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Abstract

This paper proposes a new approach for portfolio allocation. The
novel concept of forward dynamic utility is introduced. General classes
of such utilities are constructed by combining the local variational util-
ity input with the market dynamics represented by multidimensional Ito
process. Explicit closed form expressions for optimal allocations are ob-
tained. They depend exclusively on the optimal wealth level and the
utility-generated measure of risk.

1 Introduction

The aim of this paper is to introduce and analyze the notion of forward dynamic
utility and to expose the role it plays in the investment context. Intuitively, a
dynamic utility should represent, possibly changing over time, individual pref-
erences of an agent. Information based on which the agent will adjust his
preferences will be revealed over time and will be represented by the filtra-
tion (Ft, t ≥ 0) defined of the probability space (Ω,F , (Ft, t ≥ 0) , P) . As such
the dynamic utility we consider herein closely resembles the classical notion of
recursive utility of consumption.

In contrast to this classical literature, our agent is not going to optimize
utility of consumption. Instead, he will face an investment problem to which
he will apply utility based measurement. Naturally, he will want to track his
utility over time and, to this aim, represents by x ∈ R the aggregate amount
invested. Consequently, his utility, denoted by U (x, t) , becomes a function of
time and wealth, t and x. In particular, U (x, t) is an Ft- adapted process. As
a function of x the utility U (x, t) , for each t ≥ 0, is assumed to be increasing
and concave.

Also in contrast to the classical literature, there is no pre-specified trading
horizon at the end of which the utility datum is assigned. Rather, the agent
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starts with today’s specification of his utility, U (x, 0) , and then builds the
process U (x, t) for t > 0 in relation to the information flow given by (Ft, t ≥ 0) .
We call t = 0 the forward normalization point. It turns out that his utility
choice for time t > 0 will be constrained by (Ft, t ≥ 0). This, together with the
choice of normalization point, distinguishes the forward dynamic utility from
the recursive utility for which the aggregator can be specified exogenously and
the value function is recovered backwards in time. The adjective forward refers
to the fact that the utility is constructed forward in time starting from zero.

Let us first consider the case in which the agent specifies, at time t = 0, her
dynamic utility for all future times t > 0, i.e., when the filtration (Ft, t ≥ 0)
is trivial and, thus, the utility U (x, t) is a deterministic function. To fix ideas,
consider the case when the variable x represents wealth in the discounted to time
t = 0 units. The discounting numeraire is the classical savings account. In order
to capture the agent’s impatience we assume that, as a function of time t, the
utility U (x, t) is decreasing, for each x. The rate of decay represents the degree
of impatience that the agent expresses. As it will be seen latter on, depending
on the context in which such a utility will be applied, structural properties of
the rate of decay will emerge.

The idea of using utility to define preference for advancing future satisfaction
(impatience according to Irving Fisher (1913) terminology) is well known in
economic literature (see, for example, Koopmans (1960), Koopmans, Diamond
and Williamson (1964)). It assumes that an alternative with higher utility is
always preferred over one with lower utility, and indifference exists between
alternatives of equal utility. Additionally, the degree of impatience must also
be calibrated to the opportunities the agent enjoys. If the opportunities are not
great and the impatience high, the agent will take no action because he will
have a sense of loosing utility independently on how hard he tries to exploit
the opportunities given to him. Consequently, we argue that the degree of his
impatience cannot be higher than what he can achieve in terms of the expected
utility, if he optimally exploits the opportunities. Otherwise he should take no
action or search for a bigger set of opportunities. To summarize, the agent will
dynamically adjust his preferences consistently with the filtration (Ft, t ≥ 0)
and his impatience will be compensated for by the opportunities given to him,
provided he exploits them in full relatively to his preferences. An asset manager
will have to specify his dynamic utility in a way that allows him to implement,
for example, a passive enhanced strategy or a total return strategy. Otherwise he
will not utilize the investment opportunity presented to him. Clearly his utility
cannot be specified in isolation to the investment universe he can participate in.

