Home Precalculus
Calculus I, II Sequences, Series and Multivariable Calculus
Multivariable Calculus
Advanced Calculus II
Elementary Statistics
Teaching Discrete Mathematics Number Theory Differential Equations and Linear Algebra
Linear Algebra and Matrix Theory Linear Algebra
Probability
Math Online Tests

DELA Problems
DELA Tests
Calculus Problems
Calculus Tests
Precalculus Problems
Precalculus Tests
College Algebra Problems
Arithmetic Problems
MATH CONTESTS

Differential Equations
and Linear Algebra

Kiryl Tsishchanka

SYLLABUS
GRADE CALCULATOR
Course Evaluations
WolframAlpha
STUDY TIPS
Weeks Dates Sections Lecture Notes and Videos Recommended Homework SLD
Problems
1
Aug 25, 27
Section 1.2
First-order linear differential equations V1, V2
1-16 S1, S2  PR
2
Aug 31, Sep 1, 3
Section 1.4
Separable equations V
1-5, 6-12 (solve the given initial-value problem only) S1, S2, S3  PR
Section 1.5
Population models V
1-12
Section 1.9 (opt) Exact equations, and why we cannot solve very many differential equations
3-11 S1, S2, S3  PR
3
Sep 8, 10
Section 1.10 (opt) The existence-uniqueness theorem; Picard iteration
1-3, 4-15 S1, S2  PR
Section 2.1
Algebraic properties of solutions V
1-7 S1, S2  PR
Section 2.2
Linear equations with constant coefficients V
Page 140: 1-8; Page 144: 1-6, 8, 9; Page 149: 1-4, 6, 7 S1, S2  PR
4
Sep 13, 15, 17
Section 2.3
The nonhomogeneous equation V
1-3 S  PR
Section 2.4 (opt) The method of variation of parameters
1-8 S  PR
5
Sep 20, 22, 24
Section 2.5
The method of judicious guessing V
1-16 S1, S2  PR
Section 2.6
Mechanical vibrations V

Section 2.8 (opt) Series solutions
Page 197: 1-8; Page 203: 1-8 S1, S2  PR
6
Sep 27, 29
Section 3.1
Algebraic properties of solutions of linear systems V1, V2
1-15 S1, S2  PR1, 2
Oct 1
Sections 1.2, 1.4, 1.5, 2.1-2.3, 2.5, 2.6
MIDTERM 1
7
Oct 4, 6, 8
Section 3.2
Vector spaces V1, V2
1-12 S  PR
8
Oct 11, 13, 15 Section 3.3
Dimension of a vector space V
1-9, 10, 11 S1, S2  PR
Section 3.4
Applications of linear algebra to differential equations V
1, 3, 5-9 S  PR
9
Oct 18, 20, 22 Section 3.5
The theory of determinants V
 3-8, 10-15 S  PR
Section 3.6
Solutions of simultaneous linear equations V
 1-4, 9-14, 17-20 S  PR
10
Oct 25, 27, 29 Section 3.7
Linear transformations V1, 2, 3 
 1-13, 19-21 S  PR1, 2, 3
11
Nov 1, 3, 5
Section 3.8
The eigenvalue-eigenvector method of finding solutions V1, 2
1-12 S  PR
Section 3.9
Complex roots V 
 1-8 S  PR
12
Nov 8, 10
Section 3.10
Equal roots V1, 2 
 1-8 S  PR
Section 3.11
Fundamental matrix solutions; eAt
V1, 2
 1-11 S  PR
Nov 12
Sections 3.1-3.9 MIDTERM 2
13
Nov 15, 17, 19

Section 4.1
Introduction V 
1-8   PR
Section 4.2
Stability of linear systems V
1-10   PR
Section 4.4
The phase-plane V
1-3, 5-14   PR
Section 4.7
Phase portraits of linear systems V
1-9   PR
14 Nov 22
Section 5.1
Two point boundary-value problems V1, 2
1, 2-9 S  PR
Section 5.2 Introduction to partial differential equations
Nov 24-27 Thanksgiving holidays
15
Nov 29, Dec 1, 3
Section 5.3
The heat equation; separation of variables V
 1-7 S  PR
Section 5.4
Fourier series V
1-13 S  PR
Section 5.5
Even and odd functions V
1-11 S  PR
16
Dec 6
Section 5.6
Return to the heat equation V
1, 2   PR
17

Dec 13 (Mon) 2:00pm-5:00pm
 
Cumulative FINAL EXAM