Surface quasi-geostrophic equation

From nonlocal pde
Revision as of 19:38, 23 May 2011 by 69.217.124.45 (talk)
Jump to navigation Jump to search

$

 \newcommand{\R}{\mathbb{R}}

$

The surface quasi-geostrophic (SQG) equation consists of an evolution equation for a scalar function $\theta: \R^+ \times \R^2 \to \R$. In the inviscid case the equation is $$ \theta_t + u \cdot \nabla \theta = 0,$$ where $u = R^\perp \theta$ and $R$ stands for the Riesz transform.

Fractional diffusion is often added to the equation $$ \theta_t + u \cdot \nabla \theta + (-\Delta)^s \theta = 0.$$

The equation is used as a toy model for the 3D Euler equation and Navier-Stokes. The main question is to determine whether the Cauchy problem is well posed in the classical sense. In the inviscid case, it is a major open problem as well as in the supercritical diffusive case when $s<1/2$. It is believed that inviscid SQG equation presents a similar difficulty as 3D Euler equation in spite of being a scalar model in two dimensions [1]. The same comparison can be made between the supercritical SQG equation and Navier-Stokes.

The key feature of the model is that the drift $u$ is a divergence free vector field related to the solution $\theta$ by a zeroth order singular integral operator.

For the diffusive case, the well posedness of the equation follows from perturbative techniques in the subcritical case ($s>1/2$). In the critical case the proof is more delicate and can be shown using three essentially different methods. In the sueprcritical regime ($s<1/2$) only partial results are known.

Global weak solutions, as well as classical solutions locally in time, are known to exist globally for the full range of $s \in [0,1]$ Cite error: Closing </ref> missing for <ref> tag [2] [3] [4] [5] [6] [7] [8] }}

  1. Cite error: Invalid <ref> tag; no text was provided for refs named CMT
  2. Caffarelli, Luis A.; Vasseur, Alexis (2010), "Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation", Annals of Mathematics. Second Series 171 (3): 1903–1930, doi:10.4007/annals.2010.171.1903, ISSN 0003-486X, http://dx.doi.org/10.4007/annals.2010.171.1903 
  3. Silvestre, Luis (2010), "Eventual regularization for the slightly supercritical quasi-geostrophic equation", Annales de l'Institut Henri Poincaré. Analyse Non Linéaire 27 (2): 693–704, doi:10.1016/j.anihpc.2009.11.006, ISSN 0294-1449, http://dx.doi.org/10.1016/j.anihpc.2009.11.006 
  4. Kiselev, A.; Nazarov, F.; Volberg, A. (2007), "Global well-posedness for the critical 2D dissipative quasi-geostrophic equation", Inventiones Mathematicae 167 (3): 445–453, doi:10.1007/s00222-006-0020-3, ISSN 0020-9910, http://dx.doi.org/10.1007/s00222-006-0020-3 
  5. Kiselev, A.; Nazarov, F. (2009), "A variation on a theme of Caffarelli and Vasseur", Rossiĭskaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheski\u\i Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI) 370: 58–72, ISSN 0373-2703 
  6. Kiselev, A. (2010), "Regularity and blow up for active scalars", Mathematical Modelling of Natural Phenomena 5 (4): 225–255, doi:10.1051/mmnp/20105410, ISSN 0973-5348, http://dx.doi.org/10.1051/mmnp/20105410 
  7. Resnick, Serge G. (1995), Dynamical problems in non-linear advective partial differential equations, ProQuest LLC, Ann Arbor, MI, http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9542767 
  8. Dabkowski, M. (2011), "Eventual Regularity of the Solutions to the Supercritical Dissipative Quasi-Geostrophic Equation", Geometric and Functional Analysis (Berlin, New York: Springer-Verlag) 21 (1): 1–13, ISSN 1016-443X