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Abstract

We study utility-based pricing systems for options written on a non-
traded asset in the presence of a correlated traded asset. We develop and
analyse a concept of the term structure of risk aversion which unables us
to consider options of di¤erent maturities in a way which is consistent
with the present value calculations. In our framework European options
of di¤erent maturities are priced relatively to a given portfolio rather then
rather then realtively to the market porfolio

1 Introduction

In this paper we develop further the analysis conducted by Musiela and Za-
riphopoulou (2001) on pricing of a derivative with expiration T written on a
non-traded asset Y in the presence of a correlated traded asset S and of a
riskless bond B with maturity T:
The tradable asset�s price is a log-normal di¤usion satisfying8<: dSs = �Ssds+ �SsdW

1
s ;

St = S > 0:
(1)

The level of the non-traded asset is given by8<: dYs = b(Ys; s)ds+ a(Ys; s)dWs;

Yt = y 2 R:
(2)

The processes W 1
t and Wt are standard Brownian motions de�ned on a prob-

ability space (
;F ; (Ft) ;P);where Ft is the augmented �-algebra generated
by
�
W 1
s ;Ws; s � t

�
: The Brownian motions are correlated with correlation

� 2 (�1; 1). Assumptions on the drift and di¤usion coe¢ cients b(�; �) and a(�; �),
respectively, are such that the above equation has a unique strong solution.
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The bond price with maturity T is given by

Bs = e
�r(T�s); t � s � T: (3)

The derivative to be priced is of European type with payo¤ g (YT ) ; at ex-
piration T: The writer�s indi¤erence price of g (YT ) is de�ned as the amount h
such that the investor is indi¤erent between the following two scenarios: opti-
mize his utility payo¤ without employing the derivative and optimize his utility
payo¤ taking into account, on the one hand the liability g (YT ) at expiration T;
and on the other, the compensation h at time of inscription t. It turns out (see
Musiela and Zariphopoulou (2001)) that when the individual risk preferences
are modelled via an exponential utility function

U(x) = �e
x (4)

with the risk aversion parameter 
 > 0 then

h = h (y; t) = e�r(T�t)
1


 (1� �2) ln
�
EeP
�
e
(1��

2)g(YT ) jYt = y
��
; (5)

where eP is given by
eP (A) = E exp ���� r

�
WT �

1

2
�2
(�� r)2

�2
T

!
IA

!
; A 2 FT : (6)

The concept of investor�s indi¤erence used in the price determination refers
to the comparison of the two value functions expressed in the forward wealth
units. The compensation eh at time of inscription t; is also expressed in the
forward units, and hence is called the writer�s forward indi¤erence price. The
amount eh is given by the following formula (see Musiela and Zariphopoulou
(2001))

eh (y; t) = 1


 (1� �2) ln
�
EeP
�
e
(1��

2)g(YT ) jYt = y
��

(7)

=
1


 (1� �2) ln
�
E

�
e��

��r
� (WT�Wt)� 1

2�
2 (��r)2

�2
(T�t)e
(1��

2)g(YT ) jYt = y
��

:

It is desirable for a pricing mechanism to satisfy what one may call a pro-
jection property. Namely, the price at time s of a claim with maturity T should
be the same as the price calculated in the following two stages. First the price
of the same claim at time t; assuming s � t � T; and then considering the
result as a new claim with maturity t its price at time s: It is well known that
the discounted arbitrage free prices are martingales and hence are given by the
conditional expectations of the claims, calculated under the appropriate mea-
sures, and as such are linear projection operators. The forward indi¤erence price
given by the above formula depends on the risk aversion which in principle may
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depend on the option maturity. In the �rst instance we assume the same risk
aversion for both maturities T and t.
Seen from the date s � t the price eh (Yt; t) if viewed as a claim written

on the non-traded asset Y can be priced again, giving after straightforward
transformations

