

�
1



logEQ

�
e
g2(YT ) jST

��
;

meaning that the indi¤erence price of such a claim is the sum of the arbitrage
price of g1 (ST ) and the arbitrage price of 1
 logEQ

�
e
g2(YT ) jST

�
which in turn

is the certainty equivalent of g2 (YT ) calculated with respect to the conditional
distribution of YT given ST under the measure Q, or under the measure P
because they coincide. Clearly the unhegeable risk has been extracted optimally
and priced by the certainty equivalent, and the remaining risk has been priced
by arbitrage.

3 Dependence on the risk aversion

The nonlinearity in the pricing algorithm corresponds to the risk preferences
allocated to the unhedgeable component of risk. In the general case of the
claim G = g (ST ; YT ) we have
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Proposition 5 The function


 ! � (
) = EQ

�
1



logEQ

�
e
G jST

��
from R+ into R is increasing and continuous. Moreover,

� (0+) = EQG;

� (1�) = qmax (g1; g2) + (1� q)max (g3; g4) = EQ kGkL1
Qf�jST g

;

�
0
(0+) =

1

2
EQ (V arQ (G jST )) ;

and hence
� (
) = EQG+

1

2
EQ (V arQ (G jST )) 
 + o (
) :

The indi¤erence price is consistent with the no arbitrage principle, namely,

inf
Q2Qa

EQG � EQ
�
1



logEQ

�
e
G jST

��
� sup

Q2Qa

EQG;

where Qa is the set of absolutely continuous with respect to P martingale mea-
sures.

Proof. Let 0 < 
1 < 
2; then by the Holder inequality we get

EQ
�
e
1G jST

�
�
�
EQ
�
e
2G jST

�� 
1

2

and hence the indi¤erence price � (
) is an increasing function of the risk aversion

: Continuity is trivial, the limiting values at 0 and the �rst order expansion
can be either derived directly or using the formula


�
0
(
) = EQ

EQ
�
Ge
G jST

�
EQ (e
G jST )

� � (
)

and its derivative. The limit at 1 is a consequence of the formula below

lim
1



logEQ

�
e
G jST = Su

�
= max (g1; g2) = kGkL1

Qf�jST=Su g

and of the analogous formula for the case of conditioning on the event ST = Sd:
To show consistency with the no arbitrage principle assume, without loss of
generality, that g1 < g2 and g3 < g4 and note that

inf
Q2Qa

EQG � EQG = � (0+) � � (1�) = EQG � sup
Q2Qa

EQG;

where Q is a martingale measure for which

Q f!1g = 0; Q f!2g = q;Q f!3g = 0; Q f!4g = 1� q:
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4 Hedging related issues

The second important aspect of our analysis is hedging. Note that the optimal
number of shares (10) can be split into two parts, namely,

�0 = �
0
0 + �

1
0;

where

�00 =
1


 (Su � Sd) log
(Su � S0) (p1 + p2)
(S0 � Sd) (p3 + p4)

is the optimal number of shares corresponding to the case when G = 0, while

�10 =
1


 (Su � Sd) log
(e
g1p1 + e


g2p2) (p3 + p4)

(p1 + p2) (e
g3p3 + e
g4p4)

=
1


 (Su � Sd) log
EQ
�
e
G jST = Su

�
EQ (e
G jST = Sd )

=
@�

@S0

represents the residual optimal number of shares due to the presence of the
option. The residual optimal wealth generated due to the derivative contract is
denoted by Lt; t = 0; T: Clearly L0 = �; which is the option price, and at T we
have

LT = � +
@�

@S0
(ST � S0) : (15)

It follows that the process L is a martingale under any martingale measure, and
hence in particular under the minimal relative entropy martingale measure Q.
The amount

LT �G (16)

represents the surplus, i.e., the di¤erence between the optimal level of the resid-
ual wealth and the option payo¤. Obviously, when G depends only on ST ; i.e.,
G = g (ST ), then LT = G: In general, the expected surplus, given by