Given the filtration and the opportunity set an agent may know exactly
what she is going to do, i.e., she knows her optimal behavior. However, she
may not know what dynamic utility this behavior corresponds to. In this situ-
ation her degree of impatience and hence her dynamic utility is implicit to her
optimal behavior. For example, a hedger may favour self-financing strategies
that eliminate maximal ’amount’ of risk in a transaction. This corresponds to
the dynamic utility for which the optimal strategy consists of holding a riskless
bond.
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Herein we provide an explicit characterization of the agent’s forward dynamic
utility process and the optimal portfolios. The construction of the dynamic
utility is general and not based on specific assumptions on dimensionality and/or
nature of the asset returns. The key idea is to build and combine stochastic and
variational inputs that come, respectively, from the market environment and
the investor’s dynamic risk attitude.

The market input incorporates i) the returns of assets available in the market,
ii) an index of relative performance (benchmark) or, alternatively, a numeraire
choice, iii) feasibility and trading constraints, iv) the investor’s view of the
market away from its equilibrium and v) a subordinated investment time (scaling
of calendar time). The market input is represented in (1) as well as via three
processes (Y, Z, A) introduced, respectively, in (8), (9) and (7).

The variational utility input provides a differential constraint on the three
utility traits of the investor, namely, his risk aversion, his preference to higher
than lower wealth and his impatience. It is modelled as the solution, u(x, t), of
a fully nonlinear pde (6) with initial data given by U (x, 0). Note that due to
the forward in time construction of utility, the relevant pde is posed inversely
in time.

A quantity that plays pivotal role in finding the optimal utility volume
and constructing the optimal portfolios is the local risk tolerance, r (x, t) =
−ux(x, t)/uxx(x, t). Using the utility nonlinear pde and the definition of r (x, t)
yields a transport equation for u(x, t) with slopes of characteristics equal to
(half of) the risk tolerance. Further calculations yield that r (x, t) solves an
autonomous, inverse in time fast diffusion equation (FDE) with conductivity
function r2 (x, t) (see (17)). Finally, using the (FDE) and the definition of
local risk aversion, γ (x, t) = r (x, t)−1 we derive an, inverse in time, porous
medium equation (PME) ((20). This equation has exponent m = −1 ((PME)
nonlinearity given by F (γ) = γ−1). 1.

Combining the stochastic and variational input we construct the forward
dynamic utility process. Along with this construction, the associated optimal
portfolio processes are determined. Further stochastic analysis arguments yield
a 2-dimensional system of SDE that describes the stochastic evolution of the
(benchmarked) optimal wealth and the (benchmarked-subordinated) risk tol-
erance processes. Using appropriate measure and time changes, we, in turn,
recover the so-called canonical representation of the wealth-risk tolerance SDE
system. Its solution effectively produces an efficient frontier associated with
optimal behavior under forward utility criteria.

The dynamics of the canonical wealth-risk tolerance SDE system are local
functions of its coordinates. Using analytic arguments we provide closed-form
solutions for the two state processes. Their functional representation uses the
solution of a heat equation with a drift term. The coefficient of the latter is given
in terms of the spatial gradient of the local risk tolerance at a reference point.
The quantity that enters in this explicit construction of the efficient frontier

1For a concise treatment of the Porous Medium Equation and the Fast Diffusion Equation
we refer the reader to the books of J.-L. Vasquez (2006a, 2006b).
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is the so-called budget capacity that expresses the current available wealth in
terms of the aggregate (up to present time) risk aversion (cf. (27)).

The paper is organized as follows. In Section 1 we describe the investment
universe and introduce the concept of forward dynamic utility. In Section 3 we
construct a class of such utilities as well as the associated optimal portfolios.
In Section 4 we analyze the stochastic evolution of the optimal wealth and
the risk tolerance, and we build the efficient frontier in the canonical market
configuration. In Section 5 we provide examples of utility inputs and their
associated risk tolerance functions.

