
Lecture Notes for “Numerical Analysis: Differential

Equations”

M 387D - CSE 383L, Spring 2023

May 5, 2023

2

Contents

1 Jan 9: Introduction 5

2 Jan 11: Numerical Ordinary Differential Equations (Part I: General theory and

LTE) 9

3 Jan 18: Numerical Ordinary Differential Equations (Part II: R-K and LMM) 15

4 Jan 23: Numerical Ordinary Differential Equations (Part III: LMM) 21

5 Jan 25: Numerical Ordinary Differential Equations (Part IV: Stability) 27

6 Jan 30: Numerical Ordinary Differential Equations (Part V: Stiff and symplectic

systems) 31

7 Feb 6: Numerical Ordinary Differential Equations (Part VI: Miscellaneous re-

marks and DAE) 35

8 Feb 8: Numerical Ordinary Differential Equations (Part VII: SDE and BVP) 41

9 Feb 13: Numerical Partial Differential Equations (Part I: 2-Point BVP, FDM,

and FEM) 47

10 Feb 15: Numerical Partial Differential Equations (Part II: FEM) 53

11 Feb 20: Numerical Partial Differential Equations (Part III: FEM and Poincare’s

inequality) 57

12 Feb 22: Numerical Partial Differential Equations (Part IV: Boundary Conditions

for BVPs) 63

3

CONTENTS CONTENTS

13 Feb 27: Numerical Partial Differential Equations (Part V: Inhomogeneous BC

and Higher Order Problems) 67

14 Mar 1: Numerical Partial Differential Equations (Part VI: FEM for PDEs, Pois-

son Equation) 71

15 Mar 6: Numerical Partial Differential Equations (Part VII: Practical Concerns

for FEM) 77

16 Mar 8: Numerical Partial Differential Equations (Part VIII: Remarks on FEM

and Parabolic Problems) 83

17 Mar 20: Numerical Partial Differential Equations (Part IX: Time Dependent

Problems and Mixed Methods) 87

18 Mar 22: Numerical Partial Differential Equations (Part X: Mixed Methods and

FDM) 93

19 Mar 27: Numerical Partial Differential Equations (Part XI: FDM & Stability

Analysis) 99

20 Mar 29: Numerical Partial Differential Equations (Part XII: Stability Analysis)103

21 Apr 3: Numerical Partial Differential Equations (Part XIII: von Neumann Anal-

ysis) 107

22 Apr 5: Numerical Partial Differential Equations (Part XIV: Topics on Non-linear

Problems) 113

23 Apr 10: Numerical Partial Differential Equations (Part XV: NLCL and FVM) 117

24 Apr 12: Numerical Partial Differential Equations (Part XVI: FVM and DG) 121

25 Apr 17: Numerical Partial Differential Equations (Part XVII: DG and Particle

Methods) 125

26 Apr 24: Numerical Partial Differential Equations (Part XVIII: Spectral Meth-

ods) 129

A Neural Operators and PDEs 133

4

Jan 9: Lecture 1

Introduction

1.1 A brief overview

To put in a general sense, the differential equation of interest can be written in the form of

F (u, x, ∂x) = 0 (1.1.1)

where F is a linear or non-linear function. The prerequisite is to establish well-posedness of the

solution, composed of the following three components:

• Existence;

• Uniqueness, possibly under an additional metric if intrinsically non-unique;

• Continuous dependency on data, usually coupled with the approximation property of the

space of numerical solutions.

We put the methodology of numerical analysis in a four-step paradigm, namely

1. The original process in the real world;

2. A mathematical modeling that yields Eqn. 1.1.1, often an infinite-dimensional object;

3. The numerical algorithm that reduces the infinite-dimensional problem to a finite-dimensional

one;

4. A computer code or solver that handles the reduced problem.

This course is focused on the numerical reduction part (step 2 to 3) with some discussion on the

implementation (step 3 to 4):

5

1.2. REDUCING THE INFINITE-DIMENSIONAL PROBLEM Jan 9: Lecture 1. Introduction

1.2 Reducing the infinite-dimensional problem

There are two important ingredients that contribute to a working numerical solve: a represen-

tation/approximation scheme of the solution function u and principles for discretization of the

differential equation.

1.2.1 Representation of solution

• Point-wise representation {uj}, namely collecting the evaluations of the given function u at

some samples points {xj}, i.e. uj := u (xj); mainly used in FDM, spectral methods.

• Sum of known functions ϕj (or bases), in the sense that

ũ (x) =
∑

j

αjϕj (x) ; (1.2.1)

used in FEM, DG, spectral methods.

• Local averages, mainly deployed in FVM, where the average value within each cell represents

the neighborhood.

• Particle distribution, where the function to represent is supposed to be the p.d.f. of the

ensemble of particles being tracked.

• ANN, where weights and biases are the unknowns to be determined in the context of networks

with a given type of topology

1.2.2 Principles for discretization

• Finite difference method (or FDM for short): by definition,

du (x)

dx
:= lim

h→0

u (x+ h)− u (x)
h

.

Thus, on a evenly-space grid xj where xj+1 − xj = h, the finite difference can be a good

approximation to the differential, i.e.

du (x)

dx
|x=xj ≈

u (xj + h)− u (xj)
h

=
uj+1 − uj

h
.

Variants are developed for better precision and other concerns.

• Finite element method (FEM): this method is usually based variational forms that are equiv-

alent to the differential equation of interest, often known as weak forms. Then, the solution

6

Jan 9: Lecture 1. Introduction 1.2. REDUCING THE INFINITE-DIMENSIONAL PROBLEM

is approximated by sum of known functions which leads to a system (Eqn. 1.2.1) of algebraic

equations of the unknowns {αj}. Notice that this function approximator is related to the

collocation method where the system of equations F (ũ, xj , ∂x) = 0 is solved on a few sample

points {xj}, but it shall not be confused with the finite element method. A key distinct lies

in that, instead of forcing the residual term to be 0, the Galerkin method aims to make the

residual F (ũ, x, ∂x) orthogonal to the basis functions {ϕj}.

• Finite volume method (FVM): often applied to difference equations arising from conservation

laws, e.g.
∂u

∂t
=

∂

∂x
f (u) . (1.2.2)

To apply the FVM, we integrate Eqn. 1.2.2 over a small rectangular area [xj , xj+1]× [tk, tk+1]

that yields an equation connecting the local averages and the fluxes on the sides.

• Discontinuous Galerkin (DG): almost identical to FEM, except for allowing discontinuities in

{ϕj} which is handled by similar techniques borrowed from FVM.

• Spectral methods: the motivation can be illustrated via the following observation

du

dx
= F−1 [(iω)Fu (x)] (1.2.3)

where F stands for the Fourier transform and ω denotes the dual variable. Eqn. 1.2.3

provides a possibility to solve some differential equations fast and reliably where F is usually

approximated by the fast Fourier transform (FFT). Be aware that the spectral method relies

on periodic functions over the underlying domain, which is not always easily accessible.

• Particle methods: usually applied to differential equations representing transport, e.g.

∂u

∂t
=
∂u

∂x
(1.2.4)

with the initial condition u (x, 0) = u0 (x). Eqn. 1.2.4 can be solved via the method of

characteristics that yields u (x, t) = u0 (x+ t). An application, connecting to daily traffic,

can be set up in the way that u0 (x) = Heaviside (x− a), representing an accident at location

a that has just been resolved. The solution, in the style of a traveling wave, reads u (x, t) =

Heaviside (x+ t− a), indicating that the wave front has moved to a− t. The particle method

is suitable for solving the equation as well as visualizing how the vehicles react the accident

in this case.

• Machine learning based methods: apart from physics-informed neural networks (PINNs) that

has been introduced above, the other prevailing idea is to learning the solution operator that

maps the coefficient tensor to the solution, in the discretized form or other representations.

7

1.2. REDUCING THE INFINITE-DIMENSIONAL PROBLEM Jan 9: Lecture 1. Introduction

8

Jan 11: Lecture 2

Numerical Ordinary Differential

Equations (Part I: General theory

and LTE)

2.1 General theory

2.1.1 Autonomous first-order form

A linear system of ODE possess the form du(t)
d t = f (u) where u =

(
u(1), . . . , u(k)

)T
: R1 → Rk is a

vector collecting different components. The solution is, however, not unique in general if without

additional conditions which can be classified by the number of temporal occurrences:

• Initial value problem (IVP), i.e. extra condition at one t-value;

• Boundary value problem (BVP), i.e. extra condition at two (possibly more) t-values.

We are interested in the autonomous first-order form




u′ = f (u) t > t0,

u (t0) = u0
(2.1.1)

9

2.1. GENERAL THEORY Jan 11: Lecture 2. Numerical ODE (Part I)

since it is usually the most general form of an linear IVP that is possibly of higher orders or is

time-dependent. For example, a system





u′′ = f (u′, u, t)

u (t0) = u0

u′ (t0) = u0,1

can be reduced into the form (Eqn. 2.1.1):





(
u(1)

)′
= u(2)

(
u(2)

)′
= f

(
u(2), u(1), u(3)

)
(
u(3)

)′
= 1

,





(
u(1)

)
(0) = u0

(
u(2)

)
(0) = u0,1

(
u(3)

)
(0) = t0

via identifying u(1) := u, u(2) := u′, u(3) := t.

2.1.2 Well-posedness

The well-posedness is guaranteed by the Pichard-Lindberg Theorem:

Theorem 2.1.1. There exists a unique solution u ∈ C1 (t0,∞) to Eqn. 2.1.1 if f is Lipschitz

continuous, i.e. ∃L > 0 s.t. |f (u)− f (v)| ≤ L |u− v| , ∀u, v ∈ Rk.

Remark. The proof is based on the Pichard iteration

u[k] (t) = u (t0) +

∫ t

t0

f
(
u[k−1] (t)

)
d t.

Remark. Local existence only relies on f ∈ C
(
Rk
)
; nevertheless, it does not guarantee uniqueness

since bifurcation might occur. For example,




u′ = 2

√
u t > 0,

u (0) = 0

admits solutions u = 0 and ũ = t2, due to
√
u being not Lipschitz continuous at u = 0.

Remark. The solution might not exist globally if f is Lipschitz but the Lipschitz constant is not

uniformly bounded. For example, 


u′ = u2 t > 0,

u (0) = 1

admits solution u = 1
1−t which can not be extended beyond t = 1.

10

Jan 11: Lecture 2. Numerical ODE (Part I) 2.1. GENERAL THEORY

We also wish to establish the continuous dependence on data which is a proof model for stability

of other numerical methods.

Proposition 2.1.1. Given a Lipschitz function f with Lipschitz constant L and initial perturbation

δ ∈ Rk. For the following two IVPs




u′ = f (u)

u (t0) = u0
,




v′ = f (v)

v (t0) = u0 + δ
,

the difference is estimated by

‖u (t)− v (t)‖ ≤ eL(t−t0) ‖δ‖ .

Proof. Consider the error function e (t) := v (t)− u (t) which satisfies the integral equation

e (t) = v (t)− u (t) = δ +

∫ t

t0

[f (v)− f (u)] d s.

Since f is Lipschitz continuous, we have

‖e (t)‖ ≤ ‖δ‖+
∫ t

t0

L ‖v (s)− u (s)‖ d s = ‖δ‖+
∫ t

t0

L ‖e (s)‖d s

Thus, by the Gronwall’s inequality in the integral form,

‖e (t)‖ ≤ eL(t−t0) ‖e (t0)‖ = eL(t−t0) ‖δ‖

2.1.3 Applications

• Molecule dynamics

– u being the physical (and possibly velocity) coordinates;

– f can be interaction between molecules or external forces;

– similar formulation for particle interactions or mechanical systems.

• Used in conjunction with methods of characteristics; ODEs from a space discretization of

PDEs.

• Rate estimation in the context of chemistry reactions or virus infections.

11

2.2. NUM APPROX VIA FDM Jan 11: Lecture 2. Numerical ODE (Part I)

2.2 Numerical approximation via FDM

2.2.1 A list of common schemes

A first attempt of building a numerical solver starts with an evenly-spaced discretization in time

tn := t0 +nh, un := u (tn) for a fixed time step h > 0 (which can be easily extended to variable h.).

We use finite difference u(t+h)−u(t)
h to approximate the derivative u′ (t). This leads to the following

numerical scheme 



un+1−un

h = f (un)

u0 as given
(2.2.1)

which is often known as forward/explicit Euler (or FE for short). A variant to Eqn. 2.2.1 is to

adopt un+1 for the input to the source term, leading to the backward/implicit Euler





un+1−un

h = f (un+1)

u0 as given
. (2.2.2)

Another variant uses the central difference





un+2−un

2h = f (un+1)

u0 as given

u1 = u0 + hf (u0) (common)

(2.2.3)

which is often known as leap frog in the context of methods of lines. The trapezoidal rule can also

be applied in the sense that





un+1−un

h = 1
2 [f (un+1) + f (un)]

u0 as given
(2.2.4)

which is known as Crank-Nicolson in the context of PDEs.

We can classify the aforementioned methods by the explicit/implicit properties:

• Explicit: Euler (Eqn. 2.2.1), Central difference (Eqn. 2.2.3); easier to solve.

• Implicit: Backward Euler (Eqn. 2.2.2), Trapezoidal (Eqn. 2.2.4); harder to solve at each step,

but usually lead to higher precision and suitable for stiff systems.

Another classification is by the number of steps involved:

• One-step method: E, IE, T; easier to change step sizes.

12

Jan 11: Lecture 2. Numerical ODE (Part I) 2.2. NUM APPROX VIA FDM

• Multi-step method: C; need to handle careful or otherwise might not work, prototype for R-K

methods.

Another popular ranking is based on the order of accuracy:

• First-order O (h): E, IE.

• Second-order O
(
h2
)
: C, T.

2.2.2 Local truncation error

The order of accuracy be shown via the local truncation error (LTE) if the method is stable. To see

how LTE can be used to determine the order, we study FE for example. If we plug the true ODE

solution u to Eqn. 2.2.1, we shall not expect the discrete equation to hold since the finite difference

is an approximation. Thus, we define the LTE as

LTEn :=
u (tn+1)− u (tn)

h
− f (u (tn))

By applying the Taylor expansion, we have

LTEn =
h

2
u′′ (ξ) = O (h) , tn ≤ ξ ≤ tn+1.

Remark. An alternative formulation for FE is

un+1 = un + hf (un) (2.2.5)

which is more suitable for coding. An equivalent definition LTE can be based on Eqn. 2.2.5, usually

resulting in one higher order of h.

2.2.3 From local error to global error

Proposition 2.2.1. For Lipschitz f , the error between the numerical solution un+1 solved by Eqn.

2.2.1 and the true solution u (tn) can be estimated by

‖u (tn)− un‖ ≤ Ch max
t0≤t≤t0+T

‖u′′ (t)‖

where C := eLT−1
2L .

Proof. Let en = u (tn) − un denote the error. Recall the ODE solution continuously depends on

13

2.2. NUM APPROX VIA FDM Jan 11: Lecture 2. Numerical ODE (Part I)

initial data, leading to

en+1 = u (tn+1)− un+1

= [u (tn) + hf (u (tn)) + hLTEn]− [un + hf (un)]

= en + h [f (u (tn))− f (un) + LTEn] .

Since f is Lipschitz continuous, we have

‖en+1‖ ≤ (1 + hL) ‖en‖+ h ‖LTEn‖ .

Solving the recursive inequality leads to

‖en‖ ≤ (1 + hL)
n ‖e0‖+ h

n−1∑

j=0

(1 + hL)
n−1−j ‖LTEj‖ .

We estimate the power term by (1 + hL)
n ≤ ehLn = eLT if we identify T := tn − t0; the LTE is

bounded by

h
n−1∑

j=0

(1 + hL)n−1−j ‖LTEj‖ ≤
(1 + hL)

n − 1

L
max

0≤j≤n−1
‖LTEj‖ ≤ Ch max

t0≤t≤t0+T
‖u′′ (t)‖

where C = eLT−1
2L . Recall that e0 = u (t0)− u0 = 0, thus

‖u (tn)− un‖ = ‖en‖ ≤ Ch max
t0≤t≤t0+T

‖u′′ (t)‖ .

14

Jan 18: Lecture 3

Numerical Ordinary Differential

Equations (Part II: R-K and LMM)

In the last lecture, we derived a few numerical theories for ODEs in the autonomous form u′ = f (u).

The general idea is to discretize the function u by its value on a mesh un ≈ u (tn) , tn = t0+nh and

use Taylor expansion to derive iterative schemes. We also derive an error estimate for the Euler

scheme: the error en = u (tn)− un is bounded by hmax |u′′| up to a constant, thus we call it a first

order method.

In seek for higher orders, one way is to carry out Taylor methods which involves more derivative

terms and the practical alternative is to the Runge-Kutta family. Another approach is to study

linear multistep methods (LMM).

3.1 Taylor methods

Let us consider the Taylor expansion at time t:

u (t+ h) = u (t) + hu′ (t) +
1

2
h2u′′ (t) + o

(
h2
)
. (3.1.1)

Since u (t) solves u′ = f (u), the first two terms reduces to u (t)+hf (u (t)) which recovers the Euler

scheme. To handle the third term, we differentiate the ODE to obtain

u′′ = [f (u)]
′
= [∇f (u)]u′ = [(∇f) f] (u)

15

3.2. RUNGE-KUTTA METHODS (R-K) Jan 18: Lecture 3. Numerical ODE (Part II)

where the Jacobian is defined as (∇f)i,j := ∂jfi. With this established, Eqn. 3.1.1 yields the

following scheme

un+1 = un + hf (un) +
1

2
h2 [(∇f) f] (un) . (3.1.2)

We shall point out that Eqn. 3.1.2 is not widely adopted in practice for the following drawbacks:

• It is often the case that f not given in a closed form but rather obtained from data or loop-up

table, let alone ∇f . Even if f has an analytical form, ∇f might be hard to evaluate (and

might be costly even with the help of auto-differentiation mechanism).

• Variants with higher orders are possible but potentially even more inefficient than simply

decreasing the time step.

3.2 Runge-Kutta methods (R-K)

To overcome the drawbacks of the Taylor method, we aim to replace higher derivatives of f by

several evaluations of f (u) in each step.

Example 3.2.1. Recall that the trapezoidal scheme

un+1 = un +
h

2
[f (un+1) + f (un)] (3.2.1)

leads to a second order method. Although one can adopt Newton’s method to solve Eqn. 3.2.1 at

each step, it adds additional complexity due to being an implicit method. One way to eliminate the

implicity is to first approximate un+1 by the Euler method which is provided to f later, leading to

ũn+1 = un + hf (un) ,

un+1 = un +
h

2
[f (ũn+1) + f (un)] . (3.2.2)

This is also known as the improved Euler method.

Proposition 3.2.1. The improved Euler method is of second order.

Proof. It suffices to verify that the LTE for the true solution u (t) is O
(
h2
)
. Let us introduce

shorthand fn := f (u (tn)) , (∇f)n := ∇f (u (tn)), and
(
∇2f

)
n
:= ∇2f (u (tn)) (not to confuse fn

with f (un)). By Taylor expansion, for ũ (t) := u (t) + hf (u (t)), we have

f (ũ (tn)) = fn + h (∇f)n fn +
h2

2
fT
n

(
∇2f

)
n
fn + o

(
h2
)
,

16

Jan 18: Lecture 3. Numerical ODE (Part II) 3.2. RUNGE-KUTTA METHODS (R-K)

as well as

u (tn + h) = u (tn) + hu′ (tn) +
h2

2
u′′ (tn) +

h3

6
u′′′ (tn) + o

(
h3
)

= u (tn) + hfn +
h2

2
(∇f)n fn +

h3

6

[
fT
n

(
∇2f

)
n
fn + (∇f)2n fn

]
+ o

(
h3
)

Thus,

LTE =
u (tn + h)− u (tn)

h
− 1

2
[f (ũ (tn)) + f (u (tn))]

=
h2

6

[
fT
n

(
∇2f

)
n
fn + (∇f)2n fn + o (1)

]
−
[
h2

4
fT
n

(
∇2f

)
n
fn + o

(
h2
)]

=
h2

12

[
2 (∇f)2n − fT

n

(
∇2f

)
n

]
fn + o

(
h2
)
.

The improved Euler method is a particular example of the so-called (explicit) Runge-Kutta

family, of which the general form reads

un+1 = un + h

J∑

j=1

bjkj , (3.2.3)

kj = f

(
un + h

j−1∑

i=1

ajiki

)
, 1 ≤ j ≤ J. (3.2.4)

Eqn. 3.2.3 indicates that the update term is an interpolation of the intermediate terms kj which

shall be close to f (un). Eqn. 3.2.4 defines that each intermediate term is an evaluation of f

at a slightly updated location of un, using the information k1, . . . , kj−1 that is computed before.

The coefficients bj , aji shall satisfy a certain constraint system to guarantee good properties of the

scheme (e.g. accuracy, stability, ...). The R-K family can also be implicit where the most general

form reads

kj = f

(
un + h

J∑

i=1

ajiki

)
, 1 ≤ j ≤ J.

We can classify the R-K family based on {aji}:

• Explicit if aji = 0, ∀j < i;

• Diagonally implicit (DIRK) aji = 0, ∀j ≤ i;

• Fully implicit (IRK) if aji 6= 0, ∀j, i.

17

3.3. LINEAR MULTISTEP METHODS (LMM) Jan 18: Lecture 3. Numerical ODE (Part II)

We show the table on order of accuracy in Tab. 3.2.1. In general, a higher order scheme requires

more stages at each step which grows slightly faster than the order of accuracy. We can find

the Euler method as a typical first order method, improved Euler method falling in second order

category, and classical R-K method

un+1 = un +
h

6
(k1 + 2k2 + 2k3 + k4) , (3.2.5)

k1 = f (un) ,

k2 = f

(
un +

h

2
k1

)
,

k3 = f

(
un +

h

2
k2

)
,

k4 = f (un + hk3)

as a fourth order method.

Order of accuracy 1 2 3 4 5 6 7 8
Minimum stages needed 1 2 3 4 6 7 9 11

Table 3.2.1: Optimal order for R-K family methods.

The R-K methods enjoy the nice property that the order of convergence coincides with the order

of LTE, due to the fact that the R-K family belongs to 1-step methods which are always stable.

The R-K methods are also suitable with adaptive step sizes for better flexibility. We refer to this

article for an introduction to two popular implementations of the R-K family.

3.3 Linear multistep methods (LMM)

LMM can be motivated by the central difference method

un+1 = un−1 + 2hf (un)

which is of second order and is also explicit. The price to pay is that one needs to determine the first

term u1 in order to “bootstrap” the beginning. One typical choice is to adopt the Euler method,

i.e. u1 = u0 + hf (u0); nevertheless, detailed analysis is often required to verify if it leads to a

well-posed scheme.

