
Don’t Put All Your Eggs In One Basket; Put

Them In A Hashtable

Ziheng Chen

September 21, 2023

Abstract

It’s well known that eggs in a basket are fragile. What is the alternative
choice then? In a hashtable! In this talk, we’ll introduce one of the
most fundamental data structures in computer science. We’ll begin with
the typical applications and then move on to practical construction and
performance analysis. As a particular example of a random algorithm,
the hashtable has a few exciting properties and generalizations.

1 Introduction: Where’s my egg?

Say we wish to run an egg business, essentially selling eggs at a grocery store.
Let’s further assume that we are a crazy lover of automation, so we’re designing
a fully automatic egg stashing-retriving system where there are countless robots
running behind the scenes to transport the eggs for the customers. When the
customers arrive, the robot goes to the storage and checks their name, trying
to locate the corresponding package with their name on it, or returning without
finding any. We may add new packages as the customers are quite enthusiastic
of tasting our eggs with good quality. Now, how should we design the system
that is most efficient and consistent?

Let us assume there are n potential customers with different names (or at
least there is a way to tell them apart, e.g. check their IDs). The most naive
setup is to put down the names in a fixed order; the robot then checks if the
label matches the order, from left to right, one after another.

1

robot here
customer Joe Lucy Peter Tom ...
basket

Table 1: The sequential check takes O (n) time on average.

This plan is, of course, easy to implement, but can be costly if n becomes
large since O (n) time is needed for each query performed. The insertion is
probably cheap, since the robot just dumps the new package to the rightmost
end.

What if we email the customers their order numbers so we can probably sort
all the packages in an increasing order, from left to right.

robot here
order number 156 502 2133 5412 ...

basket

Table 2: The bisection check takes O (log n) time on average.

This plan looks slightly nicer, since you might have heard of the bisection
algorithm, which essentially pins down the basket in O (log n) time. This may
look promosing, but there are two down sides:

1. it takes O (n log n) time to build the sorted basket sequence in the first
place; the overhead cost is not negligible, and

2. it takes O (n) time to insert a new package since we need to shift the
packages followed to the right,

not to mention that bisection only work for numerical values since customers
may find it hard to remember long order numbers.

What if I tell you that there is a data structure that achieves (roughly
speaking) O (1) time for query, insertion, and deletion? To understand why we
prefer to put eggs in a hashtable instead of a line of baskets, we need to study
the construction and do some calculation.

2 Hashtable

Hashtable is a data structure that is widely used in most programming lan-
guages. This structure serves as a container that memories key-value pairs,

2

meaning that the indexing is done by showing a key and the value is retrived
(there is no way for the customer to tell the robot “hey, I guess the second pack-
age from the left is mine”). The keys and values can be non-numerical, making
the problem a bit tougher to solve.

The hash function plays a central role in operating a hastable. To put it
simply, the hash function h makes it possible to use a (usually short) integer 1 ≤
h (k) ≤ m to describe the key object k ∈ U . We will postpone the construction
of such functions to the end of this section, but take it for granted that the hash
function looks “pretty random” in terms of the output h (k).

To build a hashtable, we simply allocate a storage of m slots and put the
value v in the slot with number h (k), for all given key-value pairs (k, v).

robot here
hashes 1 2 3 4 ...
basket v2 v1 v3

Table 3: The robot goes to the third slot since the hash function is defined by
h (k1) = 3, h (k2) = 1, h (k3) = 4.

What if two hashes happen the same number (which we call collision)? One
way to solve this issue is to nest a linked list that place the key-value pairs in
sequential order as follows:

robot here
hashes 1 2 3 4 ...
basket v2 (k1,v1) v3

(k4,v4)

Table 4: A collision scenario h (k1) = h (k4) = 3, h (k2) = 1, h (k3) = 4.

which is also known as hashtable with separate chaining. There are also
other ways to address collision but that is a story for another time.

3 Collision analysis

Let’s formalize the collision problem in the math language.

Definition. b1, b2, . . . , bn are n i.i.d. variables that take value uniformly in
[m] := {1, 2, . . . ,m}. Let

Xi :=

n∑
j=1

1bj=i

3

https://en.wikipedia.org/wiki/Hash_table#Collision_resolution

be the count of bin i.

Question. What can we know about Xi? For example, EXi, maxXi, ...

Claim. EXi = 1 by linearity.

Proposition 1. maxi Xi = O
(

logn
log logn

)
with high probability 1− n−c.

Proof. Notice that P (maxi Xi ≥ l) ≤ nP (X1 ≥ l) and for each bin

P (X1 ≥ l) ≤
∑

S∈[n],|S|=l

P (S falls in bin 1) =

(
n

l

)
1

nl
.

For the combinatorial term, we use(
n

l

)
≤
(en

l

)l
to conclude that

P
(
max

i
Xi ≥ l

)
≤ nel

ll
.

To match the right hand side above with n1−c (c > 1), we take logarithm

l log
e

l
= −c log n

where LHS is decreasing w.r.t. l, so we can assume

l =
A log n

log log n

and a proper A can be solve via

A

(
1 +

log A
e − log log log n

log log n

)
= c.

Prop. 1 is nice since it gives a worst case bound (under high probability),
but it does not improve too much from the bisection algorithm which takes
O (log n) time. In fact, the complexity can be improved to use multiple hash
functions to further average out the randomness.

Algorithm. For each successive egg, pick two random bins and the egg goes to
the bin with fewer ones.

4

Solution. We will not give a rigorous proof as we’ll probably be running out
of time, but we aim to give an intuitive explanation. The general idea is that,
inserting a new egg is not going to increase the maximum height, as the egg has
to be unlucky enough to land on two highest piles. Let’s introduce vi (t) as the
number of bins that contains no less than

vi (t) = # {bins of height ≥ i after inserting t eggs} .

Then, if we manage to show vi (t) ≤ βin regardless of t via induction, then

P [egg placed at height ≥ i+ 1] ≤ β2
i ,

leading to

E [vi+1 (t)] = E [#bins of height ≥ i+ 1] ≤ E [#eggs of height ≥ i+ 1] ≤ nβ2
i .

We need an external tool called Chernoff inequality, which essentially tell us
that it’s very unlikely to get twice the expectation, leading to

vi+1 (t) ≤ nβ2
i ⇒ βi+1 = β2

i .

Since log βi+1 = 2 log βi doubles every time that starts from O (1) and ends to
O (log n), we only need O (log log n) steps.

4 Hash functions

You may have heard of cryptographic hash functions, but here we only need very
simple hash functions since we do not seek for the safety inversion properties.
We name a few ones if anyone is interested:

• Carter-Wegman family: pick prime p > m and define

ha,b (x) = (ax+ b) mod p mod m.

• Bit-multiplication: for U = 2n and M = 2m, we define

ha (x) = (ax mod U) ≫ (u−m) .

5

• Matrix-finite-field: pick A ∈ Fm×n
2 , b ∈ Fm

2 , then for x ∈ Fn
2 ,

hA,b (x) = Ax+ b.

6

	Introduction: Where's my egg?
	Hashtable
	Collision analysis
	Hash functions