Remark: This is a preliminary and incomplete version, written in an in-
formal fashion.

Various technical assumptions have been implicitly introduced and many tech-
nical arguments have not been addressed. For example, the involved forward
utility processes are taken to be martingales but situations might arise in which
only characterization in terms of local martingales can be obtained. No explicit
assumptions have been made with regards to the wealth domain and/or feasibility
constraints. Little is said about existence, uniqueness and regularity of the solu-
tions of the emerging PDE. Note that with the exception of the utility transport
equation, they are all formulated inversely in time, a fact that poses horrendous
difficulties in analyzing them. Additional challenges arise in the study of the
(FDE) that governs the risk tolerance as well as in the (PME) solved by the
risk aversion. These issues are not addressed in this version. However, we
provide examples that indicate that meaningful solutions to these PDE not only
exist but, more importantly, yield a rich class of forward utilities that arise in
well known and frequently used cases.

2 Investment universe

The agent is allowed to invest in a financial market in which risky and riskless
assets are traded. We choose to represent this universe by a standard multi-
dimensional generalization of the Black-Scholes model as presented in Musiela
and Rutkowski (2005). Namely, for i = 1, ..., k, the price of the ith risky asset
is modelled as an Ito process

dSi
t = Si

t

⎛
⎝μi

tdt +
d∑

j=1

σji
t dW j

t

⎞
⎠

or equivalently, ⎧⎨
⎩

dSi
t = Si

t

(
μi

tdt + σi
t · dWt

)
Si

0 > 0.
(1)

Herein W =
(
W 1, ..., W d

)
is a standard d−dimensional Brownian motion, de-

fined on a filtered probability space (Ω,F , P) while · stands for the inner product.
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The coefficients μi
t and σi

t follow bounded progressively measurable processes on
the probability space (Ω,F , P), with values in R and R

d, respectively. A special,
but particularly important, case is obtained by postulating that, for every i, the
return μi on the asset i is constant and the volatility coefficient σi is represented
by a fixed vector in R

d.
For brevity, we write σ = σt to denote the volatility matrix - that is, the

time dependent random matrix
(
σji

t ; j = 1, ..., d, i = 1, ..., k
)

, whose ith column

represents the volatility σi
t of the ith risky asset. The riskless asset, the savings

account, has the price process B satisfying⎧⎨
⎩

dBt = rtBtdt

B0 = 1,

for a bounded, nonnegative, progressively measurable interest rate process r.
To ensure the absence of arbitrage opportunities, we postulate the existence

of an Ft− progressively measurable process λ ∈ R
d such that the equality

μi
t − rt =

d∑
j=1

σji
t λj

t = σi
t · λt

is satisfied simultaneously for all i = 1, ..., k. Using vector and matrix notation,
the above becomes

μt − rt1 =σT
t λt, (2)

where σT stands for the matrix transpose, 1 denotes the d−dimensional vector
with every component equal to one, and μt is the vector with components μi

t.
The process λ is often referred to as a market price of risk. Note that it is not
uniquely determined, in general.

The agent uses the opportunity to invest in order to satisfy his impatience,
risk aversion and his preference to higher -than lower- wealth levels. Starting,
at t = 0, with an initial endowment x at time zero, he invests at future times
t > 0 in all available assets and follows a self-financing strategy. The present
value of the amounts invested in the riskless and the ith risky asset are denoted,
respectively, by π0

t and πi. Therefore, the present value of his investment is
given by

Xt =
k∑

i=0

πi
t.

It is straightforward to see that the process (Xt, t ≥ 0) satisfies

dXt =
k∑

i=1

πi
t

(
μi

t − rt

)
dt +

k∑
i=1

πi
tσ

i
t · dWt

=
k∑

i=1

πi
tσ

i
t · (λtdt + dWt) = σtπt · (λtdt + dWt) , (3)
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where πt is the column vector πt =
(
πi

t; i = 1, ..., k
)

and Xt = x. We will
occasionally use super script π in the wealth process.