The general form for LMM reads

J∑

j=0

ajun+j = h

J∑

j=0

bjf (un+j) (3.3.1)

18

https://blogs.mathworks.com/cleve/2014/05/26/ordinary-differential-equation-solvers-ode23-and-ode45/

Jan 18: Lecture 3. Numerical ODE (Part II) 3.3. LINEAR MULTISTEP METHODS (LMM)

where u0 is given but u1, . . . , uJ−1 requires extra initial values (if J ≥ 2). The analysis for LTE is a

prerequisite for accuracy, usually involving Taylor expansion and the ODE equation. The following

condition is necessary to guarantee consistency:

J∑

j=0

aj = 0,

J∑

j=0

(J − j) aj +
J∑

j=0

bj = 0.

Without loss of generality, we set aJ = 1, i.e. normalizing the scheme based on the last term un+J .

The term bJ determines if the scheme is explicit or implicit: bJ 6= 0 leads to implicit schemes since

un+J appears on both sides and bJ = 0 corresponds to explicit schemes on the other hand.

It is worth pointing out that LMM may not convergence even if LTE is of order p > 0; in other

words, stability analysis is often required.

Example 3.3.1. The following LMM scheme

un+2 + un+1 − 2un = 3hf (un)

has LTE = O (h) but is not stable. The proof for general cases is left as exercise, but we provide a

simple illustration under f ≡ 0. The scheme reduces to un+2 = 2un−un+1. Let us assume the initial

condition reads u0 = 0, u1 = δ ≪ 1. Then, the first few terms read u2 = −δ, u3 = 3δ, u4 = −5δ and

we can expect an exponential growth in n rather than t = nh. This “contradicts” our wish for the

scheme to be stable, i.e. insensitive to perturbations in the initial values.

A systematic way to analyze stability is provided as follows.

Theorem 3.3.1 (Dahlquist root condition). Let ρ (z) =
∑J

j=0 ajz
j define a polynomial in the

complex plane. Then, Eqn. 3.3.1 is stable iff.

• |zk| ≤ 1 if ρ (zk) = 0, and

• furthermore, |zk| < 1 if ρ (zk) = ρ′ (zk) = 0 (i.e. zk is a multiple root).

19

3.3. LINEAR MULTISTEP METHODS (LMM) Jan 18: Lecture 3. Numerical ODE (Part II)

20

Jan 23: Lecture 4

Numerical Ordinary Differential

Equations (Part III: LMM)

4.1 Accuracy and stability of LMM

Recall that we introduced LMM in the last lecture

J∑

j=0

ajun+j = h

J∑

j=0

bjfn+j (4.1.1)

where fn+j is the shorthand notation for f (un+j) and u0, . . . , uJ−1 are properly given as initial

conditions.

Definition 4.1.1. Let E be the time-remapping operator that increases the input time by h and

we define

ρ (z) :=
J∑

j=0

ajz
j, σ (z) :=

J∑

j=0

bjz
j.

Remark. We rewrite Eqn. 4.1.1 as ρ (E)un = hσ (E) fn.

The concepts of consistency and stability are crucial since there is a powerful tool that charac-

terizes the stability of numerical schemes. To be specific, the Lax equivalence theorem states that

for consistent approximations of well-posed problems, stability is equivalent to convergence.

The consistency is addressed in the following proposition.

Proposition 4.1.1. The following statements are equivalent:

• LTE = O (hp) for some given p ≥ 1;

21

4.1. ACCURACY AND STABILITY OF LMM Jan 23: Lecture 4. Numerical ODE (Part III)

• ρ (1) = 0 and
∑J

j=0 j
qaj = q

∑J
j=0 j

q−1bj for q = 1, . . . , p.

Proof. The order of LTE can be determined, once again, by using the Taylor expansion. For the

truth solution,

Eu (t) = u (t+ h) = ehDu (t) =

[
p∑

q=0

hq

q!
Dq +O

(
hp+1

)
]
u (t)

where D stands for the differential operator. Since f is the derivative of the truth solution u, we

have

hLTE = ρ (E)u− hσ (E)u′

= ρ
(
ehD

)
u− hσ

(
ehD

)
Du

=

J∑

j=0

aje
jhDu−

J∑

j=0

bjhe
jhDDu

=




J∑

j=0

aj


u+

p∑

q=1

J∑

j=0

aj
(jh)

q

q!
Dqu−

p−1∑

q=0

J∑

j=0

bj
h (jh)

q

q!
Dq+1u+O

(
hp+1

)

= ρ (1)u+

p∑

q=1




J∑

j=0

ajj
q − q

J∑

j=0

bjj
q−1


 Dqu

q!
hq +O

(
hp+1

)
.

Thus, to achieve a p-th order in LTE, it is equivalent to put ρ (1) = 0 and 0 =
∑J

j=0 ajj
q −

q
∑J

j=0 bjj
q−1 for 1 ≤ q ≤ p.

For stability, we have the Dahlquist root condition (Thm. 3.3.1). Here’s a quick illustration on

an unstable multiple step scheme.

Example 4.1.1. Consider the following two-step scheme

un+2 + un+1 − 2un = 3hfn.

• Since ρ (z) = z2 + z − 2 and σ (z) ≡ 3, it follows that ρ (1) = 0.

• For q = 1,
∑2

j=0 jaj = 3 =
∑2

j=0 bj , so this scheme has a LTE of (at least) first order.

• For q = 2,
∑2

j=0 j
2aj = 5 while 2

∑2
j=0 jbj = 0, so LTE is of less than second order.

• The roots to ρ read 1 and −2, so this scheme is not stable.

Remark (Dahlquist first barrier theorem). The maximal order of accuracy for stable LMMs is J+1

for odd J and J + 2 for even J . This can be shown by solving the equations in Prop. 4.1.1.

22

Jan 23: Lecture 4. Numerical ODE (Part III) 4.2. PRACTICAL METHODS

4.2 Practical methods

4.2.1 Adams methods

The general form of Adams method reads

un+J − un+J−1 = h

J∑

j=0

bjfn+j

and choose {bj} for the maximal order. This scheme is stable since ρ (z) = 0 leads to z = 1 being

a single root and z = 0 being the remaining multiple roots. We list a few popular variants.

• Explicit (bJ = 0, Adams-Bashforth method): for example the Euler method un+1−un = hfn

and a second order scheme un+2 − un+1 = h
(
3
2fn+1 − 1

2fn
)
.

• Implicit (bJ 6= 0, Adams-Moulton methods): for example the trapezoidal rule un+1 − un =

h
(
1
2fn+1 +

1
2fn
)

and a second order scheme un+2 − un+1 = h
(

5
12fn+2 +

8
12fn+1 − 1

12fn
)
.

4.2.2 Predictor-corrector methods

The idea is to predict a good approximation to un+J for implicit Adam methods. The predictors

can be calculated from explicit Adam methods. For example, let us consider the following coupled

scheme:

ũn+J − un+J−1 = h

J−1∑

j=0

bjf (uj) , (A-B)

un+J − un+J−1 = h


bJf (ũn+J) +

J−1∑

j=0

bjf (uj)


 . (modified A-M)

Although one extra evaluation of f is needed for each step if compared to the explicit Adam

methods, P-C methods avoid solving the implicit equations and are thus cheaper than implicit

schemes. We point out that there are quite some influences from the R-K family during the old

times of development.

Example 4.2.1. The Heun method

ũn+1 − un = hf (un) ,

un+1 − un = h

[
1

2
f (ũn+1) +

1

2
f (un)

]

23

4.3. PROOF ON CONVERGENCE Jan 23: Lecture 4. Numerical ODE (Part III)

can be regarded as a predictor-corrector method whose predictor is the forward Euler method, while

the corrector is the Crank-Nicolson method.

Remark. The difference between the predictor and corrector can be used to estimate LTE and thus

useful in determination of adaptive step sizes.

4.2.3 Backward difference methods (BDF)

In contrast to the Adams methods where ρ is fixed as zJ−zJ−1, the BDF methods adopt σ (z) = zJ

and choose {aj} for maximal order.

Example 4.2.2. The implicit Euler scheme un+1−un = hfn+1 can be viewed as a first-order BDF

method.

Remark. We shall point out that there is no immediate guarantee on stability for BDF methods

(since stability depends on ρ), but they are useful in stiff problems.

4.3 Proof on convergence

4.3.1 LMM in one-step form

In preparation of proving convergence, it would be helpful to reduce the form of LMM to one step.

Recall that LMM has the general form of

un+J = −aJ−1un+J−1 − · · · − a0un + h
J∑

j=0

bjfn+j

and the equivalent matrix form




un+J

un+J−1

un+J−2

. . .

un+1




=




−aJ−1 −aJ−2 . . . −a1 −a0
1 0

1

1 0







un+J−1

un+J−2

un+J−3

. . .

un




+ h




∑J
j=0 bjfn+j

0

0

. . .

0



.

(4.3.1)

Motivated by this, the intermediate components are concatenated into a long vector Un :=
(
uTn+J−1, . . . , u

T
n

)T
.

Then, Eqn. 4.3.1 is equivalent to

Un+1 = AUn + hF (Un+1, Un) . (4.3.2)

24

Jan 23: Lecture 4. Numerical ODE (Part III) 4.3. PROOF ON CONVERGENCE

The matrix A is often called as the companion matrix. We point out that any given LMM is

uniquely represented by A and F . Furthermore, Eqn. 4.3.2 is also suitable for representing the R-K

family. In fact, a R-K scheme reads un+1 = un + h
∑
bjkj where kj satisfies a system of equations,

but one can always write the update in the form of un+1 = un+hF (un+1, un). Thus, R-K schemes

are a special case of Eqn. 4.3.2 with A set to the identity matrix.

25

4.3. PROOF ON CONVERGENCE Jan 23: Lecture 4. Numerical ODE (Part III)

26

Jan 25: Lecture 5

Numerical Ordinary Differential

Equations (Part IV: Stability)

5.1 Proof on stability

We are interested in analyzing the stability of the following LMM scheme

Un+1 = AUn + hF (Un+1, Un) , (5.1.1)

U0 as given,

i.e. to measure the difference between Un and the solution to

Vn+1 = AVn + hF (Vn+1, Vn) + hδn+1,

V0 = U0 + δ0,

under perturbations. The stability statement follows a few critical assumptions.

Theorem 5.1.1. Assuming

• the absolute value of each eigenvalue of A does not exceed 1 and is strictly smaller than 1 if

being a multiple root, and

• F is a Lipschitz function.

Then, the LMM scheme (Eqn. 5.1.1) is stable in the sense that there exists h0 > 0 and C > 0

27

5.1. PROOF ON STABILITY Jan 25: Lecture 5. Numerical ODE (Part IV)

(depending on T and F) s.t. 0 < h ≤ h0 implies

|Un − Vn| ≤ C max
0≤m≤n

|δm| .

We need some facts from linear algebra as prerequisite.

Lemma 5.1.1. All finite dimensional matrix norms are equivalent, i.e. for any two given matrix

norms ‖·‖
I

and ‖·‖
II
, there exists C1, C2 > 0 s.t.

C1 ‖M‖I ≤ ‖M‖II ≤ C2 ‖M‖I , ∀M.

Lemma 5.1.2. Any matrix M can be similarity-transformed to Jordan canonical form (JCF), i.e.

there exists invertible S s.t. SMS−1 = J where J admits a block diagonal form

J = diag (J1, J2, . . . , JK) , Jk =




λk 1 0 · · · 0

λk 1 · · · 0

. . .
. . .

...

. . . 1

λk




.

Lemma 5.1.3. For a given vector norm ‖x‖, the induced matrix norm is defined as

‖M‖ := sup
x 6=0

‖Mx‖
‖x‖ .

Then, a similarity-transform maps an induced matrix norm to another induced norm, i.e.

‖M‖
I
:=
∥∥SMS−1

∥∥
II

defines an induced matrix norm ‖·‖
I

if ‖·‖
II

is an induced norm.

to Thm. 5.1.1. First , we show that there exists an induced norm ‖·‖∗ s.t. ‖A‖∗ ≤ 1. In fact, define

B := DSAS−1D−1, ‖A‖∗ := ‖B‖1

where S is the similarity matrix that transformsA to the corresponding JCF andD := diag
(
1, d−1, d−2, . . .

)

is a (scalar-)diagonal matrix with d > 0. Recall that SAS−1, as a JCF, admits a block diagonal

form diag
(
Ĵ1, . . . , ĴK

)
where Ĵk is a upper-bidiagonal matrix with diagonal entries filled by λk.

28

Jan 25: Lecture 5. Numerical ODE (Part IV) 5.1. PROOF ON STABILITY

Thus, B also enjoys a block diagonal form

B = D
(
SAS−1

)
D−1 = diag (R1, . . . , RK) , Rk :=




λk d 0 · · · 0

λk d · · · 0

. . .
. . .

...

. . . d

λk




.

Recall that the induced 1-norm is the maximal sum of absolute values by rows, thus ‖A‖∗ = ‖B‖1 ≤
1 if

‖Rk‖1 ≤ 1, ∀k ⇐⇒ d ≤ 1− max
µ multiple root

|µ| .

Then we move on to the error estimate. Let En := Vn − Un which satisfies

En+1 = AEn + h [F (Vn+1, Vn)− F (Un+1, Un)] + hδn, (5.1.2)

E0 = δ0.

We apply the fact that F is Lipschitz to Eqn. 5.1.2:

‖En+1‖∗ ≤ ‖A‖∗ ‖En‖∗ + hL (‖En+1‖∗ + ‖En‖∗) + h ‖δn+1‖∗ . (5.1.3)

where L stands for the Lipschitz constant under the vector norm ‖·‖∗1 (recall Lem. 5.1.3). We pick

h0 > 0 s.t. h ≤ h0 implies ∣∣∣∣
1 + Lh

1− Lh

∣∣∣∣ ≤ 1 + 3Lh and
1

1− Lh ≤ 2.

Let en := ‖En‖∗ and ∆n := ‖δn‖∗; then Eqn. 5.1.3 reduces to en+1 ≤ e3hLen + 2h∆n+1 with

e0 = ∆0, leading to

en ≤ e3hnLe0 + 2h

n∑

m=1

e3hL(n−m)∆m ≤ (1 + 2T) e3TL max
0≤m≤n

∆m.

for T := nh.

Remark. Recall that the matrix B := DSAS−1D−1 is introduced to prove ‖A‖∗ ≤ 1. The vector

norm that induces ‖·‖∗ reads

‖x‖∗ := ‖(DS)x‖1 .

1which is made rigorous by ‖(·1, ·2)‖∗⊗∗
:= ‖·1‖∗ + ‖·2‖∗

29

5.1. PROOF ON STABILITY Jan 25: Lecture 5. Numerical ODE (Part IV)

This can be verified by a direct calculation

sup
x 6=0

‖Ax‖∗
‖x‖∗

= sup
x 6=0

‖DSAx‖1
‖DSx‖1

= sup
y:=DSx 6=0

‖By‖1
‖y‖1

= ‖B‖1 = ‖A‖∗ .

Corollary 5.1.1. The stability result shown in Thm. 5.1.1 applies to any R-K method or any LMM

that satisfies the Dahlquist root condition, assuming the source terms in the ODE are Lipschitz

continuous.

Remark. For R-K methods, Un = un and thus A = I; the Lipschitz continuity of F follows from

the Lipschitz continuity of f and the property that sums and compositions preserves Lipschitz

continuity, so the assumptions are naturally satisfied.

For LMM, the assumption on F can be verified similarly since F is a linear combination of f .

The spectrum condition on A, however, depends on the roots of σ (z) under scrutiny. This is to be

continued in the next lecture.

30

Jan 30: Lecture 6

Numerical Ordinary Differential

Equations (Part V: Stiff and

symplectic systems)

6.1 Stiff problems

Sometimes, we encounter problems with very different time scales, for example in mechanics or

chemistry reactions. Let us consider the following example:

u′ =100 (u1 − u) t > 0,

u (0) =u0,

The solution has a closed form u (t) = u1 − (u1 − u0) exp (−100t) where u (t) converges rapidly to

u1 regardless of the initial value after a transient layer on the scale of 1/100. Let us consider the

two simplest schemes, namely forward and backward Euler. Both schemes are stable with local

truncation error h2u′′ (ξ) that converges to 0 as h→ 0. However, their long-term behavior is quite

different:

• Forward Euler: let us put h = 0.1, then u0 = 0, u1 = u0 + h · 100 (1− u0) = 10, u2 = −80, . . .
which explodes quickly.

• Backward Euler: u0 = 0, u1 = 0.91, u2 = 0.99 . . . that is much stabler.

This motivates us to propose a new sense of stability that is useful for stiff problems.

31

6.1. STIFF PROBLEMS Jan 30: Lecture 6. Numerical ODE (Part V)

Definition 6.1.1. For model problem u′ = λu and fixed h, let us introduce the region of absolute

stability Ra

Ra := {z = hλ : |un| ց 0 as n→∞} .

Notice that λ can be a complex number.

Example 6.1.1. For Forward Euler, un+1 = un + hλun = (1 + hλ) un, thus

RFE
a = {z = hλ : |1 + z| < 1} .

RFE
a is a circle that is located to the left of the imaginary axis (as shown in Fig. 6.1.1). Note that

for the analytical solution, Ranalytical
a = {Reλ < 0}. For Implicit Euler, un+1 = un+hλun+1, giving

un+1 = un/ |1 + hλ|, thus

RIE
a = {z = hλ : |1− z| > 1} .

The region RIE
a includes complex numbers with positive real parts, implying that the implicit Euler

has a damping effect, i.e. the numerical solution may diminish while the amplitude of true solution

grows in time. For the trapezoidal rule, the region reads

RT
a =

{
z = hλ :

∣∣∣∣
1 + z/2

1− z/2

∣∣∣∣ < 1

}
.

which is exactly the same as the analytical solution.

Remark (Ra for some common methods). • Explicit RK: slightly larger than explicit Euler

• BDF: stable for super-stiff problems, but not A-stable for high-order variants since part of

the imaginary axis is excluded; however, it is not a concerning issue if the eigenvalues are

guaranteed to be real numbers. We refer to the book “Numerical Mathematics” (page 511)

for more details.

Definition 6.1.2. A-stability refers to the property that

Ra ⊃ {z = hλ : Rez < 0} .

i.e. the stability region contains the left-half plane.

Fact. A-stable LMM is at most of second order. Besides, A-stable methods must be implicit.

Remark. Discretization of PDEs usually leads to stiff problems. In practice, lower order implicit

methods (e.g. Trapezoidal or IE) are preferred.

Remark. The general approach to determine stability for ODE system u′ = f (u) is to consider

eigenvalues zj of ∇f and to make sure that they fall in the region of absolute convergence Ra.

32

Jan 30: Lecture 6. Numerical ODE (Part V) 6.2. SYMPLECTIC SYSTEMS

Re

Im

-1-10

(a) Explicit Euler

Re

Im

1-10

(b) Implicit Euler

Re

Im

-10

(c) Trapezoidal rule (d) From “Numerical Mathematics”, page
491.

Figure 6.1.1: Region of absolute stability.

Remark. When solving the implicit scheme, the Newton’s method can be used to replace fixed point

iterations. For example, for implicit Euler un+1 = un + hf (un+1), fixed point iteration doesn’t

work if hλ is large; Newton’s method, on the other hand, does not suffer from large hλ, if the initial

guess is close enough. The later assumption can be satisfied if we start with a good approximation

by explicit schemes or using a smaller intermediate time step.

6.2 Symplectic systems

Another class of ODE systems has the so-called symplectic property. A common characteristic

is conservation of energy, e.g. in astrophysics or of the abstract form d
d tH (u, u′) = 0. This is

generalized as the concept of Hamiltonian systems. Loosely speaking, symplectomorphism, i.e. a

symplectic map, preserves the “volume” of an area of interest. In the astrophysics example, the

planets that stay close will orbit around the sun with separating apart.

To illustrate this, we need a model problem that has imaginary eigenvalues. For example, we

33

6.2. SYMPLECTIC SYSTEMS Jan 30: Lecture 6. Numerical ODE (Part V)

consider

u′ = iωu

where ω ∈ R that typically refers to an angular velocity. The solution reads u (t) = u (0) exp (iωt),

so that the norm of the solution stays constant. We wish to derive numerical schemes that are

symplectomorphism. We exam the common choices:

• Forward Euler: recall that un+1 = (1 + hλ) un = (1 + hλ)n+1 u0. However, it holds true

that|1 + ihω| > 1 whenever hω 6= 0, so the norm of un will always grow.

• Implicit Euler: similarly, since 1/ |1− ihω| < 1 for hω 6= 0, so the norm diminishes over time.

• Trapezoidal rule: since the step size h and ω are real numbers,

∣∣∣∣
1 + ihω/2

1− ihω/2

∣∣∣∣ = 1

and thus the norm is kept constant. Notice that it is actually not a symplectic integrator;

one can show that the numerical solution solves u′ = iω̃ (ω, h)u where the modified angular

velocity depends on ω and h at the same time. Thus, it is possible that some eigen components

evolve at a different speed than the other ones.

Symplectic integrators are widely used in Hamiltonian systems, especially in molecular dynamics.

A second order example is the Verlet integrator: motivated from Newton’s second law, let us assume

unit mass and the governing equations read

x′ (t) = v (t) ,

v′ (t) = f (x (t)) .

Then the Verlet integrator reads

vn+1/2 = vn +
h

2
f (xn) ,

xn+1 = xn + h vn+1/2,

vn+1 = vn+1/2 +
h

2
f (xn+1) .

See this file for further discussion.

34

https://utexas.instructure.com/courses/1361086/files?preview=70411506

Feb 6: Lecture 7

Numerical Ordinary Differential

Equations (Part VI: Miscellaneous

remarks and DAE)

7.1 Miscellaneous remarks

7.1.1 Methods with large absolute stability region

If we are interested in methods with a large stability region rather than the precision, there are

the so-called Chebyshev methods. We refer to "Fourth order chebyshev methods with recurrence

relation" for more details.

7.1.2 Stability in higher dimension settings

We have derived the stability result for R-K & LMM with root condition. Assuming f Lipschitz,

there exists h0 s.t. for h < h0, the difference between solution to




Un+1 = AUn + hF (Un+1, Un)

U0 as given
,




Vn+1 = AVn + hF (Vn+1, Vn) + hδn+1

V0 = U0 + δ0
(7.1.1)

can be estimated by ‖Vn − Un‖ ≤ C (T)max ‖δn‖. A direct consequence is convergence of the

numerical scheme if the maximal LTE vanishes as the time step h goes to 0; furthermore, the order

of convergence (w.r.t. h) coincides with the order of LTE. In fact, we can view Vn as the true

solution and Un as the numerical solution in Eqn. 7.1.1; then, δn+1 is exactly the LTE. The initial

35

http://dumkaland.org/citationindex/37954.pdf

7.1. MISCELLANEOUS REMARKS Feb 6: Lecture 7. Numerical ODE (Part VI)

Figure 7.1.1: Stability domain of R9 (x), from "Fourth order chebyshev methods with recurrence
relation" (Fig 2.1).

value δ0 is 0 for R-K methods (since they are of one-step), but could be non-zero for LMM. In

practice, one needs to examine the error in the extra initial values brought by the bootstraping

procedure.

