Active scalar equation
A general class of equations is often referred to as active scalars. It consists of solving the Cauchy problem for the transport equation \begin{align} \theta(x,t) &= \theta_0(x) \\ \partial_t \theta + u \cdot \nabla \theta &= 0 \end{align} where the vector field $u$ is related to $\theta$ by some operator.
The case $u = \nabla^\perp (-\Delta)^{-1} \theta$, in two space dimensions, corresponds to the vorticity formulation of the 2D Euler equation. The case $u = \nabla^\perp (-\Delta)^{-1/2} \theta$, in two space dimensions, corresponds to the inviscid surface quasi-geostrophic equation. If we consider the full range of exponents $u = \nabla^\perp (-\Delta)^{-s} \theta$, the equation is known to be well posed in the classical sense if $s \geq 1$. For any $s<1$, the possible break down of classical solutions in finite time is an open problem.
General properties
In two space dimensions, under the general choice $u = \nabla^\perp (-\Delta)^{-s} \theta$, the vector field $u$ is divergence free. Therefore the transport equation enjoys all properties of divergence free flows: all $L^p$ norms of $\theta$ are conserved, the distribution function of $\theta$ is conserved, the set of points where the trajectories cross has measure zero, etc...
On the other hand, the following $s$-dependent energy is preserved by the flow: \[||\theta||_{\dot H^{-s}}^2 = \int \theta (-\Delta)^{-s} \theta \ dx.\]
The equation reduces to 2D Euler if $s=1$, and to inviscid SQG if $s=1/2$. The operator determining the velocity is more singular the smaller $s$ is. On the other hand, the conserved energy becomes a stronger quantity. The problem is known to be locally well posed for $s \in [0,1]$.[1]
2D Euler (well posedness)
The usual Euler equation refers to the system \begin{align} \partial_t u + u \cdot \nabla u &= -\nabla p \\ \mathrm{div} \ u &= 0 \end{align} where $u$ is a vector valued function and $p$ is a scalar function.
In 2D, the vorticity $\omega(x,y) = \partial_x u_2 - \partial_y u_1$ satisfies the active scalar equation \[ \partial_t \omega + u \cdot \nabla \omega = 0 \] where $u = \nabla^\perp (-\Delta)^{-1} \omega$.
The equation is (borderline) well posed for the following reason. The $L^\infty$ norm of $\omega$ is clearly preserved since it is a transport equation. In order to obtain higher regularity estimates on $\omega$ we need to estimate the rate by which the trajectories of the flow by $u$ approach each other. The most usual way to do this is by estimating the Lipschitz norm of $u$. The fact that $\omega \in L^\infty$ uniformly in time does not immediately imply that $u$ is Lipschitz. Instead it implies the borderline weaker condition $u \in LogLip$. Thus, in particular $u$ satisfies the Osgood condition and the flow trajectories are uniquely defined. From this property of the flow one can easily derive higher regularity estimates for $\omega$ that grow doubly exponentially in time.
Inviscid surface quasi-geostrophic equation
The inviscid SQG equation corresponds to the choice $u = \nabla^{\perp} (-\Delta)^{-1/2} \theta$. In this case the velocity is given by an operator of order zero applied to $\theta$, which always gives a divergence free drift. From the $L^\infty$ a priori estimate on $\theta$, the vector field $u$ stays bounded in $BMO$.
This is a case which attracts a lot of interest. The known results coincide with the general case of active scalar equations for $s$ in the range $(0,1)$. The classical well posedness of the equation for large time is still an open problem.
References
- ↑ Chae, D.; Gancedo, F.; Córdoba, D.; Constantin, Peter; Wu, Jun (2011), "Generalized surface quasi-geostrophic equations with singular velocities", Arxiv preprint arXiv:1101.3537