Remark 1 Note that the wealth generated by the investment strategy is ex-
pressed in the discounted to time zero units. Therefore, the utility U (x, 0) of
wealth x at time t = 0 represents the utility of x today and for any t > 0 the
number U (x, t) represents the utility of the same wealth at any future date.

We are now ready to define a forward dynamic utility in the context of the
above investment opportunities. We denote the utility datum by u0 (x) .

Definition 2 Let U (x, t) be an Ft−adapted process. We say that U (x, t) is a
forward dynamic utility if:

• as a function of x it is increasing and concave for each t ≥ 0,
• it satisfies U (x, 0) = u0 (x) ,
• for all T ≥ t and each self-financing strategy, represented by π, the associ-

ated discounted wealth Xπ satisfies

EP (U (Xπ
T , T ) |Ft ) ≤ U (Xπ

t , t) , (4)

• for all T ≥ t, there exists a self financing strategy, represented by π∗, for
which the associated discounted wealth X∗ satisfies

EP (U (X∗
T , T ) |Ft ) = U (X∗

t , t) . (5)

Forward utilities were first introduced by the authors in Musiela and Za-
riphopoulou (2003, 2005), see also, Musiela and Zariphopoulou (2005) and
Musiela and Zariphopoulou (2006a).

As a simple example, consider the self-financing strategy to buy and hold
a bond. The associated discounted wealth is constant and equal to the initial
endowment x. Consequently the dynamic utility process satisfies, for t ≤ T,

E (U (x, T ) |Ft ) ≤ U (x, t)

and hence it is a supermartingale. Clearly, the supermartingale property of the
utility process U (Xπ

t , t) holds for any π.

3 A class of forward dynamic utilities

In this section we construct a class of forward utility processes. As it was men-
tioned in the Introduction, the construction is based on compiling the stochastic
market input with the variational utility input. We start with the latter.

The agent chooses utility function u0 (x) representing his preferences for
today, i.e., for time t = 0. Then the utility input, u (x, t) , is constructed by
solving the following fully nonlinear partial differential equation equation⎧⎨

⎩
utuxx = 1

2u2
x

u (x, 0) = u0 (x) .
(6)
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For the specification of the market input, we first consider two auxiliary
Ft−progressively measurable processes δ ∈ R

d and φ ∈ R
d. We then define the

so-called market input processes A, Y and Z. They will, respectively, play the
role of a subordinator, a benchmark and a process that captures the investor’s
market view away from equilibrium and/or quantifies his feasibility constraints.

The subordinator process A is absolutely continuous and solves⎧⎨
⎩

dA = |σσ+ (λ + φ) − δ|2 dt

A0 = 0,

(7)

where σ+ stands for Moore-Penrose pseudo-inverse of σ.
The benchmark process Y is taken to satisfy⎧⎨

⎩
dY = Y δ · (λdt + dW )

Y0 = 1.
(8)

The process Z is an exponential martingale, namely,⎧⎨
⎩

dZ = Zφ · dW

Z0 = 1.
(9)

In order to construct the forward dynamic utility we inject into the varia-
tional input, u (x, t), the above market relevant information.

A quantity that will play instrumental role in the specification of the optimal
utility volume and the optimal portfolio is the local risk tolerance, defined by

r (x, t) = − ux (x, t)
uxx (x, t)

(10)

with u solving (6).
We will be also using the benchmarked-subordinated risk tolerance process,

defined as

R = r

(
X

Y
, A

)
(11)

with X, A and Y solving (3), (7) and (8).

We are now ready to prove the main Theorem.