Remark. Recall that the iteration matrix

A =




−aJ−1 −aJ−2 . . . −a1 −a0
1 0

1

1 0




is introduced under the scalar setting u (t) ∈ R (Sec. 4.3.1) to transform a LMM scheme into Eqn.

7.1.1. This can be extended to the vector scenario; the iteration matrix reads

A =




−aJ−1Id −aJ−2Id . . . −a1Id −a0Id
Id 0

Id
. . .

. . .
. . .

Id 0




where we simply multiply each entry with an identity matrix.

36

Feb 6: Lecture 7. Numerical ODE (Part VI) 7.2. DAE

7.1.3 R-K scheme as a one-step method

We provide a few more details in the course of formulating a R-K scheme as the one-step form. For

a general implicit R-K method (recall Eqn. 3.2.3 and 3.2.4), let us put Kn = (k1, . . . , kJ)
T

which

follows

Kn = F
(
un + ha

=
Kn

)
(7.1.2)

(the term a
=

refers to the coefficients in the Butcher table). Eqn. 7.1.2 has a unique solution

for sufficiently small h; this can be proved by using the contraction mapping theorem. In fact,

Φ : K 7→ F
(
u+ ha

=
K
)

is a Lipschitz function due to

‖Φ (K ′)− Φ (K ′′)‖ ≤
∥∥∥F
(
u+ ha

=
K ′
)
− F

(
u+ ha

=
K ′′
)∥∥∥

≤ Lh
∥∥∥a
=

∥∥∥ ‖K ′ −K ′′‖

and its Lipschitz constant will be smaller than 1 if Lh
∥∥∥a
=

∥∥∥ ≤ 1, thus applicable for applying the

contraction mapping theorem. Let Ku denote the fixed point to Φ. Since un+1 = un+h
∑

j bjkj =

un + hbKun , it suffices to show that Ku is Lipschitz w.r.t. to u. A direct comparison yields

‖Ku −Kv‖ =
∥∥∥F
(
u+ ha

=
Ku
)
− F

(
v + ha

=
Kv
)∥∥∥

≤
∥∥∥F
(
u+ ha

=
Ku
)
− F

(
u+ ha

=
Kv
)∥∥∥+

∥∥∥F
(
u+ ha

=
Kv
)
− F

(
v + ha

=
Kv
)∥∥∥

≤ Lh
∥∥∥a
=

∥∥∥ ‖Ku −Kv‖+ L ‖u− v‖ ,

leading to

‖Ku −Kv‖ ≤ L ‖u− v‖
1− Lh

∥∥∥a
=

∥∥∥
.

7.2 Differential algebraic equations

7.2.1 Example and applications

Let us consider an ODE coupled with an algebraic equation, such as

u′ = f (u, v) , (7.2.1)

0 = g (u, v) . (7.2.2)

Typical applications include:

• Explicit constraints in mechanical systems, e.g. a pendulum system where the length of the

37

7.2. DAE Feb 6: Lecture 7. Numerical ODE (Part VI)

string stays constant.

• Control theory: usually u follows an ODE (for example Newton’s law) and v is a control

variable that serves as an adjustable coefficient.

• As a relaxation of stiff systems: for example, the v component in the solution to a stiff system

u′ = f (u, v) ,

v′ =
1

ǫ
g (u, v)

typically converges to the root of g (u, v) = 0 on a faster scale when ǫ ≪ 1. Thus, it is

convenient to formally put v′ = 0 that leads to the DAE as mentioned above.

• PDE: usually emerge after space discretization, e.g. incompressible Navier-Stokes equation:

the velocity follows the divergence-free constraint and the acceleration depends on the pressure

variable which is a “missing piece”.

7.2.2 Approximation by implicit Euler method

A first attempt to solve Eqn. 7.2.1 and 7.2.2 is to use the explicit Euler method, i.e.

un+1 = un + hf (un, vn) ,

0 = g (un, vn) .

There is an issue with this scheme where no evaluation of vn+1 is yielded. Thus, we turn to the

implicit version. We can apply the implicit Euler method to Eqn. 7.2.1 and plug the updated steps

into the constraint (Eqn. 7.2.2), i.e.

un+1 = un + hf (un+1, vn+1) ,

0 = g (un+1, vn+1) .

7.2.3 Index of DAE

Another strategy of solving DAEs is to reduce them to ODEs. If Eqn. 7.2.2 admits a unique

solution v = g−1 (u) which can be solved under a fair cost, then the DAE reduces to an ODE form

u′ = f
(
u, g−1 (u)

)
. We then define the index of a DAE as the number of reductions needed to

transform into ODEs. Then, ODEs have index 0 and the aforementioned example has index 1.

38

Feb 6: Lecture 7. Numerical ODE (Part VI) 7.2. DAE

Example 7.2.1. There are DAEs with higher indices. Consider

u′ = f (u, v, w) , (7.2.3)

v′ = g (u, v, w) , (7.2.4)

0 = h (u, v) . (7.2.5)

We cannot apply implicit Euler method to this system since w does not enter the algebraic equation

explicitly. To circumvent this issue, let us differentiate Eqn. 7.2.5 to obtain

0 = ∂uh (u, v) f (u, v, w) + ∂vh (u, v) g (u, v, w) = h̃ (u, v, w) .

Since we need to differentiate (part of) the system to reduce to a index-1 DAE, this system is of

index 2.

39

7.2. DAE Feb 6: Lecture 7. Numerical ODE (Part VI)

40

Feb 8: Lecture 8

Numerical Ordinary Differential

Equations (Part VII: SDE and BVP)

Remark (Initial condition for DAEs). For problems in the form of Eqn. 7.2.1 and 7.2.2, u (t0) is

usually given, then v (t0) may be solved if g (u, ·) = 0 admits a (possibly class of) solution. It is,

however, more difficult to deal with if the DAE is given in the implicit form F (u, u′) = 0 where
∂F

∂(u′) = 0 might even be singular. Methods for stiff ODES are suitable for addressing these problems.

8.1 Stochastic differential equations

Formally speaking, stochastic equations describe processes that involve random components, for

example in a way that

u′ = f (u, ω) (8.1.1)

where ω characterize the “randomness” that drives the system. Typical application of SDEs include

weather prediction, finance, etc. A stochastic model can also emerge from physical and biological

systems which shall be deterministic intrinsically due to Newton’s law, but it’s more handy and

practical to model the molecule interactions as a stochastic process. In the same spirit, SDEs are

applied in uncertainty quantification (UQ) where the posterior estimate often involves simulation

of the random system.

From a numerical perspective, Eqn. 8.1.1 is not rigorous or regular since a wide class of stochastic

processes are not continuously differentiable (or not differentiable to begin with). The following

differential form

dXt = f (Xt, t) d t+ g (Xt, t) dWt (8.1.2)

41

8.2. 2-POINT BVP Feb 8: Lecture 8. Numerical ODE (Part VII)

is often adopted in SDE literature where Xt denotes the stochastic process and Wt is a given

random process (usually the Wiener process or the Brownian motion). We usually refer f d t as

the drift term and g dWt as the diffusion term due to their physical meanings. Eqn. 8.1.2 shall be

understood in the sense of the corresponding integral form, i.e. Xt solves

Xt+s = Xt +

∫ t+s

t

f (Xξ, ξ) d ξ +

∫ t+s

t

g (Xξ, ξ) dWξ

where the second integral is defined by Ito calculus which works differently from the usual calculus.

A standard numerical method is the Euler-Maruyama scheme, namely

X̂n+1 = X̂n + f
(
X̂n, tn

)
∆t+ g

(
X̂n, tn

)
∆Wn

which is a natural extension to the explicit Euler scheme. Notice that the numerical solution is a

random variable (or process if we consider the full trajectory), thus the definition of convergence

requires close scrutiny. The weak error estimate, i.e. comparing the expectation at a given time tn,

is given by ∣∣∣EXtn − EX̂n

∣∣∣ = O (h)

if we assume an evenly spaced time gird with step h. The error estimate in the strong sense (i.e.

path-by-path) can also be derived as

E

∣∣∣∣ sup
0≤tn≤T

∣∣∣Xtn − X̂n

∣∣∣
2
∣∣∣∣
1/2

= O
(
h1/2

)

which follows a typical Monte-Carlo form. Numerical schemes of higher orders are possible (for

example the SRK family), but they are much harder to design.

8.2 2-point boundary value problems

8.2.1 General theory

We wish to define a differential equation that involves the second order derivative of u, say modeling

elasticity or conductivity. Since it is a system of second order, two boundary conditions are required:

one can specify the values of u and u′ at the starting step, but it is also possible to specify the

42

https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_method_(SDE)

Feb 8: Lecture 8. Numerical ODE (Part VII) 8.2. 2-POINT BVP

values at two boundary points, for example

u′′ = f (u′, u, x) a < x < b, (8.2.1)

u (a) = ua, (8.2.2)

u (b) = ub. (8.2.3)

Remark. The system above can be reduced to a first-order system. We introduce u(1) := u, u(2) :=

u′, u(3) := x which leads to

[
u(1)

]′
= u(2),

[
u(2)

]′
= f

(
u(2), u(1), u(3)

)
,

[
u(3)

]′
= 1.

with the boundary condition u(1) (a) = ua, u
(1) (b) = ub, u

(3) (a) = a. Thus, it naturally leads to

the general form of BVPs

U ′ = F (U) , (8.2.4)

0 = G (U (a) , U (b)) . (8.2.5)

The second order system (Eqn. 8.2.1, 8.2.2, and 8.2.3) can be solved via a direct discretization

via FDM. For an evenly spaced grid xj := a + hj with hJ = b − a, let uj denote the numerical

approximation to u (xj). Then, the numerical scheme reads

uj+1 − 2uj + uj−1

h2
= f

(
uj+1 − uj−1

2
, uj , xj

)
, j = 1, . . . , J − 1

u0 = ua,

uJ = ub.

i.e. J − 1 equations for J − 1 unknowns u1, . . . , uJ−1. For BVPs in the general form (Eqn. 8.2.4

and 8.2.5), the trapezoidal rule is preferred

1

h
(Uj+1 − Uj) =

1

2
[F (Uj+1) + F (Uj)] , j = 0, . . . , J − 1,

G (U0, UJ) = 0.

Remark. FDM of higher orders are, however, not common and not widely adopted since it is not easy

to derive the discretized boundary conditions. Higher accuracy is often obtained from Richardson

43

8.2. 2-POINT BVP Feb 8: Lecture 8. Numerical ODE (Part VII)

extrapolation instead.

8.2.2 Well-posedness

The well-posedness result for BVPs is harder than for IVPs since the solutions might not be unique.

Example 8.2.1. Let us consider the following system

u′′ + π2u = 0, 0 < x < 1,

0 = u (0) = u (1) .

The system above admits a class of solutions u (x) = C sinπx where the amplitude C is an arbitrary

constant.

Let us analyze the numerical aspect of FDM discretization.

Example 8.2.2. One can verify that there is the unique solution to

−u′′ + u = f (x) , 0 < x < 1,

0 = u (0) = u (1) .

The linear discretized system derived from FDM reads

− (uj+1 − 2uj + uj−1) + h2uj = h2f (xj) ,

0 = u0 = uJ

that is equivalent to the matrix form




2 + h2 1

1 2 + h2 1

. . .
. . .

. . .

1 2 + h2 1

1 2 + h2







u1

u2

. . .

uJ−2

uJ−1




=




f (x1)

f (x2)

. . .

f (xJ−2)

f (xJ−1)




(8.2.6)

The iteration matrix is strongly diagonally dominant, thus Eqn. 8.2.6 also admits a unique solution.

Remark. A similar argument can be applied to Eg. 8.2.1 as well, where the only difference is that

44

Feb 8: Lecture 8. Numerical ODE (Part VII) 8.2. 2-POINT BVP

the iteration matrix reads




−2 + π2h2 1

1 −2 + π2h2 1

. . .
. . .

. . .

1 −2 + π2h2 1

1 −2 + π2h2



.

The dominance no longer holds, thus it is not surprising that we encounter non-uniqueness. The

numerical solution is then sensitive to the step size h. A similar phenomenon arises in the dis-

cretization to wave equations.

8.2.3 Richardson extrapolation

As mentioned earlier, FDM schemes of higher orders are not easy to derive. As an alternative,

Richardson extrapolation is often more favorable. It can be motivated by the following derivation.

Let us compare the numerical solution that uses time step h to the true solution

U (h)
n = U (tn) + h2e2 (tn) + h4e4 (tn) + . . . (8.2.7)

which can be obtained via asymptotic expansion and order matching. If we cut the step size by

half, we have

U
(h/2)
2n = U (tn) +

1

4
h2e2 (tn) +

1

16
h4e4 (tn) + . . .

Then, a higher order estimate can be drawn by composing U
(h)
n and U

(h/2)
2n carefully:

4U
(h/2)
2n − U (h)

n

3
= U (tn)−

1

4
h4e4 (tn) + . . . (8.2.8)

Eqn. 8.2.8 yields a higher order approximation and is also suitable for monitoring the local error.

This often serves as a prototype for adaptive methods.

Remark. To obtain an expansion in the form of Eqn. 8.2.7, we start with the expansion with full

terms

U (h)
n = U (tn) + he1 (tn) + h2e2 (tn) + . . .

which is plugged into the FDM scheme. An order matching procedure then yields a set of ODEs

that connects U, e1, e2 and their derivatives.

45

8.2. 2-POINT BVP Feb 8: Lecture 8. Numerical ODE (Part VII)

46

Feb 13: Lecture 9

Numerical Partial Differential

Equations (Part I: 2-Point BVP,

FDM, and FEM)

9.1 Finite difference method and 2-point boundary value prob-

lem

Remark. It is possible to derive direct discretization of higher order on the first order system U ′ =

F (U) with boundary condition G (U (a) , U (b)) = 0 (Eqn. 8.2.4 and 8.2.5). But, the Richardson

extrapolation is often preferred for stability issues; it also does not require extra numerical boundary

conditions as is needed in higher order scheme. The adaptivity also helps to performance error

estimate locally.

The discretization of boundary value problems often leads to a linear or possibly non-linear

system of equations. In the non-linear case, the initial guess for iterative solver can be hard to find.

A feasible approach is to introduce some homotopy over the solution space. Consider the following

sequence of problems:

U ′
θ (x) = θF (Uθ (x)) + (1− θ)H (Uθ (x)) (9.1.1)

G (Uθ (a) , Uθ (b)) = 0

notice that Eqn. 9.1.1 falls back to the original problem if we let θ = 1. When θ = 0, the composed

problem reads U ′ = H (U), so we can pick some function H such that this starting problem is easy

47

9.2. FINITE ELEMENT METHOD Feb 13: Lecture 9. Numerical PDE (Part I)

to solve. Once the initial guess is obtained, we can then increase θ little by little and hope that the

solution converges when θ reaches 1.

Another strategy is to reformulate the problem as an initial value problem coupled with an

algebraic equation, a.k.a. the shooting method. The idea is to assume the boundary value U (a) = s,

solve the IVP, and examine the terminal value Ũ (b). This terminal value, in general, depends on

s, so the shooting method poses an additional equation G
(
s, Ũ (b; s)

)
= 0.

Example 9.1.1. Let us consider the following second-order system

u′′ = f (u′, u, x) a < x < b,

u (a) = ua,

u (b) = ub.

Once the initial derivative s1 = u′ (a) is fixed, we can solve the IVP to obtain a trajectory ũ (x; s1).

Then, it remains to solve ũ (b; s1) = ub.

The choice of s can be tricky since it solves a non-linear equation which is implicitly posed by

the non-linear ODE solver. One simple approach is to use a bisection solver that only relies on the

function value. Fixed point iteration is also viable. The preferred approach is Newton’s method

that utilizes the Jacobian of the implicit equation which can be obtained by solving a derived system

of ODEs.

In general, BVPs do not have an easy guarantee of the well-posedness of the solutions. It may

seem that the shooting method circumvents the need to identify the unique solution. We shall point

out that the shooting method introduces an additional terminal condition equation. Nevertheless,

sometimes it is a viable strategy to show the existence and uniqueness of the solution to BVP.

9.2 Finite element method

9.2.1 Strong and weak form

Now, we shift our focus to finite element method. Loosely speaking, the solution function is approx-

imated by point-wise values in the finite difference method; in finite element method, the solution is

approximated by a piece-wise linear function. To motivate this, consider the following second-order

system

−u′′ + a (x) u = f (x) xL < x < xR, (S) (9.2.1)

u (xL) = u (xR) = 0.

48

Feb 13: Lecture 9. Numerical PDE (Part I) 9.2. FINITE ELEMENT METHOD

Let us approximate the true solution by a combination of trial functions, i.e.

u (x) ≈ uh (x) =
J∑

j=1

αjϕj (x)

where ϕj are called trial functions, given and fixed for a specific FEM. We rewrite the DE into

the weak form to derive equations for {αj}1. We multiply the strong form (Eqn. 9.2.1) by test

functions v (x) and integrate over the domain (xL, xR):

∫ xR

xL

(−u′′v + auv) dx =

∫ xR

xL

fv dx.

We can apply integration by parts (IBP) on LHS

∫ xR

xL

(−u′′v) dx = (−u′v) |xR
xL

+

∫ xR

xL

u′v′ dx.

To avoid the boundary term, let us pick v (x) that vanishes at the two boundary points xL and xR,

leading to ∫ xR

xL

(u′v′ + auv) dx =

∫ xR

xL

fv dx. (9.2.2)

We introduce the following definition

A (u, v) :=

∫ xR

xL

(u′v′ + auv) dx,

F (v) :=

∫ xR

xL

fv dx.

Then, Eqn. 9.2.2 is put equivalently as

A (u, v) = F (v) (V) (9.2.3)

Notice that A is a bilinear form, i.e. being linear in the two arguments. F is a linear functional,

meaning that it maps functions to scalar values.

Let us inspect the meaning of the strong and weak formulation closely.

1the name “weak” comes from the fact that solutions are less regular (say, less continuous, less integrable...) than
those we have seen in ODEs

49

9.2. FINITE ELEMENT METHOD Feb 13: Lecture 9. Numerical PDE (Part I)

Strong form (Eqn. 9.2.1) Weak form (Eqn. 9.2.3)

find u ∈ C2 (xL, xR) s.t. u vanishes at

xL and xR while

−u′′ + a (x) u = f (x)

holds for xL < x < xR

find u in H1
0 ([xL, xR]) (to be clarified

later) s.t.

A (u, v) = F (v)

for any v ∈ H1
0 ([xL, xR])

It seems we only require u, v ∈ C1 since only the first derivative is involved. In fact, the

requirement is even weaker that u can be a H1
0 function. The definition for Sobolev spaces in

detail is beyond the scope of this class, but formally speaking, H1
0 contains functions that can be

differentiated while vanishes on the boundary, i.e.

H1
0 ([xL, xR]) :=

{
u : u′ ∈ L2 ([xL, xR]) , u (xL) = u (xR) = 0

}
.

We shall emphasize that the solution to the weak form does not necessarily solve the strong form

(it is a “weaker” solution after all).

9.2.2 Discretization

The general idea of the FEM (or Galerkin method) is to discretization the transformed variational

problem (Eqn. 9.2.3). For the discretization setup, we solve the same variational problem, but

restricting the trial and test functions to be of the linear combination form, i.e.

A (u, v) = F (v) , ∀v ∈ Vh (Vh) (9.2.4)

Due to linearity, we do not need to verify Eqn. 9.2.4 for every possible v in Vh; it suffices to examine

the problem by just using ϕ1, . . . , ϕJ , leading to

J∑

j=1

αjA (ϕj , ϕk) = f (ϕk) , ∀1 ≤ k ≤ J.

There are J linear equations for J unknowns where the coefficients

A (ϕj , ϕk) =

∫ xR

xL

(
ϕ′
jϕ

′
k + aϕjϕk

)
dx =: As

j,k +Am
j,k

are built by suitable numerical integration methods, e.g. the Gaussian integral quadrature. The

first part As
j,k of the integral is often referred to as stiffness matrix, the second part Am

j,k being mass

matrix, where the naming came after practical physical studies dated back to early days of FEM

50

Feb 13: Lecture 9. Numerical PDE (Part I) 9.2. FINITE ELEMENT METHOD

development in engineering.

A popular choice for the basis function is the P1 element, where each basis function looks like

a hat function.

Figure 9.2.1: Hat functions and P1 element, from From “Numerical Mathematics”, page 561.

For P1 elements, the space of trial functions is exactly the piecewise linear functions that FDM

adopts. However, FEM approach tells what happens in between the consecutive sampling points.

For higher order elements, it is not necessarily the case that interpolation is linear.

We examine the coefficients for the stiffness matrix if using P1 element. A direct calculation

yields

As
j,k =





2/h j = k

−1/h |j − k| = 1

0 otherwise

.

The shape of As is a tridiagonal matrix, which resembles the second order derivative discretized by

the finite difference method.

51

9.2. FINITE ELEMENT METHOD Feb 13: Lecture 9. Numerical PDE (Part I)

52

Feb 15: Lecture 10

Numerical Partial Differential

Equations (Part II: FEM)

Let us review the diagram that connects different forms arising in the method of finite elements.

(V)(S)

(Vh)

(LM)

(M)

10.1 Connecting (V) and (LM)

To derive well-posedness of the BVP, the following properties of the variational components A and

F are often desired.

1. Coercivity of A: there exists C1 positive s.t. A (u, u) ≥ C1 ‖u‖2H1 .1

2. Continuity of A: there exists C2 finite and positive s.t. |A (u, v)| ≤ C2 ‖u‖H1 ‖v‖H1 .

3. Continuity of F : there exists C3 positive s.t. |F (v)| ≤ C3 ‖v‖H1 .

1The H1-norm is defined as

‖u‖H1 =

√∫ xR

xL

(u′)2 + u2 dx =
√

‖u‖2
L2 + ‖u′‖2

L2 .

53

10.2. FROM (V) TO (S) Feb 15: Lecture 10. Numerical PDE (Part II)

4. Symmetry of A: A (u, v) = A (v, u).

5. A (u, v) is a bilinear form and F is a linear functional.

The last two properties are easy to verify. The first one on coercivity is satisfied if a (x) has a

uniform positive lower bound. In fact,

A (u, u) =

∫ xR

xL

[
(u′)

2
+ a (x)u2

]
dx

≥ min

(
min

xL≤x≤xR

a (x) , 1

)∫ xR

xL

[
(u′)

2
+ u2

]
dx

= C1 ‖u‖2H1 .

The second and third property is usually a consequence of Cauchy’s inequality:

|F (v)| =
∣∣∣∣
∫ xR

xL

fv dx

∣∣∣∣ ≤
√∫ xR

xL

f2 dx

√∫ xR

xL

v2 dx = ‖f‖L2 ‖v‖L2 ,

|A (u, v)| ≤ C
√
A (u, u)

√
A (v, v).