1


 (1� �2) ln
�
E

�
e��

��r
� (Wt�Ws)� 1

2�
2 (��r)2

�2
(t�s)e
(1��

2)eh(Yt;t) jYs = y
��

=
1


 (1� �2) ln
�
E

�
e��

��r
� (WT�Ws)� 1

2�
2 (��r)2

�2
(T�s)e
(1��

2)g(YT ) jYs = y
��

which we recognize as the forward indi¤erence writer�s price at time s for the
settlement date T of the claim g (YT ) : We conclude then that the projection
property holds for the forward writer�s indi¤erence price. The spot price (5) is
de�ned by

h (y; t) = e�r(T�t)eh (y; t)
thanks to the presence of the bond B with maturity T:
In this paper we develop further the concept of pricing based on the rela-

tionship of indi¤erence. Instead of considering a single payo¤ we consider a
portfolio of options with di¤erent payo¤s and maturities. This leads to certain
complications which are primarily due to the nonlinearity of the pricing formula
(5) with respect to the payo¤. We begin with the analysis of the price depen-
dence on the option maturity which leads to the introduction in the following
section of the concept of the term structure of risk aversion. Next we propose a
pricing mechanism based on the indi¤erence concept which is relative to a given
portfolio. This enables us to bene�t from the diversi�cation e¤ect when pricing
the unhedgeable component of risk.

2 Term structure of risk aversion

In order to analyze the case of options with di¤erent maturities we assume from
now on that we trade the discount bonds of all maturities T: Their price process
are given by

B (s; T ) = e�r(T�s), t � s � T , 0 � T � Tmax:

Assume one intends to write an option with maturity T1whose payo¤ g (YT ) is
determined at time T � T1: Clearly because no additional risk is involved and
for all t in the interval [T; T1] the forward to time T1 writer�s price, given by the
formula (7), reduces to g (YT ) : For all t from the interval [0; T ] the forward price
can be computed using the projection property and the formula (7) applied to
the forward price at time T; i.e., g (YT ) ; giving the spot price

e�r(T1�t)
1


 (T1) (1� �2)
ln
�
EeP
�
e
(T1)(1��

2)g(YT ) jYt = y
��
;
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where 
 (T1) indicates the dependence of the risk aversion on the option matu-
rity. On the other hand the value at time T of the payo¤ g (YT ) at time T1thanks
to the presence of bonds with all maturities must equal e�r(T1�T )g (YT ) : This
can also be priced as a claim associated with maturity T and therefore its price
must equal

e�r(T�t)
1


 (T ) (1� �2) ln
�
EeP
�
e
(T )(1��

2)e�r(T1�T )g(YT ) jYt = y
��
:

For the pricing system to be consistent across all maturities the two prices must
coincide and hence we must have


 (T ) = 
e�rT ; 
 > 0:

The problem now is that all the prices are expressed in units of a �xed time
t = 0 and not in terms of the current time t indicating that the risk aversion
parameter 
 must depend not only on the option maturity T but also on the
current time t. A simple way to resolve this dilemma is to express all the relevant
quantities in the current units. In particular the present value of the liability
g (YT ) at time T is obviously equal to e�r(T�t)g (YT ) : It is therefore tempting
to try to reconcile our previous results through the appropriate modi�cations
of the risk aversion parameters. Namely, it seems that all one needs to do is
to replace the former 
 with 
e�r(T�t): Such a transformation requires the risk
aversion which also depends on t: Unfortunately, this cannot be directly deduced
from the analysis curried out in Musiela and Zariphopoulou (2001). In fact in
order to accommodate for it one needs to reformulate the Merton�s problem.
The idea is to maximize utilities with and without an option expressing them in
the current units rather then in the forward units to the option maturity which
is the approach taken in Musiela and Zariphopoulou (2001). Namely, we are
interested in the classical Merton�s problem and the writer�s problem for the of
discounted payo¤s, i.e.,

V (x; t) = sup
Z
E
�
�e�
e

�r(T�t)XT jXt = x
�

(8)

u (x; y; t) = sup
Z
E
�
�e�
e

�r(T�t)(XT�g(YT ))=Xt = x; Yt = y
�
: (9)

In both cases the investor starts, at time t, with initial endowment x and follows
a sef-�nancing strategy by investing at time s the amounts, say �0s and �s;
t � s � T; in the bond B (s; T ) and the traded risky asset Ss, respectively. The
strategy generates wealth

Xs = �
0
s + �s; t � s � T; (10)

which satis�es the controlled di¤usion equation8<: dXs = rXsds+ (�� r)�sds+ ��sdW 1
s

