Starting page: Difference between revisions
imported>Nestor No edit summary |
imported>Nestor No edit summary |
||
Line 34: | Line 34: | ||
* The denoising algorithms in [[nonlocal image processing]] are able to detect patterns in a better way than the PDE based models. A simple model for denoising is the [[nonlocal mean curvature flow]]. | * The denoising algorithms in [[nonlocal image processing]] are able to detect patterns in a better way than the PDE based models. A simple model for denoising is the [[nonlocal mean curvature flow]]. | ||
* The [[Boltzmann equation]] models the evolution of dilute gases and it is intrinsically an integral equation. In fact, simplified [[kinetic models]] can be used to derive the [[fractional heat equation]] without resorting to stochastic processes. | * The [[Boltzmann equation]] models the evolution of dilute gases and it is intrinsically an integral equation. In fact, simplified [[kinetic models]] can be used to derive the [[fractional heat equation]] without resorting to stochastic processes. | ||
* In conformal geometry, the Paneitz operators | * In conformal geometry, the Paneitz operators encode information about the manifold, they include fractional powers of the Laplacian, which are nonlocal operators. | ||
* In oceanography, the temperature on the surface may diffuse though the atmosphere giving rise to the [[surface quasi-geostrophic equation]]. | * In oceanography, the temperature on the surface may diffuse though the atmosphere giving rise to the [[surface quasi-geostrophic equation]]. | ||
* Several stochastic models, in particular particle systems, can be used to derive nonlocal equations like the [[Nonlocal porous medium equation]], the [[Hamilton-Jacobi equation with fractional diffusion]], [[conservation laws with fractional diffusion]], etc... | * Several stochastic models, in particular particle systems, can be used to derive nonlocal equations like the [[Nonlocal porous medium equation]], the [[Hamilton-Jacobi equation with fractional diffusion]], [[conservation laws with fractional diffusion]], etc... |
Revision as of 22:36, 6 February 2012
|
We also keep a list of open problems and of upcoming events.
|
|
|