Home Precalculus
Calculus I, II Sequences, Series and Multivariable Calculus
Multivariable Calculus
Advanced Calculus II
Elementary Statistics
Teaching Discrete Mathematics Number Theory Differential Equations and Linear Algebra
Linear Algebra and Matrix Theory Linear Algebra
Probability
Math Online Tests

DELA Problems
DELA Tests
Calculus Problems
Calculus Tests
Precalculus Problems
Precalculus Tests
College Algebra Problems
Arithmetic Problems
MATH CONTESTS

Linear Algebra and Matrix Theory

Kiryl Tsishchanka

SYLLABUS
GRADE CALCULATOR
Course Evaluations
WolframAlpha
Tests
STUDY TIPS
Weeks Dates Sections Handouts  Homework
Due Dates
Mandatory Recommended
1
Jan 16, 18
Section 1.1 Fundamental Operations with Vectors
4(b), 5(d), 8(d), 9 1-20
Jan 25
Section 1.2 The Dot Product
2, 3, 10, 15(b)
1-20
2
Jan 23, 25 Section 1.3 An Introduction to Proof Techniques
1(a), 2(a), 3, 4, 6(b), 12, 13, 22, 23
1-7, 11-17, 21-24
Feb 1
3
Jan 30, Feb 1 Section 1.4
Fundamental Operations with Matrices
4, 5(a)-(c), 13
1-13, 15
Feb 8
Section 1.5 Matrix Multiplication
6, 13, 21, 22
1-25, 31
Section 2.1
Solving Linear Systems Using Gaussian Elimination
1(d), 5, 10
1-11
4
Feb 6, 8 Section 2.2
Gauss-Jordan Row Reduction and Reduced Row Echelon Form
2(d), 5(d), 7(b), 11(a),(c),(d), 13
1-14
Feb 15
Section 2.3
Equivalent Systems, Rank, and Row Space
8(d), 9(b), 16, 18
1-22
5
Feb 13, 15
Section 2.4
Inverses of Matrices
4(b), 9, 18
1-22
Feb 22
Section 3.1
Introduction to Determinants
8, 11(b), 16(a)
1-18
Section 3.2
Determinants and Row Reduction
2(d), 4(b), 7
1-16
6
Feb 20, 22
Section 3.3 Further Properties of the Determinant 4(b), 6(b), 8(a), 10, 12
1-22
Mar 1
Section 3.4
Eigenvalues and Diagonalization 3(f), 5(b), 11, 17
1-20, 24
7
Feb 27
Section 4.1 Introduction to Vector Spaces 2-4, 6, 7, 9, 10, 15, 18
1-20
Mar 8
Mar 1
Sections 1.1-1.5, 2.1-2.4, 3.1-3.4
MIDTERM 1


8
Mar 6, 8
Section 4.2 Subspaces 1(i), 2(d), 3(d), 6, 11
1-22
Mar 22
9
Mar 12-17 Spring break
10
Mar 20, 22
Section 4.3 Span 2(b), 3(b), 9, 10, 12, 15, 19 1-29 Mar 29
Section 4.4 Linear Independence 3(b), 5, 8, 12, 17, 18
1-28
11
Mar 27, 29 Section 4.5 Basis and Dimension 2, 3, 4(d), 7, 15(a) 1-25
Apr 5
Section 4.6 Constructing Special Bases 1(b), 4(f), 5(b), 6(d), 12(a) 1-20
12
Apr 3 Section 4.7 Coordinatization 1(i), 2(b), 4(d), 12, 14, 15 1-16
Apr 12
Apr 5
Sections 4.1-4.6 MIDTERM 2


13
Apr 10, 12
Section 5.1 Introduction to Linear Transformations 1(e, g), 5, 7, 16, 19 1-36 Apr 19
Section 5.2 The Matrix of a Linear Transformation 2(d), 3(d), 7(b), 14 1-3, 7-9, 13, 14
14
Apr 17, 19
Section 5.3 The Dimension Theorem 1(b), 2(b), 3(b), 4(h), 13 1-20
Apr 26
Section 5.4 One-to-One and Onto Linear Transformations 1(d),(f), 2(d), 5, 6 1-9
15
Apr 24, 26 Section 5.5 Isomorphism 1(b), 3, 4, 12 1-23 May 3
Section 6.1
Orthogonal Bases and the Gram-Schmidt Process
1(d), 2(b), 3(b), 4(d), 5(b), 7(b), 10
1-22
16
May 1, 3
Section 6.2 Orthogonal Complements
1(c, d), 2(c), 4(b, c), 11, 14, 21
1-4, 11-26
Section 6.3
Orthogonal Diagonalization



17
May 11 (Fri) 2:00-5:00pm Cumulative FINAL EXAM