Now we can connect to the Lax-Milgram theorem, which states that there exists a unique

solution to the variational form in H1 if the properties 1, 2, 3, 5 are satisfied; notice that symmetry

is not a mandatory requirement.

10.2 From (V) to (S)

To go from the weak form back to the strong form, recall that the weak solution is merely in H1,

so one would expect that stronger conditions are needed. In this particular example, if the source

term f is a L2 function, then u can be shown to be a H2 function. Then, by performing IBP in

the reverse direction and handling the boundary term properly, we arrive at that

∫ xR

xL

(−u′′ + au− f) v dx = 0 (10.2.1)

holds for any v ∈ H1. Since g := −u′′ + au − f is in L2, we can pick v to be g and the integral

reads ‖g‖2L2 , leading to the conclusion that g = 0 in L2. A stronger argument on a point-wise basis

can be derived if f ∈ C1; g is also a continuous function in this case. Let us assume, for the sake of

negating the conclusion to be shown, that g (x) is not 0 for some x ∈ (xL, xR). Then, by continuity

of g, it must be bounded away from 0 in some neighborhood N of x. One can thus pick a proper

positive mollifier v that is supported in N to show a contradiction by examining the integral.

54

Feb 15: Lecture 10. Numerical PDE (Part II) 10.3. CONNECTING (V) AND (M)

10.3 Connecting (V) and (M)

The five properties (including symmetry) implies that the variational form is equivalent to the

minimization form

u = argmin
u∈H1

0

[
1

2
A (u, u)− F (u)

]
(M).

To see this, let us pick a perturbation direction v ∈ H1
0 and the associated amplitude ǫ > 0. The

perturbed value reads

1

2
A (u+ ǫv, u+ ǫv)− F (u+ ǫv) =

[
1

2
A (u, u)− F (u)

]
+ ǫ [A (u, v)− F (v)] +

ǫ2

2
A (v, v) .

Now, if (V) is valid, then A (u, v) = F (v) holds true, so the ǫ term vanishes and the perturbation

leads to an additional ǫ2 term, showing that u is the minimizer. On the other hand, if (M) holds

true, that u is indeed a minimizer but we do not know if u necessarily solves the variational form.

If not, for example there exists v s.t. A (u, v) < F (v), then we can pick ǫ sufficiently small so that

ǫA (v, v) ≤ − [A (u, v)− F (v)], then

ǫ [A (u, v)− F (v)] +
ǫ2

2
A (v, v) ≤ ǫ

2
[A (u, v)− F (v)] < 0

which contradicts with the fact that u is a minimizer, thus eliminating the possibility that A (u, v)

does not match F (v).

10.4 Connecting (V) and (Vh)

The two variational problems are not that different since they share an almost identical form, except

that the function spaces are different. We require that the numerical (usually finite dimensional)

function space Vh is a subspace of V . As a consequence, the true solution u should also fit in the

discretized problem, i.e.

A (u, vh) = F (vh) , ∀vh ∈ Vh.

Recall that the numerical version reads A (uh, vh) = F (vh), leading to

A (u− uh, vh) = 0

which implies that the residual in the approximation u − uh is orthogonal to any discrete test

function vh. We will work on the approximation error estimate in the next lecture.

55

10.4. CONNECTING (V) AND (Vh) Feb 15: Lecture 10. Numerical PDE (Part II)

56

Feb 20: Lecture 11

Numerical Partial Differential

Equations (Part III: FEM and

Poincare’s inequality)

11.1 FEM error estimate

Recall that we have established some basics for solving variational problems in previous lectures.

The variational problem, a.k.a. weak form (usually of infinite dimension), possesses the form

find u ∈ V s.t. a (u, v) = f (v) ∀v ∈ V, (V)

while the discretized problem in the language of FEM/Galerkin method, as a finite dimensional

problem, reads

find u ∈ Vh s.t. a (u, v) = f (v) ∀v ∈ Vh. (Vh)

The usual setup for 2-point BVP is that V = H1
0 ([xL, xR]) and we usually require that Vh is a

subspace of V . A direct consequence is to residual error estimate. Since uh ∈ Vh and u ∈ V solves

the discretized problem (Vh), for any v ∈ Vh,

a (u, v) = f (v) = a (uh, v) . (11.1.1)

Then, one can show an estimate as follows.

Theorem 11.1.1. We assume that the assumptions 1-3 and 5 in Sec. 10.1 are met for the varia-

57

11.1. FEM ERROR ESTIMATE Feb 20: Lecture 11. Numerical PDE (Part III)

tional problems. Then, there exists a constant C > 0 s.t.

‖u− uh‖V ≤ C inf
wh

‖u− wh‖V . (11.1.2)

Remark. Eqn. 11.1.2 can be interpreted as “uh is almost the best approximation of u in Vh, up to

a constant C”. Nevertheless, one still needs to develop approximation theory that guarantees that

the approximation error vanishes as h goes to 0.

(Proof to Thm. 11.1.1). Since uh, wh ∈ Vh, we plug v = uh −wh into Eqn. 11.1.1 and use the fact

that a is a bilinear form:

0 = a (u− uh, uh − wh) = a (u− uh, u− wh)− a (u− uh, u− uh) .

Since a is coercive and bounded, we have

C1 ‖u− uh‖2V ≤ a (u− uh, u− uh) = a (u− uh, u− wh) ≤ C2 ‖u− uh‖V ‖u− wh‖V ,

leading to

‖u− uh‖V ≤
C2

C1
‖u− wh‖V .

One consequence of Thm. 11.1.1 is to bound the approximation error for P1 elements. Since

Eqn. 11.1.2 holds for any wh ∈ Vh, we can build linear interpolation approximations, should these

fall in Vh. To be specific, let ϕj denote hat functions s.t. ũ =
∑
αjϕj interpolates u at the nodes

{xj}.

One can derive the error bound from the following intuitive calculation. For each interval

[xi, xi+1], let us pick the point ξi s.t.

u′ (ξi) = ũ′ (ξi) =
u (xi+1)− u (xi)

xi+1 − xi

thanks to Lagrange’s intermediate value theorem. Then, the point-wise error in u′ is bounded by

|u′ (x) − ũ′ (x)| =
∣∣∣∣u′ (ξi)− ũ′ (ξi) +

∫ x

ξi

u′′ (y) d y

∣∣∣∣ ≤ hmax |u′′|

which is useful to show error in u as

|u (x)− ũ (x)| ≤ h |u′ (xi)− ũ′ (xi)|+
∣∣∣∣
h2

2
u′′ (ζi)

∣∣∣∣ ≤ Ch2 max |u′′| .

58

Feb 20: Lecture 11. Numerical PDE (Part III) 11.1. FEM ERROR ESTIMATE

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2 u

ϕ1
ϕ2

û

x

(a) Difference between u and û

0.5 1 1.5 2 2.5 3

−2

−1

1

2

u′

û′
x

(b) Difference between u′ and û′

Figure 11.1.1

Thus, the H1 norm of the difference u− uh can be obtained via a simple integral estimate, i.e.

‖u− uh‖H1 ≤ Chmax |u′′| . (11.1.3)

Remark. The usual result for FE approximation, especially in higher dimensions, is to replace the

L∞ norm on the RHS by a L2 norm, i.e.

‖u− uh‖H1 ≤ Ch ‖u′′‖L2 = Ch |u|H2 .

Notice the notation difference between |·|H2 and ‖·‖H2 ; the former is defined as ‖·′′‖L2 and is thus

a semi-norm.

Remark. It may seem that we can derive a L2 estimate from the derivation that leads to Eqn.

11.1.3 since we have a point-wise estimate. This is, however, not the case for higher dimensions, at

least not as easily as in the 1 dimensional case. We refer the readers to the Aubin-Nitsche-duality

method.

Let us revisit the variational form. Recall that we have derived an orthogonal condition (Eqn.

10.2.1) earlier: ∫ xR

xL

(−u′′ + au− f) v dx = 0.

This also holds true for uh, v ∈ Vh for the discretized problem. In general, we can not conclude

that −u′′h + auh − f = 0 since uh does not even have enough regularity to yield a second order

derivative. Nevertheless, it is reasonable to claim that the residual −u′′h+auh−f is “orthogonal” to

59

11.2. REMARKS ON COERCIVITY Feb 20: Lecture 11. Numerical PDE (Part III)

any v ∈ Vh (in the sense of distributions). This can be viewed as a relaxed condition as compared

to the requirement that the original strong form is met at the node locations {xj}. The latter

approach, often known as the collocation method, is sometimes applied to integral equations and

has come back recently in some machine learning techniques such as PINNs (Physical-Informed

Neural Network).

11.2 Remarks on coercivity

Recall that we require the coefficient a (x) to be lower bounded by a0 > 0 to conclude coercivity for

the bilinear for a (u, v). We will show that it can be relaxed to lower bound condition for a0 ≥ 0,

but apparently not any further since counter-examples may arise, such as −u′′ − u = 0 for suitable

domains. One critical case of interest is when a (x) = 0; the differential equation now reads

−u′′ = f (x) , u (xL) = u (xR) = 0. (11.2.1)

It may seem trivial to solve Eqn. 11.2.1 by simply integrating it twice. However, this approach

breaks down for general PDE problems, where Eqn. 11.2.1 is also known as the Poisson problem.

The alternative approach is to establish the coercivity condition by studying the connection

between u and its derivative u′. To begin with, let us express the value of u by integrating the

derivative

u (x) =

∫ x

xL

u′ (ξ) d ξ =

∫ x

xL

u′ (ξ) · 1 d ξ.

Then, we apply the Cauchy’s inequality

|u (x)| =
√∫ x

xL

u′ (ξ)
2
d ξ ·

√∫ x

xL

12 d ξ ≤ ‖u′‖L2

√
xR − xL,

leading to

‖u‖L2 ≤ ‖u′‖L2 |xR − xL| . (11.2.2)

Notice that this derivation only relies on the condition xL = 0 without knowing anything about

xR.

Eqn. 11.2.2 is also known as the Poincare’s inequality. The general form of this theorem is that

is u ≡ u0 on part of the boundary Γ ⊂ ∂Ω, |Γ| > 0 while u, u0 ∈ H1, then

‖u− u0‖L2 ≤ C ‖∇u‖L2 .

60

Feb 20: Lecture 11. Numerical PDE (Part III) 11.2. REMARKS ON COERCIVITY

To connect this back to the BVP, let us study the variational form

a (u, v) =

∫ xR

xL

u′v′ dx.

By Poincare’s inequality, since

∫ xR

xL

u2 dx ≤ (xR − xL)2
∫ xR

xL

(u′)
2
dx,

we can add
∫ xR

xL
(u′)

2
dx on both sides to obtain

‖u‖2H1 ≤
[
(xR − xL)2 + 1

]
‖u′‖2L2 ≤

[
(xR − xL)2 + 1

]
a (u, u) .

61

11.2. REMARKS ON COERCIVITY Feb 20: Lecture 11. Numerical PDE (Part III)

62

Feb 22: Lecture 12

Numerical Partial Differential

Equations (Part IV: Boundary

Conditions for BVPs)

Remark. Regarding homework problem 2, we can formulate the shooting problem asG (s, Y (1; s)) =

0, should we start with assuming Y (0) = s. This equation can be efficiently solved via Newton’s

method, but this approach requires to know the gradient of G (s, Y (1; s)). A closer examination

reveals that
d

d s
G (s, Y (1; s)) = ∂1G+ ∂2G∂sY (1; s)

where the second term is interpreted in the following manner: Y (x; s) solved the original differential

equation with initial value Y (0) = s. If we assume that Y (x; s) depends on s in a continuously

differentiable manner, then Ẏ = f (Y) leads to

˙∂sY (x; s) = ∂sẎ (x; s) = ∂sf (Y (x; s)) = f ′ (Y) ∂sY

which is a matrix differential equation. The initial condition is simply ∂sY = I since we assume

Y (0; s) = s.

Remark. When discretizing the infinite-dimensional problem (V) to (Vh), the symmetry assumption

is not mandatory but is often preferred since it helps to solve the discretized system. For a symmetric

and positive definite system, one can deploy conjugate gradient method or Cholesky decomposition

for less time needed and more accurate results.

63

12.1. NEUMANN BC Feb 22: Lecture 12. Numerical PDE (Part IV)

12.1 Neumann BC

Recall that in the last lecture, we have established the Poincare’s inequality, namely ‖u‖L2 ≤
C ‖u′‖L2 for u (xL) = 0. We claim that there is a similar version for solutions to the Neumann’s

boundary condition, i.e.

u′ (xL) = u′ (xR) = 0.

Let us derive the weak form first. For suitable test functions v (properties of which will be deter-

mined soon), we have

∫ xR

xL

(u′v′ + a (x)uv) dx− [u′v]
xR

xL
=

∫ xR

xL

fv dx.

Thus, the variational form for Neumann boundary condition reads

find u ∈ H1 s.t. a (u, v) = F (v) , ∀v ∈ H1. (12.1.1)

Notice that we have dropped the subscript 0 in the Sobolev spaces, meaning that we do not require

the solution or the test function to vanish on the boundary.

Similarly to the Dirichlet problem, the assumptions for Lax-Milgram theorem are satisfied when

a (x) ≥ a0 > 0. The situation gets a bit tricky when a (x) is no longer lower bounded away from 0.

Consider the solution to −u′′ = f (x) that satisfies the Neumann BC; in contrast to the Dirichlet

problem, there is no unique solution since adding a constant to one existing solution leads to another

solution. This also implies that Poincare’s inequality does not hold in the same form. In fact, it

motivates the notion of H
1

spaces where functions have mean zero over the domain, thus avoiding

the ambiguity. One can derive a similar version of Poincare inequality on this space.

Another issue of the variational form (Eqn. 12.1.1) is that it says nothing about the boundary

condition. However, we claim that the Neumann BC is encoded implicitly. In fact, if we assume

enough regularity, then Eqn. 12.1.1 leads to

∫ xR

xL


−u′′ + a (x) u− f (x)︸ ︷︷ ︸

=:g(x)


 v dx+ [u′v]

xR

xL
= 0

for any v ∈ H1. If g does not vanish at some point x0 ∈ (xL, xR), one can choose a suitable

mollifier v that supports on the neighborhood of x0 where g is bounded away from 0, leading to

contradiction. For the boundary term, we can simply choose a suitable mollifier with thin support

containing each boundary point, leading to u′ = 0. The Neumann BC is also known as the natural

BC for this reason.

64

Feb 22: Lecture 12. Numerical PDE (Part IV)12.2. INHOMOGENEOUS DIRICHLET BC, ETC.

12.2 Inhomogeneous Dirichlet BC, etc.

Let us consider a variation of the zero Dirichlet conditions, namely

u (xL) = uL, u (xR) = uR.

The variational form still reads a (u, v) = F (v) for any v ∈ H1
0 , but the problem is that u does not

live in a linear subspace; in fact, the sum of two functions that meet the given BC does not satisfy

the same any longer. One way to circumvent this issue is to introduce some function g that satisfies

the desired condition g (xL) = uL, g (xR) = uR. Then, we let ũ := u− g and the strong form reads

ũ′′ − a (x) ũ = f (x)− g′′ (x) + a (x) g =: f̃ (x) .

Thus, ũ is suitable for applying the established theories. In practice, one can simply add two hat

functions that handle the two boundary points which introduce two extra linear equations.

For more complex BC, such as

−u′′ + a (x) u = f (x) ,

u′ (xL) = u′L,

u′ (xR) = Cu (xR) .

The boundary term reads

[u′v]
xR

xL
= Cu (xR) v (xR)− u′Lv (xL)

where the first term is a linear form and the second term is merely a linear function of v. The

variational form is thus

a (u, v) =

[∫ xR

xL

u′v′ + a (x) uv dx

]
− Cu (xR) v (xR) ,

F (v) =

∫ xR

xL

fv dx− u′Lv (xL) .

65

12.2. INHOMOGENEOUS DIRICHLET BC, ETC.Feb 22: Lecture 12. Numerical PDE (Part IV)

66

Feb 27: Lecture 13

Numerical Partial Differential

Equations (Part V: Inhomogeneous

BC and Higher Order Problems)

13.1 Inhomogeneous BC (continued)

Let us continue the discussion on inhomogeneous Dirichlet BC, say u (xL) = uL 6= 0. If we adopt

P1 elements, we can pose the numerical trial functions as

uh = uLϕ0 +

J∑

j=1

αjϕj

so that the left boundary is naturally uL.

For inhomogeneous Neumann BC, e.g. u′ (xL) = 0 and u′ (xR) = 2, we shall take this into

account when deriving the weak form. Notice that

∫ xR

xL

[−u′′ + a (x) u] v dx =

∫ xR

xL

[u′v′ + a (x)uv] dx− [u′v]
xR

xL

=

∫ xR

xL

[u′v′ + a (x)uv] dx− 2v (xR) ,

thus the extra 2v (xR) will be placed on the right hand side with the linear functional
∫ xR

xL
fv dx.

67

13.2. HIGHER ORDER PROBLEMS Feb 27: Lecture 13. Numerical PDE (Part V)

However, one needs to show that the combined functional is bounded, i.e.

|2v (xR)| ≤ C ‖v‖H1 . (13.1.1)

Recall that the H1-norm is a combination of L2-norm and the L2-norm applied on the derivative.

This is a particular example of the so-called “Trace Theorem” that is derived from theories involving

Sobolev spaces; nevertheless, we shall point out that Eqn. 13.1.1 is not true if the H1-norm is

replaced by either building component (‖v‖L2 or ‖∇v‖L2). Here, we provide a quick proof using

calculus.

Proposition 13.1.1. For u ∈ H1 ((xL, xR)), there exists a constant C > 0 s.t. |u (xR)| ≤ C ‖u‖H1 .

Proof. Let us consider a point x ∈ (xL, xR). By Newton-Leibniz theorem,

|u (xR)| ≤ |u (x)|+
∣∣∣∣
∫ xR

x

u′ dx

∣∣∣∣ .

Recall that by Cauchy’s inequality,

∣∣∣∣
∫ xR

x

u′ · 1 dx
∣∣∣∣ ≤

√∫ xR

x

|u′|2 dx
√∫ xR

x

12 dx ≤ ‖u′‖L2

√
xR − xL.

Thus,

(xR − xL) |u (xR)| ≤
∫ xR

xL

|u (x)| dx+

∫ xR

xL

∣∣∣∣
∫ xR

x

u′ dx

∣∣∣∣ dx

≤
√∫ xR

xL

|u (x)|2 dx√xR − xL + (xR − xL) ‖u′‖L2

√
xR − xL

≤ C (‖u‖L2 + ‖u′‖L2) ≤ 2C ‖u‖H1 .

13.2 Higher order problems

The aforementioned methodology also applies to problems involving higher order derivatives. Let

us consider the following model problem

u(4) − k2u′′ = f (x) xL < x < xR,

u = u′ = 0 x = xL or xR.

68

Feb 27: Lecture 13. Numerical PDE (Part V) 13.2. HIGHER ORDER PROBLEMS

To derive the weak formulation, let us pick a proper test function v and apply integration by parts:

∫ xR

xL

u(4)v dx = [u′′′v]
xR

xL
−
∫ xR

xL

u′′′v′ dx

= [u′′′v]
xR

xL
− [u′′v′]

xR

xL
+

∫ xR

xL

u′′v′′ dx,

∫ xR

xL

−k2u′′v dx = −
[
k2u′v

]xR

xL
+

∫ xR

xL

k2u′v′ dx.

To make the boundary term vanish, we can require v to satisfy the same BC as the solution u,

leading to the weak form

find u ∈ H2
0 s.t. a (u, v) = F (v) ∀v ∈ H2

0 (V) (13.2.1)

where

a (u, v) :=

∫ xR

xL

(
u′′v′′ + k2u′v′

)
dx, F (v) :=

∫ xR

xL

fv dx.

This system is suitable for modeling clamped elastic rod which is fixed at both ends as well as the

boundary angles; the source term f can be interpreted as an external force.

Let us consider the basis function in the corresponding FEM problem to Eqn. 13.2.1. The

regularity requirement is that ϕj ∈ H2
0 , so the hat functions no longer works. Also, we need the

basis functions to express the value of derivatives at the nodes freely. Cubic functions are a suitable

candidate towards this goal. We introduce ϕj and ψj s.t.

ϕj (xi) = δji,ϕ
′
j (xi) = 0;

ψj (xi) = 0,ψ′
j (xi) = δji.

Then, the solution can be written as the combination uh =
∑
αjϕj +

∑
βiψi.

ϕj

xj−1 xj+1xj

(a)

ψj

xj−1 xj+1xj

(b)

Figure 13.2.1

Remark. Notice that cubic functions are required to construct basis for weak formulation that

involves second order derivatives. This is usually quite expensive after being generalized to high

dimensions, so one shall avoid using higher order derivatives when modeling problems with large

dimensions.

69

13.3. NON-LINEAR PROBLEMS Feb 27: Lecture 13. Numerical PDE (Part V)

Remark. However, higher order basis functions can still be useful, even in weak formulation that

only involves u′v′ terms. This is due to the fact that they have better approximation properties,

thus leading to more accurate result and faster convergence. For example, we can construct P2

elements by using local quadratic functions.

13.3 Non-linear problems

For non-linear problems, we can still apply the Galerkin method, at least formally. For example,

when the source term depends on u and u′ in an arbitrary manner:

−u′′ = f (u′, u, x) , u (xL) = 0, u (xR) = 0.

We pick the same basis function and trial space u =
∑J

j=1 αjϕj that leads to a system of J

non-linear equations

J∑

j=1

αj

∫
ϕ′
jϕ

′
k dx−

∫
f




J∑

j=1

αjϕ
′
j ,

J∑

j=1

αjϕj , x


ϕk = 0. (13.3.1)

We shall point out that there is no universal established theory for general non-linear f and the

well-posedness results are studied for each particular case.

Solving Eqn. 13.3.1 is not an easy job either. Recall that the Gaussian elimination can be

deployed for linear problems and Cholesky for symmetric linear problems. For non-linear systems,

the Newton method or linearized fixed point iteration is often used.

70

Mar 1: Lecture 14

Numerical Partial Differential

Equations (Part VI: FEM for PDEs,

Poisson Equation)

14.1 Introduction to PDEs

Example 14.1.1. We study the following model problem (often known as “Poisson equation”)

−∆u = f (x) x ∈ Ω ⊆ Rd, (14.1.1)

u (x) = 0 x ∈ ∂Ω.

Remark 14.1.1. In general, we can classify common PDEs depending on the highest order of the

derivative, being linear or non-linear, or the characteristic of the solution. For example, let us

consider the following second order equation

auxx + buxy + cuyy + dux + euy + fu = g (x, y) .

We can put this problem into three different groups depending on the determinant ∆ = b2 − 4ac:

• elliptic (∆ < 0): standard form is −∆u = g.

• parabolic (∆ = 0): standard form is
(
∂t − ∂2x

)
u = g, or the generalization could be ∂t =

A∂xxu for σ (A) > 0.