EQ (LT �G) = � � EQG =
1

2
EQ (V arQ (G jST )) 
 + o (
)

and calculated under the minimal relative entropy martingale measure Q is
positive. The expected utility of the surplus, calculated under the original
measure P, is equal to �1 and hence is the same as the utility of 0 surplus.
Indeed, because we have

� +
@�

@S0
(Su � S0) =

1



logEP

�
e
G jST = Su

�
;

� +
@�

@S0

�
Sd � S0

�
=
1



logEP

�
e
G

��ST = Sd � ;
straightforward transformations give

EP

�
�e�
(LT�G)

�
= EP

�
�e�
(LT�G) jST = Su

�
P fST = Sug
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+EP

�
�e�
(LT�G)

��ST = Sd�P�ST = Sd	 = �1:
Below we summarize the results related to hedging

Proposition 6 The residual optimal wealth (15) is a martingale under any
martingale measure. The expected surplus EQ (LT �G) is positive. The expected
utility of the surplus is EP

�
�e�
(LT�G)

�
= �1 and hence it coincides with the

utility of 0 surplus. Alternatively, the certainty equivalent value of the surplus
LT �G is 1


 logEPe
�
(LT�G) = 0.

Remark 7 It is straightforward to observe that all the above results remain
valid in the case when YT is an arbitrary, and not only two valued random
variable, and the claim G is bounded.

5 Numeraire independence and consistent util-
ities

One of the fundamentally important properties of the arbitrage free price is
its independence of a numeraire. The indi¤erence price will also be numeraire
independent provided the appropriate relationships between the relevant units
are build into the utility/value function.
Consider �rst the relationship between the forward and spot units, that is,

the case of a non-zero interest rate r over the time period. It is straightforward
to verify that working with the forward wealth process leads to the same value
function (11), where the argument x represents the forward value of the initial
wealth. Consequently, the indi¤erence price as de�ned in (2) is also expressed in
the forward units. Therefore the spot indi¤erence price of the claim G is given
by

1

1 + r
EQ

�
1


F
logEQ

�
e
FG jST

��
;

where 
F represents the risk aversion associated with the forward units. Alter-
natively, discounting the terminal wealth XT and the claim G by the interest
rate r, i.e., expressing both, the wealth process and the claim in the spot units
leads to the situation which can be reduced to the zero interest rate case by
changing the former claim G into G

1+r . Consequently, the spot indi¤erence
price of the claim G is given by

� (
;G) = EQ

�
1



logEQ

�
e


G
1+r jST

��
: (17)

Note that the two prices coincide for all claims if


F =



1 + r
: (18)

This translates into speci�cation (18) of the risk aversion parameter associated
with the forward units, with the base risk aversion parameter 
 being associated
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with the spot units. The measure Q is the minimal relative entropy martingale
measure for the process S�t = St=Bt; t = 0; T of the stock price St discounted
by the bond price Bt with B0 = 1 and BT = 1 + r:
Suppose now that we have chosen the stock price S as a numeraire. In this

case, we look for a measure QS under which the process B�t = Bt=St of the
bond price discounted by the stock price is a martingale. Obviously all such
measures are determined by the equality

EQSB
�
T = B

�
0 ;

or more explicitly by

1 + r

Su
�
qS1 + q

S
2

�
+
1 + r

Sd
�
qS3 + q

S
4

�
=
1

S0
;

where QS f!ig = qSi ; i = 1; 2; 3; 4: Setting qS = qS1 + qS2 , one �nds that

qS =

�
1

Sd
� 1

(1 + r)S0

�
SuSd

Su � Sd :

We choose the martingale measure QS with the minimal relative to P entropy
by setting

QS f!1g = qS
p1

p1 + p2
;QS f!2g = qS

p2
p1 + p2

;

QS f!3g =
�
1� qS

� p3
p3 + p4

;QS f!4g =
�
1� qS

� p4
p3 + p4

:

Note that the wealth process X expressed in terms of the numeraire S refers to
the number of shares of the stock held in the portfolio at times 0 and T . There-
fore the risk aversion parameter 
S corresponding to this unit must be adjusted
accordingly in order to be consistent with the base risk aversion parameter 

associated with the spot units. Clearly, if we set


S =

ST
1 + r

(19)

then the pricing algorithm is still valid. Indeed, associated with this numeraire,
the certainty equivalent of the payo¤ G is equal to