Theorem 3 Assume that σσ+δ = δ. Let A, Y and Z be defined as in (7), (8)
and (9), while the function u is given by (6). Then,

i) the process U (x, t) defined by

U (x, t) = u

(
x

Yt
, At

)
Zt (12)

is a forward dynamic utility and
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ii) the optimal portfolio vector is given by

1
Y

π∗ = σ+

((
X∗

Y
− R∗

)
δ + R∗ (λ + φ)

)
(13)

with

R∗ = r

(
X∗

Y
, A

)
. (14)

Herein, X∗ is the optimal wealth process, given in (3) with π∗ being used.

Proof. Let π an admissible policy and X the wealth process given in (3).
Apply Ito’s formula to

U (x, t) = u

(
x

Yt
, At

)
Zt

to obtain

dU = du

(
X

Y
, A

)
Z

=
(

du

(
X

Y
, A

))
Z + u

(
X

Y
, A

)
dZ + d

〈
u

(
X

Y
, A

)
, Z

〉
.

Moreover,

du

(
X

Y
, A

)
= ux

(
X

Y
, A

)
d

(
X

Y

)
+ ut

(
X

Y
, A

)
dA +

1
2
uxx

(
X

Y
, A

)
d

〈
X

Y

〉

and

d

(
X

Y

)
=
(

1
Y

σπ − X

Y
δ

)
· ((λ − δ) dt + dW ) . (15)

Consequently,

d

〈
u

(
X

Y
, A

)
, Z

〉
= ux

(
X

Y
, A

)
d

〈
X

Y
, Z

〉

= ux

(
X

Y
, A

)(
1
Y

σπ − X

Y
δ

)
· Zφdt,

u

(
X

Y
, A

)
dZ = u

(
X

Y
, A

)
Zφ · dW = Uφ · dW

and (
du

(
X

Y
, A

))
Z = ux

(
X

Y
, A

)
Z

(
1
Y

σπ − X

Y
δ

)
· ((λ − δ) dt + dW )

+ut

(
X

Y
, A

)
Z
∣∣σσ+ (λ + φ) − δ

∣∣2 dt +
1
2
uxx

(
X

Y
, A

)
Z

∣∣∣∣ 1Y σπ − X

Y
δ

∣∣∣∣
2

dt.
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Therefore, dropping the arguments in ux, ut and uxx we can, in turn, write

dU =
(

ux
Z

Y
σπ − ux

XZ

Y
δ − Uφ

)
· dW

+uxZ

(
1
Y

σπ − X

Y
δ

)
· (λ − δ) dt + utZ

∣∣σσ+ (λ + φ) − δ
∣∣2 dt

+
1
2
uxxZ

∣∣∣∣ 1Y σπ − X

Y
δ

∣∣∣∣
2

dt + uxZ

(
1
Y

σπ − X

Y
δ

)
· φdt.

Using the assumption σσ+δ = δ, the function r and the process R, defined
respectively in (10) and (11), yields

dU =
(

ux
Z

Y
σπ − ux

XZ

Y
δ − Uφ

)
· dW

+
1
2
uxxZ

∣∣∣∣ 1Y σπ −
((

X

Y
− R

)
δ + Rσσ+ (λ + φ)

)∣∣∣∣
2

dt

+

(
ut − 1

2
uxx

(
ux

uxx

)2
)∣∣σσ+ (λ + φ) − δ

∣∣2 dt.

Finally, using the utility equation (6) we get that

dU =
(

ux
Z

Y
σπ − ux

XZ

Y
δ − Uφ

)
· dW

+
1
2
uxxZ

∣∣∣∣ 1Y σπ −
((

X

Y
− R

)
δ + Rσσ+ (λ + φ)

)∣∣∣∣
2

dt.

Now, we observe that the process U is a supermartingale for each π and it is a
martingale for π∗ which satisfies (13) with X∗ representing the wealth process
corresponding to π∗ and R∗ as in (14).