• hyperbolic (∆ > 0): standard form is
(
∂2t − ∂2x

)
u = g.

71

14.2. DERIVATION OF THE WEAK FORM Mar 1: Lecture 14. Numerical PDE (Part VI)

Example 14.1.2. The coupled system ut = vx and vt = ux can be written as

(
u

v

)

t

=

(
0 1

1 0

)(
u

v

)

x

or equivalently the vector form Ut = AUx where U =

(
u

v

)
and A =

(
0 1

1 0

)
. Notice that the

eigenvalues to A are 1 and −1, thus A is diagonalizable. This is also the usual condition that leads

to well-posedness.

Similarly to 2-point BVP, extra conditions are often needed for well-posedness. For elliptic problem,

the BCs are posed on ∂Ω, e.g. zero Dirichlet condition u (x) = 0 for all x ∈ ∂Ω. For parabolic and

hyperbolic problems, the BCs are usually on part of ∂Ω since Ω is often the cylinder product of space

domain Ωspace and time domain [0, T]. Sometimes, we also call ∂Ωspace × [0, T] as the “boundary

condition” (without raising ambiguity), e.g. Dirichlet condition for absorbing or constant thermal

source, or Neumann condition for reflecting phenomenons; we also pose “initial conditions” on

Ωspace × {0} to inject information at the time of beginning.

14.2 Derivation of the weak form

Let us derive the weak form to Eqn. 14.1.1. We pick a proper test function v which is multiplied

to the differential equation followed by integration on Ω, leading to

∫

Ω

(−∆u) v dx =

∫

Ω

fv dx. (14.2.1)

We wish to apply the integral by parts formula as in the 1d case; it is possible to treat the LHS as

a nested integral and apply IBP on each variable if Ω is a rectangular domain, but there is a way

to handle more general scenarios. To this end, recall the Green’s formula

∫

Ω

(−∆u) v dx =

∫

∂Ω

(−∂nu) v d s+
∫

Ω

(∇u) · (∇v) dx (14.2.2)

where d s stands for the surface infinitesimal element and n is the normal direction that points

outward. If we pick v that vanishes on the boundary as u does, a combination of Eqn. 14.2.1 and

14.2.2 leads to

a (u, v) = F (v) (V)

where

a (u, v) :=

∫

Ω

(∇u) · (∇v) dx, F (v) :=

∫

Ω

fv dx.

72

Mar 1: Lecture 14. Numerical PDE (Part VI)14.3. DISCRETIZATION IN MULTI-DIMENSIONS

Let us examine the space of test functions v. Mimicking the definition in the 1d case, we should

define the norm in terms of v and ∇v, i.e.

H1
0 (Ω) :=

{
v :

∫

Ω

(vx)
2
+ (vy)

2
+ v2 dxd y <∞, v (x, y) = 0 ∀ (x, y) ∈ ∂Ω

}
.

Under the similar assumptions (a being a bounded, symmetric and coercive bilinear form, F being

bounded), we can derive the equivalent minimization form and the discretized problem. These

assumptions will be addressed later.

14.3 Discretization in multi-dimensions

We wish to generalize the P1-elements where u ∈ P1 is a piece-wise linear function that is defined

by values on a given set of points. In the case of two dimensions, a linear function that supports

on a triangle can be determined by the values at the three vertices, or equivalently in the form

aix+ biy + ci where i indexes the triangle element. A prerequisite to this approach is to compute

a triangulation of Ω, namely to partition Ω into a set of triangles properly. Then, we seek for basis

functions {ϕj (x, y)} with a small support that vanishes at all nodes but (xj , yj).

Thus, we define the finite element function space as

Vh :=





J∑

j=1

αjϕj



 (14.3.1)

and the corresponding weak form of the finite element variational form

find uh ∈ Vh ⊂ H1
0 s.t. a (uh, vh) = F (vh) ∀vh ∈ Vh (Vh) .

By bi-linearity of a, (Vh) is also equivalent to

find {αj} s.t.
J∑

j=1

αja (ϕj , ϕk) = F (ϕk) ∀k.

We quickly verify that Vh ⊂ H1
0 as is defined in Eqn. 14.3.1. Since ϕj is an affine function, it is

naturally in L2; the gradient ∇ϕj is (piece-wise) constant, thus also in L2.1

The evaluation of a (ϕj , ϕk) is typically done separately on each triangular element. In this

example, this term vanishes if node j and node k are not connected by a common edge, leading

to a sparse structure. We shall point out that the evaluation of
∫
Ω (∇ϕj) · (∇ϕk) dx involves

1In fact, we should also make sure that ∇
(∑J

j=1 αjϕj

)
does not introduce delta functions; this can be checked

by arguing that ϕj is a continuous function.

73

14.3. DISCRETIZATION IN MULTI-DIMENSIONSMar 1: Lecture 14. Numerical PDE (Part VI)

Figure 14.3.1: Shape of ϕj in 2 and 1 dimensional cases. From “Numerical Analysis” page 354,
Figure 8.7 right.

some numerical quadratures in general (although it reads integrating a constant in this particular

example); it is impractical to develop such quadrature for every triangular element, so it is preferred

to map the element to a standard form and develop numerical integration methods there, e.g. the

Gaussian quadrature.

74

Mar 1: Lecture 14. Numerical PDE (Part VI)14.3. DISCRETIZATION IN MULTI-DIMENSIONS

Figure 14.3.2: From “Numerical Analysis”, page 353.

75

14.3. DISCRETIZATION IN MULTI-DIMENSIONSMar 1: Lecture 14. Numerical PDE (Part VI)

76

Mar 6: Lecture 15

Numerical Partial Differential

Equations (Part VII: Practical

Concerns for FEM)

15.1 Meshes

Recall the general outline of the FEM approach: for the model problem

−∆u = f (x) x ∈ Ω,

u = 0 x ∈ ∂Ω,

we derive the weak form a (u, v) = F (v). To solve it numerically, we pick a set of basis functions

{ϕj} ⊂ H1
0 (Ω) which spans the space Vh of trial (and also test) functions, i.e. we seek for solutions

in the form u =
∑

j αjϕj and test the variational form for each ϕk. This leads to a system of linear

equations
∑

j αja (ϕj , ϕk) = F (ϕk).

The set of basis functions is relied on the mesh that lies on the underlying domain. Triangu-

lation is often needed to generate such mesh, although sometimes rectangular partitions are also

viable. The topology of the mesh is defined by the matching nodes and edges that are shared

between elements and we usually require admissible partitions (see Fig. 15.1.1). The quality of a

triangulation is measured by how well functions can be approximated by the numerical subspace

which is often determined by two major factors:

1. Geometry of each element: “regular” triangle elements are “better” than “irregular” ones that

look too flat or spread out; this can be measured by the ratio between the diameter and the

77

15.2. ASSEMBLY OF LINEAR SYSTEM Mar 6: Lecture 15. Numerical PDE (Part VII)

radius of the inscribed circle;

2. Density of the mesh: high density, or equivalently smaller element diameter, is often needed

for the area where ∇2u is “larger” to lower the approximation error.

Figure 15.1.1: From “Numerical Analysis”, page 353.

The meshing algorithm is often a challenging problem by itself since there is no universal ap-

proach. Practical implementations usually depend on different types of heuristics and/or CAD-files

that defines the surface of the domain. A general guideline is to create new partitions based on the

remaining volume of the domain/element. This often leads to a recursive partitioning algorithm

that starts from a regular mesh and finer adjustments. There are more constraints to consider,

however, for example boundary matching and discontinuity handling.

15.2 Assembly of linear system

The linear system, derived from testing the variational form, can be written as




. . .

a (ϕj , ϕk)

. . .







...

αk

...


 =




...

f (ϕj)
...




where the first term on the left is referred to as the stiffness matrix. Let us examine the entries

more closely

a (ϕj , ϕk) =

∫

Ω

∇ϕj · ∇ϕk dx =
∑

i∈I

∫

Ki

∇ϕj · ∇ϕk dx

78

Mar 6: Lecture 15. Numerical PDE (Part VII) 15.2. ASSEMBLY OF LINEAR SYSTEM

where i is the index of each triangle element Ki. A data structure is thus required to hold the

structure between nodes and elements and edges. We demonstrate this by using an array.

1

2 3

4

5

6

K1

K2

K3

(a)

element

K1 1 2 3
K2 2 3 4
. . .

Figure 15.2.1

To improve performance, we can calculate the bilinear form for eachKi separately and memorize

the contribution to each node. For example, the K1 element has three nodes: 1, 2, and 3. Other

hat functions will not be involved with this business because they are not supported on K1. Then,

we can calculate the local stiffness matrix




ã (ϕ1, ϕ1) ã (ϕ1, ϕ2) ã (ϕ1, ϕ3)

ã (ϕ2, ϕ2) ã (ϕ2, ϕ3)

∗ ã (ϕ3, ϕ3)


 .

The asterisk terms are not needed for symmetric cases, but extra calculation is needed if there is a

first order term in the PDE problem.

The evaluation of the local bilinear form ã (ϕj , ϕk) depends on numerical quadratures. To reduce

the complexity and avoid proposing a different scheme for each element, it is often preferred to map

elements to a standard element (see Fig. 15.1.1). Let us introduce mapping F that maps the

standard/reference element K̂ to K. Let us put a hat on the coordinate to denote the coordinate

in the reference space. By the formula of changing coordinates,

∫

K

g (x) dx =

∫

K̂

ĝ (x) |detJF | d x̂

where we put ĝ (x) := g (F (x̂))

JF :=

(
∂F1

∂x̂1

∂F1

∂x̂2

∂F2

∂x̂1

∂F2

∂x̂2

)
.

Now, we move to the reference space and study the Gaussian quadrature formulae. The 1-node

version reads
1

2
ĝ

(
1

3
,
1

3

)

79

15.2. ASSEMBLY OF LINEAR SYSTEM Mar 6: Lecture 15. Numerical PDE (Part VII)

which is accurate for linear ĝ. The 3-node version reads

1

6

[
ĝ

(
1

6
,
1

6

)
+ ĝ

(
1

6
,
2

3

)
+ ĝ

(
2

3
,
1

6

)]

which is accurate for quadratic ĝ.

Remark 15.2.1. It is also possible to propose non-linear mapping F to handle curved boundaries in

Ki. Since linear functions are ruled out from the picture, F is at least quadratic; in this case, we can

pick the basis functions from P2 elements (a.k.a. Lagrange form). Recall that P1 elements can be

viewed as elevating the element only at the specific node. For P2 elements, the basis functions have

six nodes to interpolate. Compared to P1 elements, they look more “concentrated” at the nodes

and “inflated” at the midpoint of edges. It is also easy to verify that P2 elements are continuous by

the Lagrange interpolation formula.

Let us compare difference ways of constructing elements: for 1d problems,

element space illustration d.o.f. regularity

P1 2 C0

P2 3 C0

P3 4 C0

P̃3 4 C1

For the 2d case,

element space illustration d.o.f. regularity

P1 3 C0

P2 6 C0

P5 (Argyris element) 211 C1

For the 3d case, we omit the C1 element since it is too complicated.

1All 0th, 1st, and 2nd derivatives at each node are needed, along with the normal derivative at the midpoint,

leading to (1 + 2 + 3)× 3 + 3 = 21 degrees of freedom

80

Mar 6: Lecture 15. Numerical PDE (Part VII) 15.2. ASSEMBLY OF LINEAR SYSTEM

element space illustration d.o.f. regularity

P1 4 C0

P2 10 C0

Rectangular elements are also possible if the mesh does not need to come from triangulation,

allowing more flexibility.

element space illustration d.o.f. regularity

Q1 (bilinear) 4 C0

Q2 9 C0

81

15.2. ASSEMBLY OF LINEAR SYSTEM Mar 6: Lecture 15. Numerical PDE (Part VII)

82

Mar 8: Lecture 16

Numerical Partial Differential

Equations (Part VIII: Remarks on

FEM and Parabolic Problems)

16.1 Computational issues of FEM

In the previous lectures, we have covered how to assemble the linear system by testing the variational

form. It remains a problem how these systems are solved efficiently.

• Direct solvers: applied for 1D, most 2D, and sometimes 3D problems. This class of methods

includes Gaussian elimination, Cholesky decomposition.

• Iterative solvers: Krylov subspace methods (e.g. Conjugate gradient for symmetric problems,

GMRES otherwise); used for some 2D and most 3D problems.

• Multigrid solvers: geometric multigrid solvers utilize the structure of the underlying mesh to

efficiently propagate the residual error; there is also an algebraic version that decomposes the

solution space.

There are also other techniques if we have access to special properties of the coefficient matrix, e.g.

sparsity. For example, for the Poisson problem, the matrix is tridiagonal in 1D and block-tridiagonal

in 2D; it is banded in general.

For direct solvers, the cost to solve a banded system of size n and band width m is usually

O
(
nm2

)
, so it is crucial to keep m small. This is not an issue for 1D problems since m does not

scale with the discretization, but it does scale for higher dimension problems. The root cause of

83

16.2. PARABOLIC PROBLEMS Mar 8: Lecture 16. Numerical PDE (Part VIII)

scaling is that the nodes are more “closely connected” as the dimension increases. To circumvent

the fill-in effect, it is sometimes necessary to reorder the nodes so that the connection is structured

in a hierarchical fashion.

Compared to these direct solvers, the iterative solvers are not affected by the bandwidth since

the matrix-vector product scales with the size n only. However, the trade-off is that one needs to

apply the outer iteration before the solver converges.

Similarly to non-linear systems, Newton or quasi-Newton solvers are also possible, but we post-

pone this to the future lectures.

It is also possible to generalize the aforementioned methods, say to time dependent systems

(parabolic, hyperbolic PDEs) or initial value problems. Mixed methods are also developed for

problems with a special structure. For example, the Stokes equation assumes that the flow is

incompressible, i.e. the solution is divergence-free. This requires a careful design on the finite

element space to preserve the desired properties.

16.2 Parabolic problems

Let us consider the model problem that describes how heat propagates in a medium,

ut = ∆u x ∈ Ω, t > t0

u (x, t) = 0 x ∈ ∂Ω, t > t0

u (x, t0) = u0 (x) x ∈ Ω

This equation characterizes the inner temperature where the material is attached to a thermal

source with constant temperature on both ends. Other boundary conditions are also possible.

The Neumann condition ∂nu = 0 indicates that the heat flux can not escape from the (insulated)

boundaries, corresponding to an adiabatic environment.

The weak form can be derived by testing against different test functions. We can pick test

functions that is supported on the time and space domain at the same time (space-time FEM), but

it is only applied in a few special cases. The “standard” approach is to use only space test functions.

Similarly to what we did in the elliptic case,

∫

Ω

ut (x, t) v (x) dx = −
∫

Ω

∇xu (x, t)∇xv (x) dx,

u (x, t0) = u0 (x) .

If we assume that the basis function evolve independently to each other and put u (x) ≈∑j αj (t)ϕj (x),

84

Mar 8: Lecture 16. Numerical PDE (Part VIII) 16.2. PARABOLIC PROBLEMS

it leads to ∑

j

α′
j (t)

∫

Ω

ϕj (x)ϕk (x) dx

︸ ︷︷ ︸
=:B

= −
∑

j

αj

∫

Ω

∇xϕj (x)∇xϕj (x) dx

︸ ︷︷ ︸
=:A

which can be written as a first order form

Bα′ = −Aα, t > t0. (16.2.1)

The initial condition is determined by finding the best αj (t0) such that the finite element space

best approximates the given initial condition.

Remark 16.2.1. We shall point out that there is an implicit time marching even for formally explicit

time method (such as Euler). This is due to the fact that it is not practical to invert the sparse

matrix B in Eqn. 16.2.1 since B−1 may not be sparse. Thus, implicit methods are often applied to

parabolic problems for this reason.

85

16.2. PARABOLIC PROBLEMS Mar 8: Lecture 16. Numerical PDE (Part VIII)

86

Mar 20: Lecture 17

Numerical Partial Differential

Equations (Part IX: Time Dependent

Problems and Mixed Methods)

17.1 Time dependent problems

Let us continue on the heat equation where we seek solutions to

ut = ∆u x ∈ Ω, t > t0

u (x, t) = 0 x ∈ ∂Ω, t > t0

u (x, t0) = u0 (x) x ∈ Ω.

As we have mentioned earlier, it is possible to apply full FEM to this problem which means to

pick test functions that depends on t and x. However, the more practical choice is to leave the

time derivative to be a strong derivative and apply FEM to space variables only. This leads to the

so-called semi-weak form: find u ∈ H1
0 (Ω)× C1 (t0, T)

1 s.t.

∫

Ω

utv dx+

∫

Ω

∇u · ∇v dx = 0

u (x, t0) = u0 (x)

for all v ∈ H1
0 (Ω).

1A better notation could be C1
(
(t0, T) ;H1

0 (Ω)
)

87

17.1. TIME DEPENDENT PROBLEMS Mar 20: Lecture 17. Numerical PDE (Part IX)

17.1.1 Space first, then time

Discretization can be done in two equivalent fashions. The first approach handles space variable

first, then time variable. We put uh as a superposition of a given set of basis functions ϕj :

uh (x, t) =

J∑

j=1

αj (t)ϕj (x)

where the discretized test function vh may take ϕk, k = 1, . . . , J . This leads to the following system

J∑

j=1

α̇j (t)

∫

Ω

ϕjϕk dx+
J∑

j=1

αj (t)

∫

Ω

∇ϕj · ∇ϕk dx = 0, j = 1, . . . , J. (17.1.1)

If we put −→α = (α1, . . . , αJ)
T , Bkj =

∫
Ω
ϕjϕk dx and Akj =

∫
Ω
∇ϕj · ∇ϕk dx, Eqn. 17.1.1 reduces

to

B−→α ′ +A−→α = 0. (17.1.2)

The initial condition −→α (t0) is determined by approximating the given function u0

u0 (x) ≈
J∑

j=1

αj (t0)ϕj (x) .

We shall point out that applying FDM to Eqn. 17.1.2 leads to an implicit scheme in general,

regardless of the type of the FDM chosen.

17.1.2 Time first, then space

Another approach is to discretize time first and apply Galerkin formulation later. The idea is to

work directly on the slice at each time-step tn. Let us put un (x) :≈ u (x, tn). A popular choice is

to apply trapezoidal rule and the corresponding PDE scheme is known as Crank-Nicolson method.

To be specific, the time derivative ut is approximated by 1
∆t (un+1 − un) while the gradient term

∇u is replaced by 1
2 (∇un+1 +∇un), leading to

∫

Ω

1

∆t
(un+1 − un) v dx+

∫

Ω

1

2
(∇un+1 +∇un) · ∇v dx = 0. (17.1.3)

Once un is known or solved, we can solve un+1 from Eqn. 17.1.3 as an elliptic problem.

Eqn. 17.1.3 is also useful for stability analysis. The usual trick is to pick v as the combination

88

Mar 20: Lecture 17. Numerical PDE (Part IX) 17.2. MIXED METHODS

of {un}, which reads 1
2 (un+1 + un) in this case. This substitution yields

∫

Ω

1

2∆t

(
u2n+1 − u2n

)
dx+

∫

Ω

1

4
|(∇un+1 +∇un)|2 dx = 0.

Notice that the second integral is always non-negative, so the first integral is never positive, leading

to

‖un+1‖2L2
=

∫

Ω

u2n+1 dx ≤
∫

Ω

u2n dx = ‖un‖2L2
,

implying that the numerical L2 norm is non-increasing unconditionally. This can be combined with

the FEM-elliptic estimate for controlling error in space discretization, leading to the overall error

estimate.

17.2 Mixed methods

The general underlying idea is to adopt different spaces and basis functions for different components

in the PDE. To illustrate the point, we study the Stokes equation that describes incompressible

slow stationary flow, which can be viewed as a particular case of Naive-Stokes equation with ∂t and

(u · ∇)u dropped. The system reads

−µ∆u+∇p = f x ∈ Ω,

∇ · u = 0 x ∈ Ω,

u = 0 x ∈ ∂Ω

where u =
(
u(1) (x1, x2) , u

(2) (x1, x2)
)

stands for velocity and p (x1, x2) is a scalar field that repre-

sents pressure. Notice that we require the divergence-free condition for incompressibility; a direct

approach is to build this into the basis function by explicitly constructing the function space wisely.

This can be done in some special cases where we have some information of the solution, say singu-

larity etc. To derive the weak form in this spirit, we use two space-test functions v(1), v(2), leading

to

µ

∫

Ω

∇u(k) · ∇v(k) dx+

∫

Ω

(∇p)(k) v(k) dx =

∫

Ω

f (k)v(k) dx, k = 1, 2.

We add the two equations (corresponding to k = 1, 2) and apply IBP to the
∫
Ω
(∇p)(k) v(k) dx term

µ

∫

Ω

[
∇u(1) · ∇v(1) +∇u(2) · ∇v(2)

]
dx−

∫

Ω

p (∇ · v) dx =

∫

Ω

f · v dx.

89

17.2. MIXED METHODS Mar 20: Lecture 17. Numerical PDE (Part IX)

If we coerce v also a divergence-free function, then the second integral vanishes, leading to a standard

elliptic problem. To make this rigorous, we introduce the space that holds u and v:

H̃ :=
{(
v(1), v(2)

)
: v(k) ∈ H1

0 (Ω) ,∇ · v(k) = 0, k = 1, 2
}
.

The variational form reads

find u ∈ H̃ s.t. µ

∫

Ω

∇u · ∇v dx =

∫

Ω

f · v dx ∀v ∈ H̃.

We point out that it is not numerically practical since elements in H̃ are not easy to obtain due

to the divergence-free condition, even in the simplest 2D case. This motivates the mixed methods.

We couple the variational form

µ

∫

Ω

∇u · ∇v dx−
∫

Ω

p (∇ · v) dx =

∫

Ω

f · v dx (17.2.1)

with ∫

Ω

(∇ · u) q dx = 0 (17.2.2)

to compensate the lack of the divergence-free requirement. Thus, the variational problem is to find

u ∈ H1
0 and p ∈ L2 s.t. Eqn. 17.2.1 and 17.2.2 hold for any v ∈ H1

0 , q ∈ L2.

The standard theory, however, does not apply directly due to the lack of coercivity of the

variational form which is also replaced by inf-sup condition

inf
qh∈Qh

[
sup

vh∈Vh

∫
qh (∇ · vh) dx
‖vh‖H1 ‖qh‖L2

]
≥ C > 0.

This also asks for a stronger regularity of the discretized function space since the common choice

(uh, vh ∈ P1, p, q ∈ P0) does not converge. The lowest common requirement is to use uh, vh ∈ Q2

and p, q ∈ Q0.

Another example that demonstrates the mixed method is to put the Poisson equation

−∆u = f x ∈ Ω

u = 0 x ∈ ∂Ω

90

Mar 20: Lecture 17. Numerical PDE (Part IX) 17.2. MIXED METHODS

as a first-order coupled system

σ = ∇u x ∈ Ω

−∇ · σ = f x ∈ Ω

u = 0 x ∈ ∂Ω.

