Fractional obstacle problem
The obstacle problem is to seek a $s$-superharmonic function $u$ which lies above some smooth obstacle function $\phi$ in the interior of some domain $\Omega \subset \mathbb{R}^n$. Where $u > \phi$, $u$ is $s$-harmonic. The function satisfies Dirichlet conditions on $\mathbb{R}^n \setminus \Omega$, or one can require $|u|\rightarrow 0$ as $|x|\rightarrow \infty$ if $\Omega$ is, say, all of $\mathbb{R}^n$. The problem can be formulated as a variational problem as well, either through the extension or directly through a Dirichlet-like nonlocal energy on $\mathbb{R}^n$.
Solutions to the problem have optimal regularity in Holder class $C^{1,s}$. There is no native nondegeneracy to the problem, and so nondegeneracy conditions have to be imposed. About nonsingular free boundary points, the free boundary is a $C^{1,\alpha}$ surface of dimension $n-1$. The nature of a free boundary point is classified by the Almgren frequency formula.[1][2]
References
- ↑ Silvestre, Luis (2007), "Regularity of the obstacle problem for a fractional power of the Laplace operator", Communications on Pure and Applied Mathematics 60 (1): 67–112, doi:10.1002/cpa.20153, ISSN 0010-3640, http://dx.doi.org/10.1002/cpa.20153
- ↑ Caffarelli, Luis; Salsa, Sandro; Silvestre, Luis (2008), "Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian", Inventiones Mathematicae 171 (2): 425–461, doi:10.1007/s00222-007-0086-6, ISSN 0020-9910, http://dx.doi.org/10.1007/s00222-007-0086-6
<ref>
tag with name "CS" defined in <references>
is not used in prior text.