4 Risk tolerance and optimal portfolio processes

i) Three related PDE
We begin this section with the derivation of a partial differential equation

that the risk tolerance function, given in (10), satisfies. We set the initial
condition

r (x, 0) = r0 (x) = − u
′
0 (x)

u
′′
0 (x)

(16)

where we recall that u0 (x) represents the utility datum set at present time,
t = 0.
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Proposition 4 The risk tolerance function r (x, t) , defined in (10), satisfies
the following partial differential equation⎧⎨

⎩
rt + 1

2r2rxx = 0

r (x, 0) = r0 (x) .
(17)

Proof. Recall that

ut =
1
2

u2
x

uxx
.

Hence

utx = ux − 1
2
ux

(
uxuxxx

u2
x

)
and

utxx = uxx − 1
2
uxx

(
uxuxxx

u2
x

)
− 1

2
ux

(
uxuxxx

u2
x

)
x

.

Moreover,
rx = −1 +

uxuxxx

u2
x

and

rxx =
(

uxuxxx

u2
x

)
x

.

Consequently

rt +
1
2
r2rxx = − utx

uxx
+

uxutxx

u2
xx

+
1
2

(
ux

uxx

)2 (
uxuxxx

u2
x

)
x

= 0

and the statement follows.

The above equation belongs to the class of fast diffusion equations (FDE). It
has conductivity coefficient equal to the square of the solution itself. The anal-
ysis of (FDE) is rather difficult, especially because (17) is also posed inversely
in time. However, one can construct a rich class of examples that represent
well known classes of utilities. A detailed analysis is carried out in Musiela and
Zariphopoulou (2006b).

Example 1: The risk tolerance is given by

r (x, t; α, β) =
√

αx2 + βe−αt.

Special cases of the above risk tolerance are the following:
i) For α = 0,

r (x, t; 0, β) =
√

b

yielding the exponential utility

u (x, t) = −e
− x√

b
+t

.
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ii) For α = 1, β = 0,

r (x, t; 1, 0) =
√

x2 = |x|
yielding, for x > 0, the logarithmic utility

u (x, t) = log x − t.

iii) For α > 1, β = 0,

r (x, t; α, 0) =
√

αx2 =
√

α |x|

yielding, for x > 0, the power utility

u (x, t) =
1
γ

xγe−
1
2

γ
1−γ t and γ =

√
a − 1√

α
.

Other utilities can be recovered for different ranges of the above parameters.

Example 2: The risk tolerance is given by

r (x, t; α, β) = m (x; α) n (t; β)

with
m (x; α) = ϕ

(
Φ−1 (x; α)

)
and n (t; β) =

√
t + β

where

Φ (x; α) =
∫ x

α

ez2/2dz and ϕ (x) =
dΦ (x; α)

dx
.

The associated variational utility is given by

u (x, t) = Φ
(
Φ−1 (x; α) −

√
t + β

)
.

Observe that the exponential, logarithmic and power utility are also special
cases of multiplicative risk tolerance, corresponding to the choices m (x; α) = α,
m (x; α) = αx and m (x; α) = x, with time factor n (t; β) = 1.

Using (17) and (6) we may derive an alternative, first order partial differential
equation for the utility input. After routine differentiation, we deduce that u
solves the transport equation⎧⎨

⎩
ut + 1

2r (x, t) ux = 0

u (x, 0) = u0 (x) .
(18)

In this transport equation, the slope of the characteristics curves is given by

dx (t)
dt

=
1
2
r (x (t) , t) .
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Example 3: The risk tolerance of Example 1 produces a utility

u (x (t) , t) = u0 (x)

along the curves
dx (t)

dt
=
√

αx (t)2 + βe−αt.

Finally, a third partial differential equation may be derived that describes
the movement of the local risk aversion coefficient, defined as

γ (x, t) =
1

r (x, t)
. (19)

Differentiating the fast diffusion equation (17), we deduce that γ solves the
porous medium equation (PME)⎧⎨

⎩
γt = F (γ)xx

γ (x, 0) = r0 (x)−1
(20)

where the (PME) nonlinearity is given by

F (γ) =
1
γ

.

ii) The wealth-risk tolerance SDE system, original market configuration
We are now ready to derive the SDE that governs the benchmarked optimal

wealth and the benchmarked-subordinated risk tolerance process.
To this end, we recall that the dynamics of the optimal portfolio π∗ defined

in (13) depend on the dynamics of the processes X∗
Y and R∗. The dynamics of

X∗
Y can be recovered from (15) by replacing π with π∗.

