- 00-352 Jonathan Butler
- Global $ h $ Fourier integral operators with complex-valued phase functions
(42K, AMS-TeX)
Sep 9, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We consider globally defined $ h $ Fourier integral operators ($ h $
F.I.O.) with complex-valued phase functions. Symbolic calculus of $ h $
F.I.O. is considered and, using a new complex Gauss transform,
composition of $ h $ pseudodifferential operators ($ h $ P.D.O.) and
$ h $ F.I.O. is considered. For a self-adjoint $ h $ P.D.O. $ A(h) $
and $ h $ P.D.O. $ P(h) $ and $ Q(h) $ with compactly supported
symbols, we apply the results to approximate the kernel of the operator
$$ U_{P,Q}(t;h) := P(h) e^{-ih^{-1}tA(h)} Q(h)^*, t \in \Bbb R , h > 0 , $$
by a single, globally defined $ h $ oscillatory integral.
- Files:
00-352.src(
00-352.keywords ,
global.tex )