We will continue on this case in the next lecture.

91

17.2. MIXED METHODS Mar 20: Lecture 17. Numerical PDE (Part IX)

92

Mar 22: Lecture 18

Numerical Partial Differential

Equations (Part X: Mixed Methods

and FDM)

18.1 Mixed methods (cont’d)

Let us study another application of the mixed methods. The Poisson equation −∆u = f can be

put equivalently as −∇ · σ = f if we identify σ = ∇u. The weak form reads

∫

Ω

σ · τ + u (∇ · τ) dx = 0

−
∫

Ω

(∇ · σ) v dx =

∫

Ω

fv dx

for all proper test functions τ, v. One motivation to use this alternative form is that we can lower

the regularity requirement on u (notice that we take no derivative on u in this weak form). An

appropriate choice of the function spaces is u, v ∈ L2 (Ω) and

σ, τ ∈ H (div) :=
{
ϕ ∈

[
L2 (Ω)

]d
: ‖divϕ‖L2 <∞

}
.

There are some caveats to this formulation: there is no standard coercivity (replaced by inf-sup

conditions) and the numerical discretization space Vh needs to satisfy more conditions than simply

being a subspace. One numerical realization of the aforementioned function space is to pick u, v ∈ P0

(piece-wise constant functions) and σ, τ as the so-called Raviart-Thomas elements (a.k.a. edge

elements); these elements are defined along an edge that involves a pair of triangular elements

93

18.2. FDM FOR PDES Mar 22: Lecture 18. Numerical PDE (Part X)

(where the configuration is shown in Fig. 18.1.1)

ϕ (x) :=




C (x− p+) x ∈ T+
C (x− p−) x ∈ T−

.

Figure 18.1.1: Raviart-Thomas basis functions, from wikipedia.

18.2 FDM for PDEs

As we have done to the ODE systems, we can also approximate the PDE solutions by the node

values and use finite difference to replace the differentials in the equation. We point out that this

is similar to Lagrange elements in the FEM framework since point-wise evaluations of solutions are

focused. For example, if we extract the values u (xi, yj) on a rectangular mesh, the finite difference

reads

−∆u ≈ −
(
ui+1,j − 2ui,j + ui−1,j

∆x2
+
ui,j+1 − 2ui,j + ui,j−1

∆y2

)

which is often known as the five-point stencil. The local truncation error can be derived via

Taylor’s expansion (similarly to the ODE case) and possesses the form max
∣∣u(4)

∣∣ (∆x2 +∆y2
)
.

The discretized linear system also exhibits a fractional diagonal structure, similar to one from

FEM. In fact, without loss of generality we assume ∆x = ∆y = h, then the discretized equation

94

Mar 22: Lecture 18. Numerical PDE (Part X) 18.2. FDM FOR PDES

reads

4ui,j − (ui+1,j + ui−1,j + ui,j+1 + ui,j−1) = h2fi,j .

ui−1,j ui,j ui+1,j

ui,j−1

ui,j+1

Figure 18.2.1: The five point stencil.

To translate this system into the matrix-vector form, we adopt the row-wise ordering, i.e.

U := (u1,1, u1,2, . . . , u2,1, u2,2, . . . , un,1, . . . , un,n)
T
.

Then, the matrix coefficient is filled in the following manner

A =




4 −1 . . . −1 . . .

−1 4 −1 . . . −1
−1 4 . . . −1

...
...

...
. . .

−1 . . .

−1 . . .

−1 . . .

...
. . .




.

Generally speaking, FDM is easier to implement for domains of regular geometries and free from

the need to calculate local integrals. Nevertheless, there are some drawbacks to this method.

• FDM does not work well with curved boundaries since the boundary might not align with

the assumed grid well. There are several ways to circumvent this issue: one is to extrapolate

the grid value so that it extends to the boundary, but this can lead to oscillatory behaviors.

Another approach is to alter the curved boundary into the artificial, zig-zag shape one and

develop approximation theory there.

• FDM also suffers from Neumann BC since the normal direction might not align with the

mesh, let alone the discrete finite normal difference might lead to numerical difficulties.

One general strategy to circumvent the domain issues is to transform the domain to a rectangular

95

18.2. FDM FOR PDES Mar 22: Lecture 18. Numerical PDE (Part X)

Figure 18.2.2: An illustration of one irregular boundary handling scheme. From “Numerical solution
of the 2D Poisson equation on an irregular domain with Robin boundary conditions”, 08’ Z. Jomaa,
C. Macaskill.

shape before applying FDM.

18.2.1 Analysis to FDM

One strategy to derive error estimate is to start with the discretized system AU = h2f and examine

the spectrum of A (non-singularity, eigen gap...); this is valid but not very practical. Another

approach is the so-called energy method which mimics the FEM analysis. To illustrate the point,

let us examine the 1-D system −uxx + u = f with u (xL) = u (xR) = 0. The three-point stencil

leads to

−
(
ui+1 − 2ui + ui−1

h2

)
+ ui = fi. (18.2.1)

Let us define some discrete operators

• Translation Tui = ui+1,

• Forward difference ∆+ := T − I, i.e. ∆+ui = ui+1 − ui, and

• Backward difference ∆− := I − T−1, i.e. ∆−ui = ui − ui−1.

With those notations, we can put Eqn. 18.2.1 as

− (∆+∆−ui) + h2ui = h2fi. (18.2.2)

96

Mar 22: Lecture 18. Numerical PDE (Part X) 18.2. FDM FOR PDES

Let us multiply Eqn. 18.2.2 by ui and sum over all interior nodes:

J−1∑

i=1

[
− (∆+∆−ui) + h2ui

]
ui = h2

J−1∑

i=1

fiui.

We mimic the “integration by parts” to achieve “summation by parts”:

J−1∑

i=0

(∆+ai) bi =

J−1∑

i=0

(ai+1 − ai) bi =
J∑

i=1

aibi−1 −
J−1∑

i=0

aibi.

=

J∑

i=1

ai (bi−1 − bi) + aJbJ − a0b0

= ab|J0 −
J∑

i=1

ai (∆−bi) .

Now, if we identify a = ∆−u and b = u, we have

J∑

i=1

(∆−ui)
2 + h2

J−1∑

i=1

u2i = h2
J−1∑

i=1

fiui.

Although we use finite difference to approximate differentials, we are not aiming for a H1 error

estimate here, so we silently drop the first term and apply Cauchy’s inequality to the RHS, leading

to ∣∣∣∣∣
J−1∑

i=1

u2i

∣∣∣∣∣ ≤
∣∣∣∣∣
J−1∑

i=1

f2
i

∣∣∣∣∣ .

This can be abbreviated as ‖u‖L2(1,J−1) ≤ ‖f‖L2(1,J−1) if we put

‖u‖L2(1,J−1) :=

√√√√h
J−1∑

i=1

u2i .

97

18.2. FDM FOR PDES Mar 22: Lecture 18. Numerical PDE (Part X)

98

Mar 27: Lecture 19

Numerical Partial Differential

Equations (Part XI: FDM & Stability

Analysis)

19.1 FDM (cont’d)

Let us continue on FDM for PDE problems.

Example 19.1.1. Consider

−∆u+ u = f (x) x ∈ Ω,

u = 0 x ∈ ∂Ω

inside a rectangular domain Ω ⊂ R2 (where the general case will be addressed later).

In the spirit of finite difference, we use point-wise value Uj1,j2 to represent the function u (x)

and use divided difference ∆
(1,2)
± to approximate the true differential, i.e.

−
(
∆

(1)
+ ∆

(1)
−

(∆x1)
2 +

∆
(2)
+ ∆

(2)
−

(∆x2)
2

)
Uj + Uj = f (xj)

and Uj = 0 for index j that corresponds to boundary nodes. The use of ∆+∆− makes sure that

the discretized system is symmetric.

99

19.2. FDM FOR IVP Mar 27: Lecture 19. Numerical PDE (Part XI)

In the last lecture, we have shown the L2-stability in the 1D case

‖U‖2 ≤ ‖f‖2

by summation by parts; this is also true for higher dimensions where one needs to handle the

generalized summation by parts properly. We also point out that this stability result can be used

to show convergence by LTE analysis, similarly to the convergence proof for the ODE solver. In

fact, we can apply FDM to u (xj)− Uj , leading to

−
(
∆

(1)
+ ∆

(1)
−

(∆x1)
2 +

∆
(2)
+ ∆

(2)
−

(∆x2)
2

)
(u (xj)− Uj) + (u (xj)− Uj) = LTEj ,

thus

‖u (xj)− Uj‖2 ≤ ‖LTE‖2 = O
(
(∆x1)

2 + (∆x2)
2
)

where we recall that ‖U‖2 =
√
h2
∑

j U
2
j .

Compared to FEM, it is actually easier to formulate a FDM scheme and in fact more accurate

(due to strong conditions on f). However, it is much harder to generalize to arbitrary domain

for FDM, where FEM can work with any domain as long as the mesh is defined. There are a

few workarounds for arbitrary shapes to work with FDM. One may attempt to pick some random

points in the interior and interpolate the values locally to estimate the Laplacian ∆u, but there is

little theory for convergence for this approach. Alternatively, one can enforce zero values on the

nearest node points to the boundary and adopt a similar l2-stability analysis; this, however, leads

to a lower accuracy. The other approach is to extrapolate the values to the intersection of the

curved boundary with the mesh grids but this is also more tedious. Neumann BC is also much

more difficult to deal with.

19.2 FDM for IVP

Example 19.2.1. We recall the heat equation

ut = uxx t > t0, xL < x < xR,

u (xL, t) = u (xR, t) = 0 t > t0,

u (x, t0) = u0 (x) xL < x < xR.

Once again, we use point-wise value Un
j to approximate u (xj , tn) on a uniform mesh xj =

x0 + j∆x and tn = t0 + n∆t. There are various choices for the divided differences (as shown in

100

Mar 27: Lecture 19. Numerical PDE (Part XI) 19.3. STABILITY ANALYSIS

FDM and time-dependent FEM), and we adopt the simplest one for showcase

Un+1
j − Un

j

∆t
=
Un
j+1 − 2Un

j + Un
j−1

∆x2
(interior) (19.2.1)

Un
0 = Un

J = 0 (BC)

U0
j = u0 (xj) (IC)

We can call this a four-point stencil, compared to the standard five-point stencil in the elliptic

problems.

19.3 Techniques for analyzing convergence

The convergence, requiring vanishing LTE as ∆x,∆t→ 0, follows a similar analysis based on Taylor

expansion. For stability analysis, there are three techniques: direct norm estimate (that yields a

sufficient condition), comparison of dependent domain (that gives arise to a necessary condition),

and von Neumann analysis (that yields a sufficient and necessary condition).

19.3.1 Direct norm estimate

If we put α := ∆t
∆x2 , then Eqn. 19.2.1 reduces to

Un+1
j = αUn

j+1 + (1− 2α)Un
j + αUn

j−1.

Thus, the l∞-norm can be estimated via

∥∥Un+1
∥∥
∞

:= max
j

∣∣Un+1
j

∣∣ ≤ (2α+ |1− 2α|)max
j

∣∣Un
j

∣∣ = ‖Un‖∞ .

To ensure that the l∞-norm is non-exploding, α needs to be no larger than 1/2. The method of

induction implies that

‖Un‖∞ ≤
∥∥U0

∥∥
∞

= ‖u0‖L∞ ,

i.e. continuous dependence on initial data. Notice that this analysis produces a sufficient condition,

but it turns out to be a necessary condition as well from the von Neumann analysis.

For the l2-analysis, we combine the techniques in analyzing Crank-Nicolson for FEM and sum-

mation by parts. The C-N FDM scheme reads

Un+1
j − Un

j

∆t
=
Un
j+1 − 2Un

j + Un
j−1

2∆x2
+
Un+1
j+1 − 2Un+1

j + Un+1
j−1

2∆x2
,

101

19.3. STABILITY ANALYSIS Mar 27: Lecture 19. Numerical PDE (Part XI)

i.e.
Un+1
j − Un

j

∆t
=

1

2∆x2
∆+∆−

(
Un+1
j + Un

j

)
. (19.3.1)

Mimicking the L2-analysis in FEM, we multiply Eqn. 19.3.1 with Un+1
j +Un

j and apply summation

by parts, leading to

∥∥Un+1
∥∥2
2
− ‖Un‖22 = −α

2

∥∥∆−

(
Un+1
j + Un

j

)∥∥2
2
≤ 0.

Thus, the l2-norm ‖Un‖2 is non-increasing.

102

Mar 29: Lecture 20

Numerical Partial Differential

Equations (Part XII: Stability

Analysis)

20.1 Techniques for analyzing convergence (cont’d)

20.1.1 Direct norm estimate (cont’d)

Let us revisit the heat equation with a general conductivity coefficient and a heat source

ut = σ (x)∆u+ f (x, t) t > 0, xL < x < xR

0 = u (xL, t) = u (xR, t) t > 0

u0 (x) = u (x, t0) xL < x < xR.

We adopt a FDM discretization scheme

Un+1
j = αjU

n
j+1 + (1− 2αj)U

n
j + αjU

n
j−1 +∆t fn

j (20.1.1)

where αj := σ (xj)
∆t
∆x2 . The local stability result

∥∥Un+1
∥∥
∞
≤ ‖Un‖∞ +∆t ‖fn‖∞ (20.1.2)

103

20.1. STABILITY ANALYSIS Mar 29: Lecture 20. Numerical PDE (Part XII)

holds as long as maxj |αj | ≤ 1
2 , albeit α might vary along the mesh. Adding Eqn. 20.1.2 for

n = 1, . . . , N leads to ∥∥UN
∥∥
∞
≤ ‖u0‖∞ + T max

n
‖fn‖∞

for T := N∆t . This can be used to derive an error estimate for the scheme (Eqn. 20.1.1) since the

heat equation is posed in a linear form. Let

V n
j := u (xj , tn)− Un

j ,

then V n
j solves the following discrete system

V n+1
j = αjV

n
j+1 + (1− 2αj)V

n
j + αjV

n
j−1 +∆tLTEn

j

which leads to ∥∥V N
∥∥
∞
≤ T max

n
‖LTEn‖∞ = O

(
∆t+∆x2

)
.

A sufficient stability condition reads
σ∆t

∆x2
≤ 1

2

for σ := maxx σ (x).

20.1.2 Domain of dependence

The domain of dependence argument, on the other hand, derives a necessary condition ∆t/∆x→ 0.

The numerical dependence domain, if ∆t/∆x does not vanish in the limit, covers a finite range of

interval at the initial condition, violating the fact that the heat kernel has infinite support; this

naturally leads to the Fourier analysis.

20.1.3 von Neumann analysis

Recall the Fourier transform for Schwartz functions (extended isometrically to L2 (R))

û (ω) :=

∫ ∞

−∞

u (x) e−i·2πωx dx,

u (x) =

∫ ∞

−∞

û (ω) ei·2πωx dω.

The Fourier transform is useful since the differential operator is closely associated to a scalar function

in the frequency domain, i.e.

d̂

dx
u (x) = i · 2πωû (x). (20.1.3)

104

Mar 29: Lecture 20. Numerical PDE (Part XII) 20.1. STABILITY ANALYSIS

However, since we are dealing with a finite domain, it is sometimes more useful to consider another

version of Fourier transform1

Ûk :=
J−1∑

j=0

Uje
−i·2πkj/J ,

Uj :=
1

N

J−1∑

k=0

Ûke
i·2πkj/J .

Recall that we have introduced the translation operator TUj = Uj+1. The analogs to Eqn. 20.1.3

is given by

(
T̂ U
)
k
=

J−1∑

j=0

(TUj) e
−i·2πkj/J =

J−1∑

j=0

Uj+1e
−i·2πkj/J

=

J∑

j=1

Uje
−i·2πk(j−1)/J = ei·2πk/J Ûk.

Another handy tool is the so-called Parseval identity

‖u (x)‖L2(R) = ‖û (ω)‖L2(R)

and the corresponding discrete version2

‖U‖2 =
∥∥∥Û
∥∥∥
2
.

Back to the heat equations. To keep simplicity, let us assume that σ (x) ≡ σ being a constant

and f ≡ 0. We apply DFT to the discrete scheme

Un+1
j = αUn

j+1 + (1− 2α)Un
j + αUn

j−1

that yields

Ûn+1
k = αeiξk Ûn

k + (1− 2α) Ûn
k + αe−iξk Ûn

k (20.1.4)

where we put ξj := 2πk/J . Due to the Euler’s formula

eiξk + e−iξk

2
= cos ξk,

1the Fourier basis works with the periodic BC rather than the zero Dirichlet BC posed earlier (where one should
actually adopt the sine basis).

2there is sometimes a
√
N factor due to different definitions of DFT and 2-norms.

105

20.1. STABILITY ANALYSIS Mar 29: Lecture 20. Numerical PDE (Part XII)

Eqn. 20.1.4 is reduced to

Ûn+1 = (2α cos ξ + 1− 2α) Ûn.

Since the Parseval’s identity implies the equivalence between stability of Un and Ûn, we wish the

amplification factor

|2α cos ξk + 1− 2α| ≤ 1

for any k, leading to the sufficient and necessary condition α ≤ 1
2 . If this condition is violated, then

the amplification factor for k∗ = ⌊J/2⌋ is most likely larger than 1, leading to exploding Fourier

coefficients and highly oscillatory numerical solutions (recall that in DFT, k∗ corresponds to the

highest/finest frequency).

106

Apr 3: Lecture 21

Numerical Partial Differential

Equations (Part XIII: von Neumann

Analysis)

21.1 Example on transport equations

Now let us apply von Neumann analysis to hyperbolic equations.

Example 21.1.1. To pose a first order transport equation, we focus on

ut + aux = 0 xL < x < xR, t > t0

uperiodic BC

u (x, t0) = u0 (x) xL < x < xR.

21.1.1 A straight-forward but unstable attempt

A naive discretization scheme is to adopt forward Euler in time and central difference in space,

leading to
Un+1
j − Un

j

∆t
+

a

2∆x

(
Un
j+1 − Un

j−1

)
= 0. (21.1.1)

Let us apply DFT to Eqn. 21.1.1 and recall that translation operator is turned into scalar multi-

plication in Fourier domain:

Ûn+1 (ξ) =

(
1− a∆t

2∆x

(
eiξ − e−iξ

))
Ûn (ξ) .

107

21.1. EXAMPLE ON TRANSPORT EQUATIONSApr 3: Lecture 21. Numerical PDE (Part XIII)

The amplification factor

∣∣∣∣1−
a∆t

2∆x

(
eiξ − e−iξ

)∣∣∣∣ =
√

1 +

(
a∆t sin ξ

∆x

)2

> 1 (21.1.2)

for sin ξ 6= 0, thus this scheme is unconditionally unstable.

21.1.2 Lax-Friedrichs scheme

Eqn. 21.1.2 actually suggests a way to improve stability which is to reduce the real part of the

amplification factor. This leads to the Lax-Friedrichs scheme:

Un+1
j − Un

j+1+Un
j−1

2

∆t
+

a

2∆x

(
Un
j+1 − Un

j−1

)
= 0.

The local truncation error reads O
(
∆t+ ∆x2

∆t +∆x2
)
. A similar analysis derives the corresponding

factor ∣∣∣∣
1

2

(
eiξ + e−iξ

)
− a∆t

2∆x

(
eiξ − e−iξ

)∣∣∣∣ =
√
cos2 ξ +

(
a∆t sin ξ

∆x

)2

which we wish to be no larger than 1, leading to

∣∣∣∣
a∆t

∆x

∣∣∣∣ ≤ 1.

We can also derive this equation from a domain of dependence argument. The transport equation

can be solved in closed form as u (x, t) = u0 (x− at), implying that the solution at (x, t) depends on

the information of u0 around x − at. If a∆t
∆x is not properly small, then the numerical dependence

domain may not be large enough to cover the characteristic line (see Fig. 21.1.1). This is also

known as the Courant-Friedrichs-Lewy condition1.

(a) Case
∣∣∣ a∆t
∆x

∣∣∣ < 1 (b) Case
∣∣∣a∆t
∆x

∣∣∣ > 1

Figure 21.1.1: The domain of dependence argument.

1see Courant-Friedrichs-Lewy condition

108

https://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition

Apr 3: Lecture 21. Numerical PDE (Part XIII) 21.2. GENERAL ANALYSIS FRAMEWORK

21.1.3 Lax-Wendroff scheme

Another line of improvement is to add artificial viscosity, leading to

Un+1
j − Un

j

∆t
+

a

2∆x

(
Un
j+1 − Un

j−1

)
− a2∆t

2∆x2
(
Un
j+1 − 2Un

j + Un
j−1

)
= 0.

The local truncation error is O
(
∆t2 +∆x2

)
and the stability condition is

∣∣a∆t
∆x

∣∣ ≤ 1 as well.

21.2 General analysis framework

In general, we can put explicit one time step schemes into the following form

Un+1
j = L∆Un

j =

K∑

k=−K

akT
kUn

j

where L is an abstract operator which we assume is the linear combination of a few translation

operators. In the Fourier domain, this is translated to

Ûn+1 = L̂∆Ûn =

K∑

k=−K

ake
iξkÛn

where ξ := 2π∆ that depends on the discretization mesh. The stability condition

‖L∆ (ξ)‖ ≤ 1, ∀0 ≤ ξ < 2π

is equivalent to ∥∥∥L̂∆ (ξ)
n
∥∥∥ ≤ C, ∀0 ≤ ξ < 2π, n∆t ≤ T. (21.2.1)

Notice that Eqn. 21.2.1 implies a necessary condition

∥∥∥L̂∆ (ξ)
∥∥∥ ≤ 1, ∀0 ≤ ξ < 2π.

A similar analysis can be carried out for implicit schemes, where we assume the following form

L(1)∆ Un+1
j = L(2)∆ Un

j .

The corresponding stability condition reads

∥∥∥∥
{(
L̂(1)∆

)−1

L̂(2)∆ (ξ)

}n∥∥∥∥ ≤ C, ∀0 ≤ ξ < 2π, n∆t ≤ T. (21.2.2)

109

21.3. GENERALIZATION Apr 3: Lecture 21. Numerical PDE (Part XIII)

This technique can also be applied to multistep schemes if we go down the rabbit hole. For example,

let us consider

L(1)∆ Un+1
j = L(2)∆ Un

j + L(3)∆ Un−1
j

and the corresponding form in the Fourier domain

L̂(1)∆ (ξ) Ûn+1 = L̂(2)∆ (ξ) Ûn + L̂(3)∆ (ξ) Ûn−1.

The techniques from the LMM stability analysis can be also applied here, with a slight caveat that

the iteration coefficient depends on the wave number ξ.

21.3 Generalization

We shall point out that the analysis mentioned above has a few restrictions, namely linear equations

with constant coefficients and periodic BC. One might ask if we can remove or weaken some of the

restrictions.

