Extension technique: Difference between revisions
imported>RayAYang (add a little more, some refs) |
imported>Luis No edit summary |
||
Line 1: | Line 1: | ||
The fractional | The [[fractional Laplacian]] $(-\Delta)^s$ on $\mathbb{R}^n$ can be obtained as the Dirichlet-to-Neumann operator of a degenerate elliptic equation on the upper half-space $\mathbb{R}^{n+1}_+$.<ref name="CS"/> This construction is frequently used to turn nonlocal problems involving the fractional Laplacian into local problems in one more space dimension. | ||
Let | Let | ||
Line 19: | Line 19: | ||
\end{equation} | \end{equation} | ||
The weight $y^{1-2s}$, for $0<s<1$, lies inside the Muckenhoupt $A_2$ class of weights. It is known that degenerate 2nd order elliptic PDEs with these weights satisfy many of the usual properties of uniformly elliptic PDEs, such as the maximum principle, the [[De Giorgi-Nash-Moser]] regularity theory, the [[boundary Harnack inequality]], the Wiener criterion for regularity of a boundary point | The weight $y^{1-2s}$, for $0<s<1$, lies inside the Muckenhoupt $A_2$ class of weights. It is known that degenerate 2nd order elliptic PDEs with these weights satisfy many of the usual properties of uniformly elliptic PDEs, such as the maximum principle, the [[De Giorgi-Nash-Moser]] regularity theory, the [[boundary Harnack inequality]], and the Wiener criterion for regularity of a boundary point.<ref name="FKS"/><ref name="FKJ1"/><ref name="FKJ2"/> | ||
The translation invariance of the operator in the $x$-directions can be applied to obtain higher regularity results and Liouville type properties.<ref name="CSS"/> | The translation invariance of the operator in the $x$-directions can be applied to obtain higher regularity results and Liouville type properties.<ref name="CSS"/> | ||
Line 31: | Line 31: | ||
<ref name="FKJ2">{{Citation | last1=Fabes | first1=Eugene B. | last2=Jerison | first2=David | last3=Kenig | first3=Carlos E. | title=The Wiener test for degenerate elliptic equations | url=http://www.numdam.org/item?id=AIF_1982__32_3_151_0 | year=1982 | journal=[[Annales de l'Institut Fourier|Université de Grenoble. Annales de l'Institut Fourier]] | issn=0373-0956 | volume=32 | issue=3 | pages=151–182}}</ref> | <ref name="FKJ2">{{Citation | last1=Fabes | first1=Eugene B. | last2=Jerison | first2=David | last3=Kenig | first3=Carlos E. | title=The Wiener test for degenerate elliptic equations | url=http://www.numdam.org/item?id=AIF_1982__32_3_151_0 | year=1982 | journal=[[Annales de l'Institut Fourier|Université de Grenoble. Annales de l'Institut Fourier]] | issn=0373-0956 | volume=32 | issue=3 | pages=151–182}}</ref> | ||
}} | }} | ||
{{stub}} |
Revision as of 10:57, 7 February 2012
The fractional Laplacian $(-\Delta)^s$ on $\mathbb{R}^n$ can be obtained as the Dirichlet-to-Neumann operator of a degenerate elliptic equation on the upper half-space $\mathbb{R}^{n+1}_+$.[1] This construction is frequently used to turn nonlocal problems involving the fractional Laplacian into local problems in one more space dimension.
Let $$U:\mathbb{R}^n \times \mathbb{R}_+ \longrightarrow \mathbb{R}$$ be a function satisfying \begin{equation} \label{eqn:Main} \nabla \cdot (y^{1-2s} \nabla U(x,y)) = 0 \end{equation} on the upper half-space, lying inside the appropriately weighted Sobolev space $\dot{H}(1-2s,\mathbb{R}^{n+1}_+)$. Then if we let $u(x) = U(x,0)$, we have \begin{equation} \label{eqn:Neumann} (-\Delta)^s u(x) = -C_{n,s} \lim_{y\rightarrow 0} y^{1-2s} \partial_y U(x,y). \end{equation} The energy associated with the operator in \eqref{eqn:Main} is \begin{equation} \label{eqn:Energy} \int y^{1-2s} |\nabla U|^2 dx dy \end{equation}
The weight $y^{1-2s}$, for $0<s<1$, lies inside the Muckenhoupt $A_2$ class of weights. It is known that degenerate 2nd order elliptic PDEs with these weights satisfy many of the usual properties of uniformly elliptic PDEs, such as the maximum principle, the De Giorgi-Nash-Moser regularity theory, the boundary Harnack inequality, and the Wiener criterion for regularity of a boundary point.[2][3][4]
The translation invariance of the operator in the $x$-directions can be applied to obtain higher regularity results and Liouville type properties.[5]
References
- ↑ Caffarelli, Luis; Silvestre, Luis (2007), "An extension problem related to the fractional Laplacian", Communications in Partial Differential Equations 32 (7): 1245–1260, doi:10.1080/03605300600987306, ISSN 0360-5302, http://dx.doi.org.ezproxy.lib.utexas.edu/10.1080/03605300600987306
- ↑ Fabes, Eugene B.; Kenig, Carlos E.; Serapioni, Raul P. (1982), "The local regularity of solutions of degenerate elliptic equations", Communications in Partial Differential Equations 7 (1): 77–116, doi:10.1080/03605308208820218, ISSN 0360-5302, http://dx.doi.org/10.1080/03605308208820218
- ↑ Fabes, Eugene B.; Kenig, Carlos E.; Jerison, David (1983), "Boundary behavior of solutions to degenerate elliptic equations", Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, pp. 577–589
- ↑ Fabes, Eugene B.; Jerison, David; Kenig, Carlos E. (1982), "The Wiener test for degenerate elliptic equations", Université de Grenoble. Annales de l'Institut Fourier 32 (3): 151–182, ISSN 0373-0956, http://www.numdam.org/item?id=AIF_1982__32_3_151_0
- ↑ Caffarelli, Luis; Salsa, Sandro; Silvestre, Luis (2008), "Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian", Inventiones Mathematicae 171 (2): 425–461, doi:10.1007/s00222-007-0086-6, ISSN 0020-9910, http://dx.doi.org/10.1007/s00222-007-0086-6
This article is a stub. You can help this nonlocal wiki by expanding it.