Starting page: Difference between revisions

From nonlocal pde
Jump to navigation Jump to search
imported>Nestor
No edit summary
imported>Luis
No edit summary
Line 36: Line 36:
* In conformal geometry, the Paneitz operators encode information about the manifold, they include fractional powers of the Laplacian, which are nonlocal operators.
* In conformal geometry, the Paneitz operators encode information about the manifold, they include fractional powers of the Laplacian, which are nonlocal operators.
* In oceanography, the temperature on the surface may diffuse though the atmosphere giving rise to the [[surface quasi-geostrophic equation]].
* In oceanography, the temperature on the surface may diffuse though the atmosphere giving rise to the [[surface quasi-geostrophic equation]].
* Models for [[dislocation dynamics]] in crystals.
* Several stochastic models, in particular particle systems, can be used to derive nonlocal equations like the [[Nonlocal porous medium equation]], the [[Hamilton-Jacobi equation with fractional diffusion]], [[conservation laws with fractional diffusion]], etc...
* Several stochastic models, in particular particle systems, can be used to derive nonlocal equations like the [[Nonlocal porous medium equation]], the [[Hamilton-Jacobi equation with fractional diffusion]], [[conservation laws with fractional diffusion]], etc...



Revision as of 11:16, 7 February 2012

Welcome!
This is the Nonlocal Equations Wiki
(0 articles and counting)


In this wiki we collect several results about nonlocal elliptic and parabolic equations. If you want to know what a nonlocal equation refers to, a good starting point would be the Intro to nonlocal equations.

We also keep a list of open problems and of upcoming events.


The wiki has an assumed bias towards regularity results and consequently to equations for which some regularization occurs. But we also include some topics which are tangentially related, or even completely unrelated, to regularity.

Why nonlocal equations?

All partial differential equations are a limit case of nonlocal equations. A good understanding of nonlocal equations can ultimately provide a better understanding of their limit case: the PDEs. However, there are some cases in which a nonlocal equation gives a significantly better model than a PDE. Some of the most clear examples in which it is necessary to resort to nonlocal equations are

Suggested first reads