21.3.1 Variable coefficients

For example

L∆Uj :=

K∑

k=−K

Ak (xj)T
kUj

where Ak depends on the mesh nodes so a direct Fourier transform is not viable. Nevertheless, we

can formally define

L̂∆ :=

K∑

k=−K

Ak (xj) e
iξk

as if Ak were a constant. Then, one can carry out analysis to compare how far L̂∆ is from the true

Fourier translated operator. In fact, we have

Fact 21.3.1 (Lax-Nirenberg Theorem). If

L̂∆ (x, ξ) ∈ C2,2,
∥∥∥L̂∆ (x, ξ)

∥∥∥ ≤ 1, ∀x, ξ,

then ‖L∆‖ ≤ 1 + C∆x.

One can derive a useful method by applying L-N theorem to the L-F scheme, namely solving

ut + a (x) ux = 0 while monitoring the stability condition
∣∣∣a(x)∆t

∆x

∣∣∣ ≤ 1.

110

Apr 3: Lecture 21. Numerical PDE (Part XIII) 21.3. GENERALIZATION

21.3.2 Non-linearity

In general, linearized stability and smooth solution u (t, x) for consistent schemes implies conver-

gence. For example, the conservation law

ut + f (u)x = 0

is a non-linear equation in general (and we shall point out that the solution might have discontuities).

The linearized equation, under u = u+ ǫv with smooth u and small ǫ, reads

(ut + f (u)x) + ǫ [vt + (f ′ (u) v)x] +O
(
ǫ2
)
= 0.

If we assume that u is already a smooth solution, then

vt + f ′ (u) vx︸ ︷︷ ︸
(∗)

+f ′ (u)x v +O (ǫ) = 0 (21.3.1)

where we apply stability analysis for the star part. Take L-F scheme as an example, we assume

Un
j = U (xj , tn) + ǫV n

j

that solves

Un+1
j =

Un
j+1 + Un

j−1

2
− ∆t

2∆x

[
f
(
Un
j+1

)
− f

(
Un
j−1

)]
.

The linearized part implies the first-order matching equation

V n+1
j =

V n
j+1 + V n

j−1

2
− ∆t

2∆x
f ′ (U (xj , tn))x

(
V n
j+1 − V n

j−1

)
.

Then one can apply a similar argument mimicking L-N theorem.

111

21.3. GENERALIZATION Apr 3: Lecture 21. Numerical PDE (Part XIII)

112

Apr 5: Lecture 22

Numerical Partial Differential

Equations (Part XIV: Topics on

Non-linear Problems)

22.1 Linearization and convergence

Let us continue the discussion on linearization of non-linear PDEs and stability analysis. To put

in a very general sense, the numerical discretization scheme can be written as F (U) = 0 while the

evaluation on the true PDE solution results in a local error, i.e. F (U) = LTE. If we put e := U−U
and apply Taylor expansion, we have

0 = F (U) = F (U− e) = F (U)−∇F (U) · e+G (e)

where G (e) > ‖e‖2. Thus, the error e can be obtained by solving

∇F (U) · e = LTE +G (e)

which shares the exact same form as the linearized equation 21.3.1 as previously derived. Formally

speaking,

e = [∇F (U)]
−1

[LTE +G (e)] (22.1.1)

113

22.2. PROBLEMS WITH LESS REGULARITY Apr 5: Lecture 22. Numerical PDE (Part XIV)

and the stability translates to the equivalence between unique solution to Eqn. 22.1.1 and bound-

edness of [∇F (U)]
−1

. The consistency argument is then used to show that

‖LTE‖ > L (∆)→ 0 as ∆→ 0.

This can be combined with the fact that G has quadratic growth and fixed point argument to show

that e→ 0 as ∆→ 0.

22.2 Problems with less regularity

In general, the local truncation error is derived from regularity of the PDE solution (similar to the

approximation estimate in FEM). However, there are certain equations that possess solutions with

“insufficient” regularities.

Example 22.2.1. Non-linear conservation law

ut + f (u)x = 0

in 1D scalar form or for higher dimensions

~ut +∇ · ~f (~u) = 0.

These equations are often used in continuum mechanics, fluid dynamics, transport equations, etc.

Example 22.2.2. Hamiltonian-Jacobi equation

ut +H (∇u, u) = 0

which is widely adopted in control theory and finance related problems.

We shall point out that some HJ equations, for example ut +H (∇u) = 0, can be translated to

a conservation law. In fact, let v := ux, then

vt = uxt = −∇xH (∇u) = −∇xH (v) .

The importance of such “irregular” equations is that it enables to model phase transition phe-

nomenon. To be specific, say the non-linear conservation law (NLCL), the solutions may develop

discontinuities in finite time even for smooth initial data. Thus, the standard method for FDM

breaks down due to the exploding local truncation error. For a similar reason, the FEM approach

also fails since there is not enough regularity to guarantee approximation properties. The famous

114

Apr 5: Lecture 22. Numerical PDE (Part XIV)22.3. NUMERICAL METHODS FOR CONSERVATION LAWS

example to illustrate this point is the Burgers’ equation, i.e.

ut +
1

2

(
u2
)
x
= 0. (22.2.1)

If we assume that the solution u ∈ C1, we have

ut + uux = 0.

Recall that for a linear transport equation vt + avx = 0, the solution is transport exactly along

the characteristics, i.e. v (x, t) = v0 (x− at). If we assume the initial condition u0 take value 1 for

x < −1 and 0 for x > 1, then the values 1 and 0 will be kept along the characteristics as the system

evolves. However, after a finite time the left line will meet the other vertical line, contradicting

with the assumption that u ∈ C1.

22.3 Numerical methods for conservation laws

To circumvent this issue while keeping the good property on transporting, we can allow the solutions

to have some discontinuities along certain domains, often known as shocks. The site of shock will

also be transported. To compute the behavior of shock, we introduce test functions v ∈ C∞
0 and

apply it on ut + f (u)x = 0, leading to

−
∫

(uvt + f (u) vx) dxd t = 0.

This form allows discontinuities of u in either space or time and it is possible to show existence of

solution in L1. However, uniqueness does not immediate follow since multiple solutions might solve

the original NLCL. Extra conditions are often needed (a.k.a. entropy conditions), for example Lax

condition (the characteristic must “go into” the shock rather than “leaving” the shock). The other

approach is to add artificial viscosity ǫ and to show that the entropy solution in the limit as ǫ→ 0.

Take Burgers’ equation (Eqn. 22.2.1) as an example:

uǫt +
1

2

(
(uǫ)

2
)
x
= ǫuǫxx.

For initial data u0 (x) = sgn (x), u (·, t) = u0 is a weak solution but not the entropy solution, which

shall be

uentropy (x, t) =





−1 x < −t
x/t |x| ≤ t
1 x > t

.

115

22.3. NUMERICAL METHODS FOR CONSERVATION LAWSApr 5: Lecture 22. Numerical PDE (Part XIV)

The finite difference method can also be adapted to solve NLCL. The upwind scheme reads

Un+1
j − Un

j

∆t
=




−∆−f(Un

j)
∆x if f ′

(
Un
j

)
> 0,

−∆+f(Un
j)

∆x if f ′
(
Un
j

)
< 0

where we recall ∆−f
(
Un
j

)
= f

(
Un
j

)
− f

(
Un
j−1

)
and ∆+f

(
Un
j

)
= f

(
Un
j+1

)
− f

(
Un
j

)
. The Lax-

Friedrichs scheme can be used in both cases. To construct a general conservation discretization

form, it follows

Un+1
j = Un

j −
∆t

∆x

[
F
(
Un
j−s+1, . . . , U

n
j+s

)
− F

(
Un
j−s, . . . , U

n
j+s−1

)]
=: G

(
Un
j−s, . . . , U

n
j+s

)
. (22.3.1)

A convergence result is stated as follows:

Fact 22.3.1 (Lax-Wendroff theorem). If
{
Un
j

}
converges a.e. to a piece-wise smooth v (x, t) under

FDM scheme (Eqn. 22.3.1), then v (x, t) is a weak solution.

The implication is convergence to entropy solution for scalar NLCL problems if FDM scheme is

consistent (F (U, . . . , U) = U in Eqn. 22.3.1) and monotone (∂G
∂Un

j′
> 0). A typical estimate on the

L1 error is given by ∥∥Un
j − u (xj , tn)

∥∥
L1

> ∆1/2

for ∆t and ∆x bounded by ∆. We shall point out that the numerical location of shock may be

wrong if the FDM scheme is not in conservation form, although the numerical solution may still

look physical.

116

Apr 10: Lecture 23

Numerical Partial Differential

Equations (Part XV: NLCL and

FVM)

23.1 Notes on FDM and NLCL

Let us briefly recall some key points for FDM application to PDEs with solutions not in C1. The

theoretical basis that guarantees uniqueness is either given by defining the weak entropy solution

(in nonlinear conservation laws) or weak viscosity solution (in H-J equations). The non-linear

conservation law ut + f (u)x = 0 can be discretized via FDM as

∆t
+U

n
j

∆t
+

∆x
+F

(
Un
j−s, . . . , U

n
j+s−1

)

∆x
= 0. (23.1.1)

The consistency is defined by F (U, . . . , U) = f (U) via Taylor expansion. We show that this is

useful in showing convergence to a weak solution.

Theorem 23.1.1 (Lax-Wendroff). For the FDM on the conservation form (Eqn. 23.1.1), if the

scheme is consistent and Un
j → u (xj , tn) boundedly a.e. to a piece-wise C1 function u, then u is a

weak solution to the NLCL.

Proof. To show that u is a weak solution, let us multiply Eqn. 23.1.1 by v (xj , tn) , v ∈ C1
0 and sum

over all j, n:
∑

j,n

(
∆t

+U
n
j

∆t
+

∆x
+F

(
. . . , Un

j , . . .
)

∆x

)
v (x, t) = 0.

117

23.2. BOUNDARY CONDITIONS Apr 10: Lecture 23. Numerical PDE (Part XV)

We apply summation by parts:

−
∑

j,n

[
Un
j

∆t
−v

∆t
+ F

(
. . . , Un

j , . . .
) ∆x

−v

∆x

]
= 0. (23.1.2)

Since U converges to u uniformly, we can pass Eqn. 23.1.2 in the limit to conclude that

−
∑

j,n

[
unj

∆t
−v

∆t
+ F

(
. . . , unj , . . .

) ∆x
−v

∆x

]
= 0. (23.1.3)

Since u, v are piece-wise C1, Eqn. 23.1.3 can be viewed as a Riemann sum that converges in the

limit to −
∫
u∂tv + F (. . . , u, . . .) ∂xv = 0, thus showing u is a weak solution.

Remark. For scalar problems, the uniform convergence condition can be replaced by the monotone

argument, i.e. the coefficients in Un
j − ∆t

∆x∆
x
+F

(
Un
j−s, . . . , U

n
j+s+1

)
shall be all positive.

As we mentioned earlier, to address the non-uniqueness of NLCL, an artificial viscosity is added

to the equation so that

uǫt + f (uǫ)x = ǫuǫxx

admits a solution uǫ which converges to u. Although this is a well-defined subject, it requires

solving a family of solution by taking ǫ → 0 or at least using a sufficiently small ǫ to get an

approximation, which is often too expensive and prohibitive. To circumvent this, we can adopt the

Lax entropy condition that states the characteristics of an entropy solution must go into shocks;

this can be generalized to systems that inspect “how many” characteristics go in and out the shock.

The other approach is to introduce the so-called “entropy functions” that usually comes from a

physical background where the entropy pair (η, q) solve the inequality η (u)t + q (u)x ≤ 0.

23.2 Boundary conditions

Let us study how to properly pose BCs for transport problems. If we assume a positive a in

ut + aux = 0 xL < x < xR, t > t0

u (xL, t) = uL (t) t > t0

u (x, t0) = u0 (x) xL < x < xR,

the equation is actually well-defined even without specifying the values on the other side. In fact,

the solution is transported along x − at = C and thus the values on the right boundary can be

“inferred” by propagating the characteristics. On the other side, if u (xR, t) are specified, there may

not exist a solution unless it matches the value propagated from the characteristics.

118

Apr 10: Lecture 23. Numerical PDE (Part XV) 23.3. FVM

x

t

Figure 23.2.1: Characteristics and the upwind scheme.

This matches the behavior of upwind differencing since the upper node depends on the two

left-bottom nodes, so no information is needed from the right side. However, we encounter some

difficulties when applying Lax-Friedrichs scheme
Un+1

j −
Un
j+1

+Un
j−1

2

∆t + a
2∆x

(
Un
j+1 − Un

j−1

)
= 0 since

the right-most equation requires a out-of-bound node Un
J+1. There are two ways to extrapolate,

namely constant extrapolation Un
J+1 = Un

J or linear extrapolation Un
J+1 = 2Un

J − Un
J−1.

The stability may be obtained from the direct norm estimate. We can also develop the von

Neumann analysis that inspects the normal mode Un
j = λnχj where |χ| ≤ 1 and λ is to be

determined.

23.3 Finite volume methods

The conservation form (Eqn. 23.1.1) is the design principle for FVM. To derive a FVM scheme, let

us integrate ut + f (u)x = 0 over a space-time rectangle

0 =
x

(ut + f (u)x) dxd t

=

∫ xj+1/2

xj−1/2

[u (x, tn+1)− u (x, tn)] dx+

∫ tn+1

tn

[
f
(
u
(
xj+1/2, t

))
− f

(
u
(
xj−1/2, t

))]
d t. (23.3.1)

x

t

xj− 1
2

xj+ 1
2

tn

tn+1

Figure 23.3.1: A FVM scheme illustration.

119

23.3. FVM Apr 10: Lecture 23. Numerical PDE (Part XV)

We can interpret the first term

∫ xj+1/2

xj−1/2

[u (x, tn+1)− u (x, tn)] dx =

∫ xj+1/2

xj−1/2

u (x, tn+1) dx−
∫ xj+1/2

xj−1/2

u (x, tn) dx

as the net change of the material, should we imagine u as the density function. Motivated by this,

we define

Un
j :=

1

∆x

∫ xj+1/2

xj−1/2

u (x, tn) dx,

leading to

Un+1
j = Un

j −
1

∆x

∫ tn+1

tn

[
f
(
u
(
xj+1/2, t

))
− f

(
u
(
xj−1/2, t

))]
d t.

To close the numerical scheme, we shall replace u
(
xj+1/2, t

)
by the numerical averages Un

j , U
n
j+1.

The most general form is to replace
∫ tn+1

tn
f
(
u
(
xj+1/2, t

))
d t by ∆t F

(
Un
j , U

n
j+1

)
, leading to

Un+1
j = Un

j −
∆t

∆x

[
F
(
Un
j , U

n
j+1

)
− F

(
Un
j−1, U

n
j

)]
. (23.3.2)

It may seem that 23.3.2 coincides with the FDM conservation form, but it has a different interpre-

tation based on fluxes and interval averages.

This can be generalized to systems, higher dimensions, or other shapes of volumes. FVM may

also be applied to higher order PDEs, for example the viscosity equation ut+f (u)x = ǫuxx where we

can define the flux as f (u)−ǫux (which still needs to be approximated in the form as F
(
Un
j+1, U

n
j

)
).

Higher order schemes (meaning better accuracy) are, however, difficult to develop and naturally

leads to the discontinuous Galerkin method.

120

Apr 12: Lecture 24

Numerical Partial Differential

Equations (Part XVI: FVM and DG)

24.1 FVM (cont’d)

24.1.1 Rankine-Hugoniot condition

The Rankine-Hugoniot condition is proposed to describe the evolution of shock waves. Let us

consider the Riemann problem, namely transport equation ut + f (u)x = 0 with a discontinuous

initial condition

u (x, 0) = u0 (x) :=




uL x ≤ 0

uR x > 0
.

We speculate that the discontinuity is propagated at a speed s where the shock wave is, i.e. the

solution is in the form

u (x, t) = u0 (x− st) .

x

t

x0

t0

s

0 uR

uRuL

uL uR

Figure 24.1.1: Set-up to derive the Rankine-Hugoniot condition.

121

24.1. FVM (CONT’D) Apr 12: Lecture 24. Numerical PDE (Part XVI)

Then, using the relation between spatial averages and temporal fluxes (Eqn. 23.3.1), we have

[(∫ st0

0

uL dx+

∫ x0

st0

uR dx

)
−
∫ x0

0

uR dx

]
+

[∫ t0

0

f (uR) d t−
∫ t0

0

f (uL) d t

]
= 0

and subsequently

s =
f (uR)− f (uL)

uR − uL
.

This can a resemblance to the slope f ′ (u) for continuous solutions.

24.1.2 Upwind scheme for systems

Let us now investigate the upwind scheme for constant coefficient linear transport equation ut +

aux = 0:

Un+1
j = Un

j −
∆t

∆x
a




∆x

+U
n
j a < 0

∆x
−U

n
j a > 0

(24.1.1)

or equivalently

Un+1
j = Un

j −
∆t

∆x

[
max (a, 0)∆x

− +min (a, 0)∆x
+

]
Un
j . (24.1.2)

Eqn. 24.1.1 (or the equivalent form24.1.2) can be generalized to some linear transport systems

in the form
−→
U t +A

−→
U x = 0. (24.1.3)

We assume that S diagonalizes A, i.e. SAS−1 = Λ resulting in a diagonal matrix diag (λi) of eigen-

values. One can show from PDE theories that 24.1.3 is well-posed under diagonalizable assumption.

Let us introduce

Λ+ := diag (max (λi, 0)) , A+ := S−1Λ+S,

Λ− := diag (min (λi, 0)) , A− := S−1Λ−S,

then the generalized upwind scheme reads

−→
U n+1

j =
−→
U n

j −
∆t

∆x

(
A+∆

x
− +A−∆

x
+

)−→
U n

j .

24.1.3 Behavior around discontinuities

To study the non-linear setting in general, we replace the transport solution of ut + aux = 0 with

the Riemann solution, namely solutions that has a discontinuity separating two constant regions.

We discuss two particular cases that corresponds to shock and rarefaction waves.

122

Apr 12: Lecture 24. Numerical PDE (Part XVI) 24.2. DG METHOD

• For shock waves, i.e. f ′ (uL) > f ′ (uR) where two characteristics go into each other. To

determine how the solution evolves at a specific site x0, let us use the Rankine-Hugoniot

condition

s =
f (uR)− f (uL)

uR − uL
.

If s > 0, then u (x0, t) = uL; otherwise, u (x0, t) = uR when s < 0.

• For rarefaction waves, the general idea is to use the values determined by the entropy solution.

For example, let us revisit the Burgers equation ut+
(
1
2u

2
)
x
= 0 with initial condition uL < 0

for x < 0 and uR > 0 for x > 0. The entropy solution

u (x, t) =





uL x < uLt

x/t uLt ≤ x < uRt

uR uRt ≤ x

stays zero along x = 0, t > 0. This motivates the following conclusion:

– u = uL for f ′ (uL) > 0;

– u = uR for f ′ (uR) < 0;

– u = 0 otherwise, i.e. when f ′ (uL) < 0 < f ′ (uR).

The generalization to systems is much more complicated since the behavior of Riemann solutions

are more complex.

The FVM scheme, proposed in Eqn. 24.1.1 is of first order due to the fact that ∆± is a first

order approximated derivative. It is possible to derive higher accuracy schemes in the 1d case by

developing interpolation theories, but it is harder to generalize these ideas to higher dimensions due

to the complicated geometry of the finite volume cells.

24.2 DG method

Nevertheless, the idea of finite volumes motivates the discontinuous Galerkin method (or DG for

short). DG is similar to FEM, but allowing more flexibility to work with non-continuous solutions.

Take the NLCL ut+ f (u)x = 0 as an example; we multiply a test function v (x) and integrate both

sides ∫

Ω

[utv + f (u)x v] dx = 0. (24.2.1)

As in the FEM setting, we decompose u into basis functions

u ≈ uh =
∑

j

αj (t)ϕj

123

24.2. DG METHOD Apr 12: Lecture 24. Numerical PDE (Part XVI)

and pick v = ϕk. The issue with this formulation is that ϕj may be discontinuous and thus

f (uh)x may become Dirac functions (which is not in L2). To circumvent this issue, we divide the

whole domain Ω into a few subdomains Ωm and we require that {ϕj} is continuous in each Ωm;

discontinuities are still allowed along the boundaries of Ωm. Now, Eqn. 24.2.1 reads

∑

m

∫

Ωm


∑

j

α′
jϕjϕk + f


∑

j

αjϕj




x

ϕk


dx = 0, ∀k.

We proceed with the integration by parts argument, leading to

∑

m


∑

j

α′
j

∫

Ωm

ϕjϕk dx−
∫

Ωm

f


∑

j

αjϕj


 (ϕk)x dx+

∫

∂Ωm

f


∑

j

αjϕj


ϕk dσ (x)


 = 0.

Recall that ϕk may not be discontinuous along the boundaries ∂Ωm, so the integral is done in the

sense under continuation from the interior.

We now discuss the candidates for basis functions. The P̃0 family consists of piece-wise constant

functions and the corresponding basis functions are indication functions 1Ωm on each subdomain;

in fact, this recovers the FVM as we mentioned earlier. The P̃1 family consists of piece-wise linear

functions, so the basis functions are half-hat functions that takes value 0 on one side and 1 on the

other side.

DG and FEM are very similar since both methods are built upon weak forms. One primary

distinction lies in that DG have more unknowns for the same order of accuracy, thus resulting better

approximation for piece-wise functions (however, there is no gain in approximating continuous

functions). Besides, DG allows for explicit methods in time since the stiffness matrix is in a block

diagonal form (recall that the stiffness is a tri-diagonal matrix for FEM with P1 element).

124

Apr 17: Lecture 25

Numerical Partial Differential

Equations (Part XVII: DG and

Particle Methods)

25.1 DG (cont’d)

We have introduced the modified space of finite element functions P̃0, P̃1 in the previous lecture.

Loosely speaking, P̃1 allows simple concatenation of linear segments without requiring the segments

to connect (compared to P1). It is also worth pointing out that the P̃0 element leads to the vanilla

FVM scheme.

Let us discuss how to properly handle the integral in the Galerkin weak form for DG methods.

For NLCL ut + aux = 0, let us recall

∑

m

∑

j

[
α′
j (t)

∫ xm+1/2

xm−1/2

ϕjϕk dx+ aαj (t)

∫ xm+1/2

xm−1/2

(ϕj)x ϕk dx

]
= 0.

Notice that
∫ xm+1/2

xm−1/2
ϕjϕk dx = 0 unless the basis index j, k match the domain index m. The jump[

u
(
xm+1/2

)]
is used to derive the numerical flux




a limx→xm+1/2− um (x) a > 0

a limx→xm+1/2+ um+1 (x) a < 0
.

The idea of upwind matching can also be applied to even if there is no temporal variables. For

125

25.2. PARTICLE METHODS Apr 17: Lecture 25. Numerical PDE (Part XVII)

xm−1/2 xm+1/2

ϕk

um flux

Figure 25.1.1

example, let us put η = 0 in kinetic equations ηut +∇ · (au) = f (x1, x2), leading to a stationary

equation ∇ · (au) = f . Here, we can still apply upwind matching for a triangular partitioned mesh,

as long as one of the finite differences ∇± along the edges are picked based on the sign of a1, a2.

