Boltzmann equation: Difference between revisions
imported>Nestor No edit summary |
imported>Nestor No edit summary |
||
Line 1: | Line 1: | ||
{{stub}} | {{stub}} | ||
The Boltzmann equation is an evolution equation first put forward by Ludwig Boltzmann to describe the configuration of particles in a gas, but only statistically. However, this equation and related equations are used in other physical situations, such as in optics. The corresponding linear inverse problem is also used in tomography | The Boltzmann equation is an evolution equation first put forward by Ludwig Boltzmann to describe the configuration of particles in a gas, but only statistically. However, this equation and related equations are used in other physical situations, such as in optics. The corresponding linear inverse problem is also used in tomography <ref name="Bal09"/> | ||
== The classical Boltzmann equation == | == The classical Boltzmann equation == | ||
Line 72: | Line 72: | ||
Note that when $f$ is independent of $x$ the above equation becomes second-order parabolic equation where the coefficients depend non-locally on $f$, in particular, one has an apriori estimate for all higher derivatives of $f$ in terms of its $L^\infty$ and $L^1$ norms (via a bootstrapping argument). | Note that when $f$ is independent of $x$ the above equation becomes second-order parabolic equation where the coefficients depend non-locally on $f$, in particular, one has an apriori estimate for all higher derivatives of $f$ in terms of its $L^\infty$ and $L^1$ norms (via a bootstrapping argument). | ||
== References == | |||
{{reflist|refs= | |||
<ref name="Bal09">{{Citation | last1=Bal | first1=G. | title=Inverse transport theory and applications | publisher=IOP Publishing | year=2009 | journal=Inverse Problems | volume=25 | issue=5 | pages=053001}}</ref> | |||
}} |
Revision as of 20:04, 29 January 2013
This article is a stub. You can help this nonlocal wiki by expanding it.
The Boltzmann equation is an evolution equation first put forward by Ludwig Boltzmann to describe the configuration of particles in a gas, but only statistically. However, this equation and related equations are used in other physical situations, such as in optics. The corresponding linear inverse problem is also used in tomography [1]
The classical Boltzmann equation
As explained originally by Boltzmann in the probabilistic description of a gas, we assume that the probability that a particle in a gas lies in some region $A$ of phase space $\mathbb{R}^d\times \mathbb{R}^d$ at time $t$ is given by some function
\begin{equation*} \int_A f(x,v,t)dxdy. \end{equation*}
Then, under certain (natural) physical assumptions, Boltzmann derived an evolution equation for $f(x,v,t)$. In particular, if one imposes $f$ at time $t=0$ then $f$ should solve the Cauchy problem
\begin{equation}\label{eqn: Cauchy problem}\tag{1} \left \{ \begin{array}{rll} \partial_t f + v \cdot \nabla_x f & = Q(f,f) & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}_+,\\ f & = f_0 & \text{ in } \mathbb{R}^d \times \mathbb{R}^d \times \{ 0 \}. \end{array}\right. \end{equation}
where $Q(f,f)$ is the Boltzmann collision operator, a non-local operator given by
\begin{equation*} Q(f,f)(v) = \int_{\mathbb{R}^d}\int_{\mathbb{S}^{d-1}} B(v-v_*,e) (f(v')f(v'_*)-f(v)f(v_*) d\sigma(e) dv_*. \end{equation*}
here $d\sigma$ denotes the Hausdorff measure on $\mathbb{S}^{d-1}$, and given $v,v_* \in \mathbb{R}^d$ and $e \in \mathbb{S}^{d-1}$ we write
\begin{align*} v' & = v-(v-v_*,e)e\\ v'_* & = v_*+(v-v_*,e)e \end{align*}
and $B$, which is known as the Boltzmann collision kernel, measures the strength of collisions in different directions.
Collision Invariants
The Cauchy problem \ref{eqn: Cauchy problem} enjoys several conservation laws, which in the Boltzmann literature are known as collision invariants. Take $\phi(v)$ to be any of the following functions
\begin{equation*} \phi(v) = 1, \;\;v,\;\; \tfrac{|v|^2}{2} \end{equation*} \begin{equation*} \text{(the first and third ones are real valued functions, the third one is vector valued)} \end{equation*}
and let $f(x,v,t)$ be any classical solution to \ref{eqn: Cauchy problem}, then we have
\begin{equation*} \frac{d}{dt}\int_{\mathbb{R}^d\times \mathbb{R}^d} f(x,v,t) \phi(v)\;dx\;dv = 0 \end{equation*}
according to what $\phi$ we pick this equation corresponds to conservation of mass, conservation momentum or conservation of energy.
The Landau Equation
For Coulumb interactions, the corresponding collision kernel $B$ always diverges, instead in this case, one uses an equation (which is an asymptotic limit of Boltzmann equation) first derived by Landau,
\begin{equation*} f_t + x\cdot \nabla_y f = Q_{L}(f,f) \end{equation*}
where now $Q_{L}(f,f)$ denotes the Landau collision operator, which can be written as
\begin{equation*} Q_{L}(f,f) = \text{Tr}(A[f]D^2f)+f^2 \end{equation*}
where $A[f]$ is the matrix valued operator given by convolution with the matrix kernel $K(y)= (8\pi|y|)^{-1}\left ( I -\hat y\otimes \hat y)\right )$, $\hat y = y/|y|$.
Note that when $f$ is independent of $x$ the above equation becomes second-order parabolic equation where the coefficients depend non-locally on $f$, in particular, one has an apriori estimate for all higher derivatives of $f$ in terms of its $L^\infty$ and $L^1$ norms (via a bootstrapping argument).
References
- ↑ Bal, G. (2009), "Inverse transport theory and applications", Inverse Problems (IOP Publishing) 25 (5): 053001