Xt = x:
(11)
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The supremum is taken over a set Z of admissible controls (also referred to later
on as policies) which are Fs-progressively measurable and satisfy the integra-
bility condition E

R T
t
�2sds <1:

To solve for the value function of the �rst problem (8) we introduce the
discounted with the savings account wealth process

Xs = e
�r(s�t)Xs, t � s:

Using (11), we deduce that X satis�es8<: dXs = (�� r)�sds+ ��sdW 1
s

Xt = x;
(12)

where
�s = e

�r(s�t)�s

is the discounted from time s to the current time t amount �s invested in the
traded risky asset Ss at time s. In terms of the discounted with the savings
account wealth process problem (8) can be reformulated as follows

V (x; t) = sup
Z
E
�
�e�
XT

��Xt = x
�
;

with Xs solving (12). Consequently, the �rst value function is given by

V (x; t) = �e�
xe�
(��r)2

2�2
(T�t): (13)

Recall that the value function derived in Musiela and Zariphopoulou (2001) of
the classical Merton�s problem expressed in the forward to time T units is given
by

eV (x; t) = �e�
er(T�t)xe� (��r)2

2�2
(T�t): (14)

Note that the two value functions (13) and (14) coincide when one introduces
the appropriate term structure into the risk aversion parameter, namely, when

 in Musiela and Zariphopoulou (2001) is replaced with 
e�r(T�t):
Now we can proceed with the writer�s problem. The writer�s value function

can be written as follows

u (x; y; t) = sup
Z
E
�
�e�
XT e
e

�r(T�t)g(YT )=Xt = x; Yt = y
�
:

Moreover
u (x; y; t) = u (x; y; 1; t)

with

u (x; y; z; t) = sup
Z
E
�
�e�
XT e
ZT g(YT )=Xt = x; Yt = y; Zt = z

�
;
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where
Zs = ze

�r(s�t), t � s
and hence also satis�es 8<: dZs = �rZsds

Zt = z:

The function u solves the HJB equation

ut +max�
�
1
2�

2�2uxx + ��a (y; t)�uxy + ��ux
�

+ 1
2a
2 (y; t)uyy + b (y; t)uy � rzuz = 0

(15)

with the terminal condition

u (x; y; z; T ) = �e�
xe
zg(y):

Working as in Musiela and Zariphopoulou (2001) we postulate a solution in the
separable form, namely

u (x; y; z; t) = �e�
xF (y; z; t)

and we get the following equation for F

Ft +
1

2
a2 (y; t)Fyy +

�
b (y; t)� ��� r

�
a (y; t)

�
Fy

�rzFz �
1

2
�2a2 (y; t)

F 2y
F
=
(�� r)2

2�2
F (16)

with
F (y; z; T ) = e
zg(y):

Looking for a solution in the form

F (y; z; t) = v (y; z; t)
�

with
� =

1

1� �2
yields that v must solve the linear parabolic PDE

8><>:
vt +

1
2a
2 (y; t) vyy +

�
b (y; t)� ���r� a (y; t)

�
vy � rzvz =

(��r)2(1��2)
2�2 v;

v (y; z; T ) = e
(1��
2)zg(y):

(17)
From the Feynman-Kac formula we have, under the appropriate integrability
conditions, that v admits the stochastic representation

v (y; z; t) = EeP
�
e
(1��

2)ZT g(YT )� (��r)2

2�2
(1��2)(T�t) jYt = y; Zt = z

�
; (18)
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where the measure eP is de�ned in (6). It follows that the writer�s value function
takes the form

u (x; y; z; t)

= �e�
xe�
(��r)2

2�2
(T�t)

�
EeP
�
e
(1��

2)ze�r(T�t)g(YT ) jYt = y
�� 1

1��2

and consequently the writer�s price is given by

h (y; t) =
1


 (1� �2) lnEeP
�
e
(1��

2)e�r(T�t)g(YT ) jYt = y
�
: (19)

Note that the writer�s price (5) coincides with (19) when 
 in Musiela and
Zariphopoulou (2001) is replaced with 
e�r(T�t):

3 Reference

Musiela M. and T. Zariphopoulou, Indi¤erence prices and related measures,
Technical Report (2001).

7


