- 00-130 A.A. Balinsky and W.D. Evans
- On the zero modes of Pauli operators
(209K, Postscript)
Mar 28, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Two results are proved for $\mathrm{nul} \
\mathbb{P}_A$, the dimension of the kernel of the Pauli operator
$\mathbb{P}_A = \bigl\{ \bbf{\sigma} \cdotp \bigl(\frac{1}{i}
\bbf{\nabla} + \vec{A} \bigr) \bigr\} ^2 $ in $[L^2
(\mathbb{R}^3)]^2$:
(i) for $|\vec{B}| \in L^{3/2}
(\mathbb{R}^3),$ where $\vec{B} = \mathrm{curl} \vec{A}$ is the
magnetic field, $\mathrm{nul} \
\mathbb{P}_{tA} = 0$ except for a finite number of values of $t$ in any
compact subset of $(0, \infty)$;
(ii) \ $\bigl\{ \ \vec{B}: \ \mathrm{nul} \ \mathbb{P}_{ A} = 0,
\ \ | \vec{B} | \in L^{3/2}(\mathbb{R}^3)
\ \bigr\} $ contains an open dense subset of
$[L^{3/2}(\mathbb{R}^3)]^3$.
- Files:
00-130.src(
00-130.keywords ,
zero_modex.ps )