Quasilinear equations

From nonlocal pde
Revision as of 16:45, 3 June 2011 by imported>Nestor
Jump to navigation Jump to search

Quasilinear equations are those which are linear in all terms except for the highest order derivatives (whether they are of fractional order or not).

For instance, the following equations are all quasilinear (and the first two are NOT semilinear)

\[u_t-\mbox{div} \left ( \frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right ) = 0 \]

Mean curvature flow

\[ u_t = \mbox{div} \left ( u \nabla \mathcal{K_\alpha} u\right ),\;\;\; \mathcal{K_\alpha} u = u * |x|^{-n+\alpha} \]

Nonlocal porous medium equation

\[ u_t + H(x,t,u,\nabla u) + (-\Delta)^s u = 0.\]

Hamilton-Jacobi with fractional diffusion

Equations which are not quasilinear are called Fully nonlinear equations, which include for instance Monge Ampére and Fully nonlinear integro-differential equations. Note that all Semilinear equations are automatically quasilinear.