Conformally invariant operators

From nonlocal pde
Revision as of 14:32, 23 September 2013 by imported>Tianling
Jump to navigation Jump to search

On a general compact manifold $M$ with metric $g$, a metrically defined operator $A$ is said to be conformally invariant if under the conformal change in the metric $g_w=e^{2w}g$, the pair of the corresponding operators $A_w$ and $A$ are related by \[ A_w(\varphi)=e^{-bw} A(e^{aw}\varphi)\quad\mbox{for all }\varphi \in C^{\infty}(M), \] where $a, b$ are constant.

Examples of conformally invariant operators include:

  • The conformal Laplacian:

\[ L_g=-\Delta_g + \frac{n-2}{4(n-1)}R_g, \] where $n$ is the dimension of the manifold, $-\Delta_g$ is the Laplace–Beltrami operator of $g$, and $R_g$ is the scalar curvature of $g$. This is a second order differential operator. One can check that in this case, $a=\frac{n-2}{2}$ and $b=\frac{n+2}{2}$.

\[ P=(-\Delta_g)^2-\mbox{div}_g (a_n R_g g+b_n Ric_g)d+\frac{n-4}{2}Q, \] where $\mbox{div}_g$ is the divergence operator, $d$ is the differential operator, $Ric_g$ is the Ricci tensor, \[ Q=c_n|Ric_g|^2+d_nR_g^2-\frac{1}{2(n-2)}\Delta_gR \] and \[ a_n=\frac{(n-2)^2+4}{2(n-1)(n-2)}, b_n=-\frac{4}{n-2}, c_n=-\frac{2}{(n-2)^2}, d_n=\frac{n^3-4n^2+16n-16}{8(n-1)^2(n-2)^2}. \] This is a fourth order operator with leading term $(-\Delta_g)^2$.

  • GJMS operators [3]: this is a family of conformally invariant differential operators with leading term $(-\Delta_g)^k$ for all integers $k$ is $n$ is odd, and for $k\in \{1,2,\cdots,\frac{n}{2}\}$ if $n$ is even. A nonexistence result can be found in [4] for $k>\frac n2$ and $n\ge 4$ even.


References

  1. Paneitz, S (1983), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds", preprint 
  2. Paneitz, S (2008), "A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds (summary)", SIGMA Symmetry Integrability Geom. Methods Appl. (4), http://dx.doi.org/10.3842/SIGMA.2008.036 
  3. Graham, C Robin; Jenne, Ralph; Mason, Lionel J; Sparling, George AJ (1992), "Conformally invariant powers of the Laplacian, I: Existence", Journal of the London Mathematical Society 2: 557--565 
  4. Gover, A; Hirachi, Kengo, "Conformally invariant powers of the Laplacian—a complete nonexistence theorem", Journal of the American Mathematical Society 17: 389--405