Aleksandrov-Bakelman-Pucci estimates: Difference between revisions
imported>Nestor |
imported>Nestor |
||
Line 24: | Line 24: | ||
\[ Lu \leq f(x) \;\; x \in B_1\] | \[ Lu \leq f(x) \;\; x \in B_1\] | ||
\[ u \ | \[ u \geq 0 \;\; x \in B_1^c\] | ||
\[ Lu:= (2-\sigma)\int_{\R^n} \delta u(x,y)\frac{a(x,y)}{|y|^{n+\sigma}} dy\] | \[ Lu:= (2-\sigma)\int_{\R^n} \delta u(x,y)\frac{a(x,y)}{|y|^{n+\sigma}} dy\] | ||
Line 33: | Line 33: | ||
As in the second order ABP, the function $f$ is assumed to be continuous. Then, Caffarelli and Silvestre proved <ref name="CS"/> there is an estimate | As in the second order ABP, the function $f$ is assumed to be continuous. Then, Caffarelli and Silvestre proved <ref name="CS"/> there is an estimate | ||
\[ \ | \[ \inf \limits_{B_1} \; |u_-|^n \leq C_{n,\lambda,\Lambda,\sigma}\sum \limits_{i=1}^m ( \sup \limits_{Q_i^*} |f|^n) |Q^*_i| \] | ||
For some finite collection of non-overlapping cubes $\{Q_i \}_{i=1}^m$ that cover the set $\{ u=\Gamma_u\}$, each cube having non-zero intersection with this set. Moreover, all the cubes have diameters $d_i \lesssim 2^{-\frac{1}{2-\sigma}}$. As before, $\Gamma_u$ denotes the " | For some finite collection of non-overlapping cubes $\{Q_i \}_{i=1}^m$ that cover the set $\{ u=\Gamma_u\}$, each cube having non-zero intersection with this set. Moreover, all the cubes have diameters $d_i \lesssim 2^{-\frac{1}{2-\sigma}}$. As before, $\Gamma_u$ denotes the "convex envelope" of $u$ in $B_2$. | ||
Furthermore, although the sharp constant may depend on $\sigma$, it is uniformly bounded for all $\sigma$ bounded away from zero. In particular, as $\sigma \to 2^-$ the above constant does not blow up, and since the diameter of the cubes goes to zero as $\sigma$ approaches $2$, one can check that this last estimate implies the second order ABP in the limit. | Furthermore, although the sharp constant may depend on $\sigma$, it is uniformly bounded for all $\sigma$ bounded away from zero. In particular, as $\sigma \to 2^-$ the above constant does not blow up, and since the diameter of the cubes goes to zero as $\sigma$ approaches $2$, one can check that this last estimate implies the second order ABP in the limit. |
Revision as of 11:41, 6 June 2011
The celebrated "Alexandroff-Bakelman-Pucci Maximum Principle" (often abbreviated as "ABP Estimate") is a pointwise estimate for weak solutions of elliptic equations. It is the backbone of the regularity theory of fully nonlinear second order elliptic equations [1] and more recently for Fully nonlinear integro-differential equations [2].
The classical Alexsandroff-Bakelman-Pucci Theorem
Let $u$ be a viscosity supersolution of the linear equation:
\[ Lu \leq f(x) \;\; x \in B_1\] \[ u \geq 0 \;\; x \in \partial B_1\] \[ Lu:=a_{ij}(x) u_{ij}(x)\]
The coefficients $a_{ij}(x)$ are only assumed to be measurable functions such that for positive constants $\lambda<\Lambda$ we have
\[ \lambda |\xi|^2 \leq a_{ij}(x) \xi_i\xi_j \leq \Lambda |\xi|^2 \;\;\forall \; \xi \in \mathbb{R}^n \]
Moreover, the function $f$ is assumed to be continuous. Then, the ABP Theorem says that
\[ \sup \limits_{B_1}\; |u_-|^n \leq C_{n,\lambda,\Lambda} \int_{\{ u=\Gamma_u \} } f_+^n dx \]
Where $\Gamma_u$ is the "convex envelope" of $u$: it is the largest non-positive convex function in $B_2$ that lies above $u$ in $B_1$. The fact that the integration on the right hand side takes place only on the set where $u$ agrees with its convex envelope is an important feature of the estimate and it is not to be overlooked [1].
ABP-type estimates for integro-differential equations
The setting for integro-differential equations is similar, what changes are the operators: let $u$ be a viscosity supersolution of the equation
\[ Lu \leq f(x) \;\; x \in B_1\] \[ u \geq 0 \;\; x \in B_1^c\] \[ Lu:= (2-\sigma)\int_{\R^n} \delta u(x,y)\frac{a(x,y)}{|y|^{n+\sigma}} dy\]
Here $\delta u(x,y):= u(x+y)+u(x-y)-2u(x)$ and $\sigma \in (0,2)$. The function $a(x,y)$ is only assumed to be measurable and such that for some $\Lambda\geq\lambda>0$ we have
\[ \lambda \leq a(x,y) \leq \Lambda \;\;\forall\;x,y\in \R^n\]
As in the second order ABP, the function $f$ is assumed to be continuous. Then, Caffarelli and Silvestre proved [2] there is an estimate
\[ \inf \limits_{B_1} \; |u_-|^n \leq C_{n,\lambda,\Lambda,\sigma}\sum \limits_{i=1}^m ( \sup \limits_{Q_i^*} |f|^n) |Q^*_i| \]
For some finite collection of non-overlapping cubes $\{Q_i \}_{i=1}^m$ that cover the set $\{ u=\Gamma_u\}$, each cube having non-zero intersection with this set. Moreover, all the cubes have diameters $d_i \lesssim 2^{-\frac{1}{2-\sigma}}$. As before, $\Gamma_u$ denotes the "convex envelope" of $u$ in $B_2$.
Furthermore, although the sharp constant may depend on $\sigma$, it is uniformly bounded for all $\sigma$ bounded away from zero. In particular, as $\sigma \to 2^-$ the above constant does not blow up, and since the diameter of the cubes goes to zero as $\sigma$ approaches $2$, one can check that this last estimate implies the second order ABP in the limit.
References
- ↑ 1.0 1.1 Caffarelli, Luis A.; Cabré, Xavier (1995), Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, 43, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-0437-7
- ↑ 2.0 2.1 Caffarelli, Luis; Silvestre, Luis (2009), "Regularity theory for fully nonlinear integro-differential equations", Communications on Pure and Applied Mathematics 62 (5): 597–638, doi:10.1002/cpa.20274, ISSN 0010-3640, http://dx.doi.org/10.1002/cpa.20274