- 00-20 V. Bruneau, V. Petkov
- Semiclassical resolvent estimates for trapping perturbations
(62K, LaTeX 2e)
Jan 14, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We study the semiclassical estimates of the resolvent
$R(\lambda + i\tau),\:\:\lambda \in J \subset\subset{\RR}^{+},\: \tau \in ]0,1]$
of a self-adjoint operator $L(h)$ in the space of bounded operators
${\cal L}({\cal H}^{0,s},{\cal H}^{0,-s}),\:s > 1/2$.
In the general case of long-range trapping "black-box" perturbations
we prove that the estimate of the cut-off resolvent
$\|\chi(x)R(\lambda + i0)\chi(x)\|_{{\cal H} \to {\cal H}} \leq C\exp(Ch^{-p}),\:\chi(x) \in C^{\infty}_0({\RR^n}),\:p \geq 1$
implies the estimate
$\|R(\lambda + i\tau)\|_{s,-s} \leq C_1\exp(C_1 h^{-p})$.
- Files:
00-20.src(
00-20.keywords ,
ResEst.tex )