Proposition 5 The processes X∗
Y and R∗ satisfy

d

(
X∗

Y

)
= R∗ (σσ+ (λ + φ) − δ

) · ((λ − δ) dt + dW ) , (21)

and

dR∗ = rx

(
X∗

Y
, A

)
d

(
X∗

Y

)
(22)

where the process A and Y are given, respectively, in (7) and (8).

Proof. Using the dynamics of X∗ and Y we deduce

d

(
X∗

Y

)
=
(

1
Y

σπ∗ − X∗

Y
δ

)
· ((λ − δ) dt + dW )
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=
(

σσ+

((
X∗

Y
− R∗

)
δ + R∗ (λ + φ)

)
− X∗

Y
δ

)
· ((λ − δ) dt + dW )

= R∗ (σσ+ (λ + φ) − δ
) · ((λ − δ) dt + dW ) .

Moreover

dR∗ = dr

(
X∗

Y
, A

)
= rx

(
X∗

Y
, A

)
d

(
X∗

Y

)

+rt

(
X∗

Y
, A

)
dA +

1
2
rxx

(
X∗

Y
, A

)
d

〈
X∗

Y

〉

= rx

(
X∗

Y
, A

)
d

(
X∗

Y

)

+
(

rt

(
X∗

Y
, A

)
dA +

1
2
rxx

(
X∗

Y
, A

)
(R∗)2

)
dA

= rx

(
X∗

Y
, A

)
d

(
X∗

Y

)

+

(
rt

(
X∗

Y
, A

)
dA +

1
2

(
r

(
X∗

Y
, A

))2

rxx

(
X∗

Y
, A

))
dA

Using the fast diffusion equation (17) eliminates the last term above and, in
turn,

dR∗ = rx

(
X∗

Y
, A

)
d

(
X∗

Y

)
.

iii) The SDE wealth-tolerance system in canonical market configuration

In order to further analyze the solutions of (21) and (22), we are first going
to introduce a measure and time transformation. To this end, we let P

∗ be the
probability measure defined, for T > 0, by

P
∗ (A) = EP

(
exp

(∫ T

0

(λ − δ) · dW −
∫ T

0

|λ − δ|2 dt

)
IA

)
, A ∈ FT

with P being the original historical measure.
Clearly, the process

W ∗
t = Wt −

∫ t

0

(λ − δ) ds, t > 0,

is a Brownian motion under P
∗. Note that the measure P

∗ is a martingale
measure for the benchmarked wealth, X

Y , generated by the self-financing strategy
π, as follows trivially from (15).
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Now, define

Mt =
∫ t

0

(
σσ+ (λ + φ) − δ

) · dW ∗

and observe that
〈M〉 = A.

Consequently, the process
w = MA(−1) , (23)

where A(−1) stands for the inverse of A, is a one dimensional Brownian motion.
Next, we define the processes⎧⎪⎨

⎪⎩
x1 =

(
X∗
Y

)
A(−1)

x2 = R∗
A(−1) .

(24)

Then, it follows directly from (21) and (22) that (x1, x2) solve the system of
SDE ⎧⎨

⎩
dx1 (t) = x2 (t) dw (t)

dx2 (t) = rx (x1 (t) , t)x2 (t) dw (t)
(25)

with initial conditions

x1 (0) =
x

y
and x2 (0) = rx

(
x

y
, 0
)

, (26)

w as in (23).

iv) Analytic solutions in canonical market configuration

The above system can be solved analytically as it is shown next.
To facilitate the exposition, we introduce the variable

z =
x

y
.

We will be also using a reference point (see (28) below) denoted by ẑ.

