Nonlocal porous medium equation
The nonlocal porous medium equation of order $\sigma$ is the name currently given to two very different equations, namely
\[ u_t = \nabla \cdot \left ( u \nabla \mathcal{K_\alpha} (u) \right )\]
\[\mbox{ where } \mathcal{K}_\alpha(u) := C_{n,\alpha}\; u * |x|^{-n+\alpha},\;\; \alpha+2=\sigma \]
and
\[ u_t +(-\Delta)^{s}(u^m) = 0 \]
These equations agree when $s=1$ and $m=2$. They are fractional order Quasilinear equations.