M408S Quiz 8 Solutions Nov 9, 2017

1. Use integral test to determine whether the series converges or diverges:

Solution. Let f(z) = ——. It is continuous on [2, 00), positive, decreasing, so integral test applies.
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For integration, use the substitution: v =1Inz, du = %dx.
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Therefore the improper integral fzoo zlnz

dz diverges. Consequently, the series Y 72, m diverges.

2. Use the comparison or limit comparison test to determine whether the following series converges or diverges:
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Solution. By looking at the dominant terms (highest powers on top and bottom of the fraction), we compare
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And since Y b, converges by p-series (p = 2), we conclude that > a, converges by the Limit Comparison Test.
Note.
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o 3> .50 you can’t directly use comparison test with b, = 1 - However, it is true that 575

4n343 = 4n3> A .
n, 80 you can also use comparison test with b, = 5.

< .5 for large

e For Limit Comparision Test, we just requite lim, , §* = ¢ where c is a positive constant. Don’t compare ¢ to 1
(that’s Root/Ratio test).
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Solution. By looking at the dominant terms, we compare
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And since ) by converges because it is a geomertic series with r = é, we conclude that ) a; converges by the
Comparison Test.