For elliptic problems, FEM is usually preferable since the regularity of the solution is often

guaranteed, so the extra flexibility of DG methods is redundant and is more expensive. Nevertheless,

it is possible to derive the DG formulation. Let us study −uxx = f as an example; the DG weak

form reads ∑

m

−
∫ xm+1/2

xm−1/2

uxxv dx =
∑

m

∫ xm+1/2

xm−1/2

fv.

For the left hand side, integration by parts yields a boundary term due to discontinuities

∫ xm+1/2

xm−1/2

uxxv dx = [uxv]
xm+1/2

xm−1/2
−
∫ xm+1/2

xm−1/2

uxvx dx.

There are many options to define the numerical flux to approximate [uxv]
xm+1/2

xm−1/2
. One option is to

perform local averages which, however, leads to weaker stability; the alternative is to use a penalty

method (i.e. the Nitsche’s method).

25.2 Particle methods

In sharp contrast to the numerical methods we have covered, the particle method represent the

solution by a distribution of particles {xj} rather via point-wise values or basis functions. The idea

behind is to mimic the physical meaning for kinetic equations that the solution is the density of

some physical particles.

The conversion from the value-based representation to the particle-based representation is done

by a statistical sampling, say one can invert the samples from a uniform distribution by the cu-

mulative function in a 1d setting. The conversion in the opposite direction can be done via a

non-parametric estimation

û (x) =
1

nh

∑

j

K

(
x− xj
h

)

126

Apr 17: Lecture 25. Numerical PDE (Part XVII) 25.2. PARTICLE METHODS

where n stands for the number of particles and K is some proper kernel functions (Gaussian

distribution, uniform distribution, etc).

Let us investigate the power of particle methods by studying the transport equation, for example

ut + v · ∇u = 0,

u (x, 0) = u0 (x)

where we assume v is a constant velocity vector. The analytical solution in close form reads

u (x, t) = u0 (x− vt)

which implies that the solution is transported along the characteristics x − vt = C. Now, since

the value represents density, so we can transport the particles instead. So, we can initialize a few

particles {xj (0)} by sampling from u0 and solve the family of ODEs instead ẋj (t) = v. We can

easily generalize this to non-constant coefficients, for example ut + a (x)ux = 0 corresponding to

the family of ODEs ẋ (t) = a (x (t)).

The advantage of particle methods is that there is no numerical diffusion or dispersion involved

as in FEM and FDM. The disadvantages, however, are rooted in the nature of its formulation, that

only restricted class of equations are supported and it is difficult to get high accuracy.

Inhomogeneous terms can also be addressed in this framework, say ut + ux = bu that models

particle annihilation/creation. It is a bit tedious to directly simulate the change in the number

of particles, but one can circumvent this by properly weighting the particles. Let us introduce

µj (t) := exp (bt) for each particle xj (t); the weights are chosen such that it solves µ̇j (t) = bµj (t).

Then, one can verify that the solution can be recovered by

û (x) =
1

nh

∑

j

µj (t)K

(
x− xj (t)

h

)
.

Many numerical methods can be built on the idea of particle methods. For example, let us

study the Vortex method that is used in incompressible Euler equation for fluids

−→u t +
(−→u · −→∇

)−→u +
−→∇p = 0,

−→∇ · −→u = 0

where −→u (x, y, t) stands for velocity and p (x, y, t) for pressure. The particle method does not apply

directly, however it is possible after a change in the dependent variable (often known as the vorticity

stream-function formulation). We define the vorticity ω :=
−→∇ ×−→u as the curl of the velocity; then

127

25.2. PARTICLE METHODS Apr 17: Lecture 25. Numerical PDE (Part XVII)

it follows that

ωt +
−→u · −→∇ω = 0, (25.2.1)

∆Ψ = −ω, (25.2.2)

−→u =
−→∇Ψ. (25.2.3)

The Vortex method applies particle methods to Eqn. 25.2.1 to estimate ω from the particle dis-

tribution and map it back to the grid; then, Eqn. 25.2.2 is solved by a grid-based solver and

subsequently u is computed from Eqn. 25.2.3.

128

Apr 24: Lecture 26

Numerical Partial Differential

Equations (Part XVIII: Spectral

Methods)

26.1 Complexity analysis

We append a few remarks on discussion of machine learning techniques in PDE problems. One

possible application is enabled by the class of neural operators that learns a solution map to the

problem of question. These neural operators may sound very different to traditional solvers, never-

theless, there is actually a resemblance from some particular angles. For example, let us consider

an initial value problem where the variable data is the values u0 at the initial time. A one-step

explicit scheme (FDM, FEM, FVM...) iterates for nt = 1/∆t times

un = A∆tu
n−1, . . . , u1 = A∆tu

0

to march along the temporal grid. Under a ∆x ∼ ∆t scaling (such as transport problems), the total

time complexity is O (rnxnt) = O
(
rn2

x

)
with the bandwidth of A being r. On the other side, we

can also directly compute An that leads to a O
(
r2nx log nx

)
complexity, which can then be applied

to any initial data and the evaluation is of O
(
n2
x

)
expensive. The complexity could be larger if the

stability condition requires a ∆t ∼ ∆x2 scaling; the iterative method requires O
(
rn3

x

)
while the

direct matrix power approach requires the same O
(
r2nx lognx

)
complexity.

129

26.2. SPECTRAL METHOD Apr 24: Lecture 26. Numerical PDE (Part XVIII)

26.2 Spectral method

The origin of spectral methods dates back to the Fourier’s approach to heat equations (1822)

ut = σuxx, (26.2.1)

u (−π, t) = u (π, t) = 0,

u (x, 0) = u0 (x) .

By applying the Fourier transform/series to Eqn. 26.2.1, we arrive at a class of ODEs

ût = σ (ik)2 û,

û (0) = û0.

Once the ODE problems are solved, the solution of question u (x, t) can be recovered by applying

the inverse Fourier transform to û (k, t).

This method works well for problems with a constant coefficient; however, it is hard to generalize

to variable coefficient problems that has a convolution on the Fourier side, making the numerical

application costly. Instead, we apply the Fourier transform (or FFT in practice) to evaluate the

derivatives only. For example, consider the transport problem with periodic BC

ut + a (x)ux = 0,

Periodic BC

u (x, 0) = u0 (x) .

Recall that ûx = ikû; this motivates us to propose the FFT-based differential scheme

[a (x) ux]
n
j = a (xj)

{
F−1 [ikF (un)]

}
j

(26.2.2)

where F stands for the discrete Fourier transform.

A few remarks/caveats on the Fourier method:

• Compared to the FDM/FEM discretization that has a fixed O (∆xp) accuracy, the Fourier-

based difference performs better than an algebraic rate if the solution is smooth.

• A minor downside is that time complexity of the Fourier-based scheme is O
(

1
∆x log 1

∆x

)
while

the FDM/FEM scheme is usually of O
(

1
∆x

)
.

• Another major issue is that the Fourier transform can only work on periodic domains (which,

nevertheless, can be circumvented by adopting a Chebyshev basis).

130

Apr 24: Lecture 26. Numerical PDE (Part XVIII) 26.3. CONCLUSION REMARKS

• Besides, the solution must be smooth for the Fourier-method to be competitive.

• The Fourier-side-difference can be modified to handle stability, for example we apply a decay

in the frequency domain

F−1 [θ (k) ikF (u)]

where θ has a proper decay as |k| → ∞ or a simple cutoff at a particular wave-number. This

usually ensures the stability but could harm the accuracy.

The spectral method can be applied in the following settings. In atmosphere simulation, the Fourier

method is coupled with a FDM/FEM/FVM method where the former handles the tangent evolution

and the latter deals with the dynamics in the normal direction; this idea is also widely used in generic

analysis of turbulence. The lattice structure in quantum mechanics is also suitable to apply spectral

methods to study wave functions or scattering phenomenons.

A distinct feature of the spectral method is that it is a global method while the previous

methods we have covered (FDM/...) is a local method. The difference scheme (Eqn. 26.2.2) can

be understood as a finite difference scheme supported on a infinitely-wide stencil; the complexity is

drastically reduced thanks to the fast Fourier transform.

26.3 Conclusion remarks

We also point out that these numerical schemes can be combined in a few flexible manners. Apart

from the FDM-FEM coupling for time-space problems, it is also possible to use spectral methods

as a local basis on each little finite element that leads to a FEM-SM coupling. FEM can also be

coupled with PM where a hat-shaped function is transported with the particle that forms a basis for

the weak form. FVM can be coupled with PM that is often adopted in the vorticity stream-function

formulation (Eqn. 25.2.1).

As an overview, FDM is often applied to 1d problems; for engineering purposes, FEM/DG and

FVM (for fluid dynamics) are often preferred; FEM/FDM are also applied in problems with a

physics/chemistry background; PM and SM are adopted in some special settings.

131

26.3. CONCLUSION REMARKS Apr 24: Lecture 26. Numerical PDE (Part XVIII)

132

Lecture A

Neural Operators and PDEs

In this lecture, we briefly discuss the neural operators and the applications in PDEs. The two

major applications can be understood in the following framework: let us consider the following

parameterized equation

L (u; a) = f, (A.0.1)

B (u; a) = g; (A.0.2)

possible examples are the elliptic equation −∇ · (a∇u) = 0 that models permeability/conductivity,

the parabolic equation ∂tu − ∇ · (a∇u) = 0 for heat equations, or the transport equation ∂tu +

a (x) ∂xu = 0. One application is to simply solve Eqn. A.0.1 with the power of neural networks,

without any prior knowledge on the solution u; we call this the “neural solver”. The other application

does not aim to solve Eqn. A.0.1 accurately on its own, but rather try to obtain an approximated

solution with a relatively lighter effort, often known as a “neural operator”. As the name indicates,

we build a mapping/operator that learns the relation between functions, i.e. mapping the coef-

ficient a and physical location x to the solution u. There are other applications as well and the

aforementioned methods can be combined under certain scenarios.

A.1 Neural network 101

A.1.1 Artificial neural networks

Inspired by the biological neural networks of animal brains, the concept of artificial neural networks

(or ANN for short) refers to a collection of interacting nodes structured by a given set of mathe-

matical rules. Information is passed in from some input modules and processed between the nodes

133

A.1. NEURAL NETWORK 101 Lecture A.

before it is taken out from the network. A particular example is the so-called feed-forward neural

network (FNN) where the flow of information forms a directed acyclic graph, namely in one single

direction without going back to the previous nodes. FNNs are easy to model by compositions of

basic functions and can be trained efficiently by the back propagation technique to be mentioned

later.

x h1

h2

h3

z1

z2

z3

y

Figure A.1.1: Illustration on general ANN structures.

Let us begin with a class of networks that have simple structures, yet rich theoretical properties,

known as the multilayer perceptrons (MLP). A perceptron is a multivariate function, defined as the

composition of a affine map wTx+ b and a non-linear activation σ:

p (x;w, b) := σ
(
wTx+ b

)
, x, w ∈ RN , b ∈ R.

The design of the perceptron can be motivated by combination of incoming information. These

perceptron are used to build layers, namely

L

(
x;
{
w(k), b(k)

}K

k=1

)
:=




p
(
x;w(1), b(1)

)

. . .

p
(
x;w(K), b(K)

)


 .

The layers are supposed to handle the incoming information x from different perspectives, if well-

trained on the data observed. To build a MLP with given number of input dimensions din and

output dimension dout, we propose hidden layers of width m and depth n as follows:

M (x; θ) := L̃n+1 ◦ Ln ◦ · · · ◦ L2 ◦ L1

where θ is the collection of weights and each map Li has its own weights w(i,ki) and biases b(i,ki).

Notice that we put tilde on the final output layer, meaning that no activation is applied on that

134

Lecture A. A.1. NEURAL NETWORK 101

layer.

x h2

h1

h3

z1

z2

z3

y

Figure A.1.2: Illustration on general MLP structures.

MLPs are not born to be perfect, however. The weights and biases need to be adjusted accord-

ingly based on the training data. A training set is defined as the collection of input-output pairs

(or feature-label pairs in other context), namely

T :=
{
(xi, yi) : xi ∈ Rdin , yi ∈ Rdout , 1 ≤ i ≤ Nt

}
.

A (strictly) optimal MLP perfectly maps each xi to the corresponding yi. Nevertheless, it is nearly

impossible to find the optimal MLP in the strict sense since there might be noisy or even polluted

adversarially. One of the best practices is to introduce the so-called loss function J that measures

how “bad” the prediction ŷi :=M (xi) is compared to the given output yi. A common choice is the

mean squared error

MSE ({ŷi} , {yi}) =
1

Nt

Nt∑

i=1

|ŷi − yi|2 .

Once the loss function is given, we aim to minimize the loss for all possible choices of the parameters

θ :=
{
w(i,ki), b(i,ki)

}
. The simplest approach is to perform gradient descent

θ ← θ − α∂θJ.

There is a technique to boost the efficiency in computing ∂θJ called backpropagation; we refer to

Backpropagation - Wikipedia for interested readers.

A.1.2 Universal approximation theory

One might ask if ANNs are capable of solving PDE problems; after all, the neural operator/solver

is infeasible if ANNs can’t approximate the solutions well. In fact, as we see below, well-designed

135

https://en.wikipedia.org/wiki/Backpropagation

A.1. NEURAL NETWORK 101 Lecture A.

ANNs can approximate any continuous functions to any given precision, so this is really a powerful

tool.

To simplify the notation, let us consider MLPs with single hidden layer for single input and

output, namely

M (x; {w, b} ,K) :=

K∑

k=1

w(2,k)σ
(
w(1,k)x+ b(1,k)

)
+ b(2), x ∈ R. (A.1.1)

Theorem A.1.1 ([Siegel & Xu, 2020]). Assuming σ is Riemann integrable with polynomial growth

|σ (x)| > (1 + |x|)p and σ is not a polynomial. For any given f ∈ C (Ω) on a compact set Ω and

ǫ > 0, there exists {w, b} and K s.t.

max
x∈Ω
|M (x; {w, b} ,K)− f (x)| < ǫ.

This is also known as the universal approximation theorem. The proof is a bit technical, so we’d

like to motivate this idea from a simplified setting, i.e. σ being the rectified linear unit (ReLU)

function

ReLU (x) := max (0, x) .

We point out that ReLUs can be used to build the hat functions we have seen in P1 element by

ϕ (x) := σ (x+ 1)− 2σ (x) + σ (x− 1) .

Then, due to the knowledge that P1 is dense in C ([a, b]), we conclude that

M1 (x) :=
N∑

j=1

f (xj)ϕ

(
x− xj
h

)
, xj := a+ (j − 1/2)h,N :=

b− a
h

approximate f ∈ C ([a, b]) to precision hmaxx |f ′ (x)|. We point out that the universal approxi-

mation theorem can be extended to the regime where the MLP takes multiple inputs and yields

multiple outputs.

A.1.3 Variants and extensions

There are a few variants to the MLP structure, for example the dropout technique (randomly

disconnecting connection between neurons), batch normalization (center and normalize the latent

information), the resnet structure (bypass skip connection), etc. There are also an active interest

to study networks with particular structures to better capture the desired information, for example

convolutional neural network for image processing and recognition, recurrent neural network for

136

Lecture A. A.2. NEURAL OPERATORS

data with a time-series nature, transformers for sequential to sequential problems, etc.

A.2 Neural operators

A.2.1 Motivation

In a broader sense, we can compare a traditional PDE solver with a specialized neural network since

they both take in the coefficient data and output solutions to the problem. Another similarity is that

the feed-forward propagation resembles the explicit time marching behavior. A major difference lies

in the fact that PDE solvers are often accurate and born with good error control while feedforward

neural networks do not possess guarantee for error estimation. Based on this observation, we can

build a neural network that learns the mapping that is implicitly determined by the PDE solver

as a surrogate for downstream applications, for example inverse problems or optimal experimental

design.

A.2.2 A simplified setting

We follow the idea proposed in [Kovachki, Nikola, et al, 2021] but we work on a simplified model.

Let us assume the PDE problem of interest reads

L (u; a) = f (A.2.1)

where L, parametrized by a, is a linear/non-linear differential operator of u and f is a source term.

Let us assume that Eqn. A.2.1 implicitly determines a functional

S : (a, f) 7→ u

which can be well approximated by an established PDE solver

S0 : Din =
(
{a (xi)}Nx

i=1 , {f (xi)}
Nx

i=1

)
7→ Dout = {u (xi)}Nx

i=1 .

We confine Din ∈ R2Nx to be in a bounded set Ω ⊂ R2Nx . We adopt the MLP with one-hidden

layer as proposed in Eqn. A.1.1. By the universal approximation theorem, for any given precision

requirement ǫ > 0, there exists a MLP realization M s.t.

sup
Din∈Ω

‖S0 (Din)−M (Din)‖∞ < ǫ.

To find an optimal network, we prepare the training set by randomly sampling {ai} and {fi} from

the set Ω and the PDE solver to compute the solution Dout = {ui}. The MLP can then be trained

137

A.3. NEURAL SOLVER WITHOUT PRIOR KNOWLEDGE Lecture A.

by a gradient method with the back-propagation technique.

A.2.3 Discussion

A few modifications can be made the framework mentioned above. For example, in DeepONet

[Lu, Jin, Karniadakis, 2019], the coefficient vector and solution vector are encoded separately so

that it allows prediction on physical locations other than the training set. Other improvements are

mentioned in [Kovachki, Nikola, et al, 2021], including low rank approximations, Fourier transform

that enables frequency learning, a hierarchical decomposition powered by multipole graph structure,

etc.

A.3 Neural solver without prior knowledge

A.3.1 PINN

The neural network can also be used to directly solve the PDE problem without the aid from

an established high-accuracy solver. For example, the physics informed neural networks (PINNs

[Raissi, Perdikaris, Karniadakis, 2017]) propose the solve Eqn. A.2.1 by

min
θ
‖L (unn (x; θ) ; a)− f‖2Ω + ‖B (unn (x; θ) ; a)− g‖2∂Ω .

The second term here demonstrates how to match boundary conditions. We shall point out this

formulation shares a lot of similarities with the collocation method in the FEM literature. We can

gain flexibility in geometry and form of the differential operator in collocation-based methods, but

there is no theory on error bound in general.

A.3.2 Deep Ritz

Loosely speaking, the Deep Ritz method resembles the Galerkin method if we identify PINNs as

the collocation method. The Deep Ritz method applies to problems that can be written as a weak

minimization form, for example

−∇ · (a∇u) = f.

In [Yu, 2018], the authors propose to minimize the Ritz energy functional

min
θ

1

2

∫

Ω

a∇u · ∇u−
∫

Ω

fu.

The advantage of these neural solvers is that it is relatively easier to set-up a computation

procedure based on the well-established autograd library infrastructure. However, we shall point

138

Lecture A. A.3. NEURAL SOLVER WITHOUT PRIOR KNOWLEDGE

out that although PINNs and Deep Ritz method has promising numerical performances, there is

no general framework for an a priori error estimate. Besides, training the network can also be an

issue as we deal with a non-convex optimization problem even for linear PDEs. Furthermore, these

problems may fail for problems with special structures, say shock speed in NLCL, so one might

need to take these factors into account when designing the formulation of neural solvers.

139

A.3. NEURAL SOLVER WITHOUT PRIOR KNOWLEDGE Lecture A.

140

Bibliography

[Siegel & Xu, 2020] Siegel, Jonathan W., and Jinchao Xu. "Approximation rates

for neural networks with general activation functions." Neu-

ral Networks 128 (2020): 313-321.

[Kovachki, Nikola, et al, 2021] Kovachki, Nikola, et al. "Neural operator: Learning maps

between function spaces." arXiv preprint arXiv:2108.08481

(2021).

[Lu, Jin, Karniadakis, 2019] Em Karniadakis. "Deeponet: Learning nonlinear operators

for identifying differential equations based on the univer-

sal approximation theorem of operators." arXiv preprint

arXiv:1910.03193 (2019).

[Raissi, Perdikaris, Karniadakis, 2017] Raissi, Maziar, Paris Perdikaris, and George Em Karni-

adakis. "Physics informed deep learning (part i): Data-

driven solutions of nonlinear partial differential equations."

arXiv preprint arXiv:1711.10561 (2017).

[Yu, 2018] Yu, Bing. "The deep Ritz method: a deep learning-based

numerical algorithm for solving variational problems." Com-

munications in Mathematics and Statistics 6.1 (2018): 1-12.

141

	Jan 9: Introduction
	Jan 11: Numerical Ordinary Differential Equations (Part I: General theory and LTE)
	Jan 18: Numerical Ordinary Differential Equations (Part II: R-K and LMM)
	Jan 23: Numerical Ordinary Differential Equations (Part III: LMM)
	Jan 25: Numerical Ordinary Differential Equations (Part IV: Stability)
	Jan 30: Numerical Ordinary Differential Equations (Part V: Stiff and symplectic systems)
	Feb 6: Numerical Ordinary Differential Equations (Part VI: Miscellaneous remarks and DAE)
	Feb 8: Numerical Ordinary Differential Equations (Part VII: SDE and BVP)
	Feb 13: Numerical Partial Differential Equations (Part I: 2-Point BVP, FDM, and FEM)
	Feb 15: Numerical Partial Differential Equations (Part II: FEM)
	Feb 20: Numerical Partial Differential Equations (Part III: FEM and Poincare's inequality)
	Feb 22: Numerical Partial Differential Equations (Part IV: Boundary Conditions for BVPs)
	Feb 27: Numerical Partial Differential Equations (Part V: Inhomogeneous BC and Higher Order Problems)
	Mar 1: Numerical Partial Differential Equations (Part VI: FEM for PDEs, Poisson Equation)
	Mar 6: Numerical Partial Differential Equations (Part VII: Practical Concerns for FEM)
	Mar 8: Numerical Partial Differential Equations (Part VIII: Remarks on FEM and Parabolic Problems)
	Mar 20: Numerical Partial Differential Equations (Part IX: Time Dependent Problems and Mixed Methods)
	Mar 22: Numerical Partial Differential Equations (Part X: Mixed Methods and FDM)
	Mar 27: Numerical Partial Differential Equations (Part XI: FDM & Stability Analysis)
	Mar 29: Numerical Partial Differential Equations (Part XII: Stability Analysis)
	Apr 3: Numerical Partial Differential Equations (Part XIII: von Neumann Analysis)
	Apr 5: Numerical Partial Differential Equations (Part XIV: Topics on Non-linear Problems)
	Apr 10: Numerical Partial Differential Equations (Part XV: NLCL and FVM)
	Apr 12: Numerical Partial Differential Equations (Part XVI: FVM and DG)
	Apr 17: Numerical Partial Differential Equations (Part XVII: DG and Particle Methods)
	Apr 24: Numerical Partial Differential Equations (Part XVIII: Spectral Methods)
	Neural Operators and PDEs