1


S
logEP

�
e

S

G
ST jST

�
: (20)

Moreover, because the conditional distributions are the same for the measure P
and QS the indi¤erence price should be given by

S0EQS

�
1


S
logEQS

�
e

S

G
ST jST

��
: (21)
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But with 
S given by (19) we get that (21) equals

S0EQS

�
1 + r


ST
logEP

�
e

ST
1+r

G
ST jST

��
= EQ

�
1



logEQ

�
e


G
1+r jST

��
because

S0EQS
G

ST
= EQ

G

1 + r
(22)

for any payo¤G dependent on ST only (see Chapter 1 in Musiela and Rutkowski
(1997)).
Consider now a general case of an arbitrary numeraire N and denote by


N the associated with it risk aversion parameter. Certainty equivalent of the
unhedgeable risk associated with N is

1


N
logEP

�
e

N

G
NT jST

�
:

Obviously, the base risk aversion parameter 
 is associated with the riskless
bond B: We have the following result.

Proposition 8 Indi¤erence prices are numeraire independent if and only if


N =

NT
1 + r

: (23)

Proof. The if part repeats the above arguments for an arbitrary numeraire.
Denote by QN the martingale measure associated with the numeraire N and
with the minimal relative to P entropy and assume that for all G

N0EQN

�
1


N
logEQN

�
e

N

G
NT jST

��
= EQ

�
1



logEQ

�
e


G
1+r jST

��
: (24)

Using (22) with S replaced by N and the fact that the conditional distributions
coincide we transform the left hand side of (24) into

EQ

�
NT


N (1 + r)
logEQ

�
e

N

G
NT jST

��
and the only if statement follows.

Remark 9 The pricing algorithm consists of two steps. In the �rst we calculate
the certainty equivalent which itself depends on two things. Namely, speci�cation
of the probability distribution and the choice of units. The probability distribu-
tion choice is obvious. One should work with the conditional distribution of the
total risk, given the hedgeable one, under the original measure P. The choice of
units is arbitrary but the risk aversion parameter must to be adjusted accordingly
if we want the certainty equivalent to be numeraire independent. In other words,
the concept of utility and risk preferences is formulated with respect to a base
unit, say the spot. For any other unit, the utility may be de�ned in a consistent

12



way by converting accordingly the risk aversion parameter like in (18), (19) or
generally in (23). The second step of the pricing algorithm is the risk-neutral
valuation which is, of course, numeraire independent. Remarkably, the indi¤er-
ence price is calculated with respect to a martingale measure which has minimal
relative to P entropy and hence it does no change the conditional distribution of
the total risk, given the hedgeable one.

Proposition 10 As a function of the claim G the indi¤erence price � (
;G)
given by (17) satis�es the following properties

� (
; 0) = 0;

� (
;G+ c) = � (
;G) + c;

G1 � G2 ) � (
;G1) � � (
;G2) ;

� (
; �G1 + (1� �)G2) � �� (
;G1) + (1� �) � (
;G2) :

Proof. Translation invariance and monotonicity are obvious. Convexity
follows using Holder inequality.

6 Generalizations

Extension of the pricing algorithm to the multi-period discrete time models
is intuitively obvious and its ingredients can already be found in Smith and
McCradle (1998). Even if not all the relevant mathematical steps are trivial,
they essentially only refer to the stochastic dynamic principle. One needs to
identify the price at the beginning of a time period with the payo¤ at the end
of the previous time period and then iterate the algorithm. Passage from the
discrete to the continuous time models uses standard mathematical arguments.
It appears that, in general, the indi¤erence price is related to the concept of non-
linear expectations introduced in Coquet et al. (2002). In a Markovian model set
up the algorithm provides a new probabilistic representation of solutions to the
quasi-linear parabolic equations which the indi¤erence pricing function satis�es.
All of these results require much more advanced mathematical arguments and
will be dealt with in the separate papers.
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