Bellman equation
The Bellman equation is the equality \[ \sup_{a \in \mathcal{A}} \, L_a u(x) = f(x), \] where $L_a$ is some family of linear integro-differential operators indexed by an arbitrary set $\mathcal{A}$.
The equation appears naturally in problems of stochastic control with Levy processes.
The equation is uniformly elliptic with respect to any class $\mathcal{L}$ that contains all the operators $L_a$.