Theorem 6 Let (25) be the SDE system for the process x1 (t) and x2 (t) . Define
the budget capacity function h (z, t) by

z =
∫ h(z,t)

ẑ

1
r (ρ, t)

dρ (27)

with r being the local risk tolerance. Let h0 (z) = h (z, 0) , i.e.

z =
∫ h0(z)

ẑ

1
r0 (ρ)

dρ. (28)

14



Then h solves the linear partial differential equation⎧⎨
⎩

ht + 1
2hzz − k (t)hz = 0

h (z, 0) = h0 (z)
(29)

where
k (t) = −1

2
rx (ẑ, t) . (30)

Let also z be the process

zt = h−1
0 (z) +

∫ t

0

k (s) ds + wt. (31)

Then the solution of (25) is given by⎧⎨
⎩

x1 (t) = h (zt, t)

x2 (t) = hx (zt, t) .
(32)

Proof. Differentiating (27) with respect to spatial argument z yields

r (h (z, t) , t) = hz (z, t) . (33)

Differentiating, also, with respect to t gives

ht (z, t)
r (h (z, t) , t)

−
∫ h(z,t)

ẑ

rt (ρ, t)
r2 (ρ, t)

dρ = 0

and, in turn,
ht (z, t)

r (h (z, t) , t)
+

1
2

∫ h(z,t)

ẑ

rxx (ρ, t) dρ = 0

where we used (17). Further calculations yield

ht (z, t)
r (h (z, t) , t)

+
1
2

(rx (h (z, t) , t) − rx (ẑ, t)) = 0

and, subsequently,

ht (z, t) +
1
2
rx (h (z, t) , t)hz (z, t) − k (t)hz (z, t) = 0

where we used (33) and (30).
Differentiating (33) we obtain

rx (h (z, t) , t)hz (z, t) = hzz (z, t) (34)

and combining it with the last equation yields (29).
The initial condition h0 (z) follows trivially.
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Next consider the process zt (cf. (31)) and observe that its Ito differential is

dzt = k (t) dt + dwt.

Therefore, if we set
x1 (t) ≡ h (zt, t) (35)

we deduce
dx1 (t) = dh (zt, t)

=
(

ht (zt, t) +
1
2
hzz (zt, t) + k (t)hz (zt, t)

)
dt + hz (zt, t) dwt

and, in turn,
dx1 (t) = hz (zt, t) dwt

where we used equation (29).
Next, using (33), we obtain

dx1 (t) = r (h (zt, t) , t) dwt = r (x1 (t) , t) dwt

and the first equation in (32) is established.
For the initial condition x1 (0) we easily get

x1 (0) = h (z0, 0) = h0 (z0) = h0

(
h−1

0

(
x

y

))
=

x

y
.

Next, we set
x2 (t) ≡ hz (zt, t) (36)

and following similar to the above argumentation yields

dx2 (t) =
(

htz (zt, t) +
1
2
hzzz (zt, t) + k (t)hzz (zt, t)

)
+ hzz (zt, t) dwt.

Observe that because h solves the linear pde (29), the above drift vanishes.
Therefore,

dx2 (t) = hzz (zt, t) dwt

= rx (h (zt, t) , t)hz (zt, t) dwt

where we used (34). Using (35) and (36), we deduce

dx2 (t) = rx (x1 (t) , t)x2 (t) dwt

and the second equation in (32) is established.
To conclude the proof, we observe that

x2 (0) = hz (z0, 0) = hz

(
h−1

0 (z) , 0
)
.

From (28), we have
1(

h−1
0 (z)

)′ = r0 (z) .
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On the other hand,

hz

(
h−1

0 (z) , 0
)

=
1(

h−1
0 (z)

)′ .
and, therefore,

r0

(
x

y

)
=

1(
h−1

0

(
x
y

))′ .

Combining the above, we deduce,

x2 (0) =
1(

h−1
0

(
x
y

))′ = r0

(
x

y

)

and we conclude.
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