- 00-383 A.A. Balinsky, W.D. Evans and Roger T. Lewis
- On the Schr\"{o}dinger operator in $\mathbb{R}^2$
with an Aharonov-Bohm magnetic field
(106K, "Postscript")
Oct 2, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. It is proved that the form domain of the magnetic
Schr\"{o}dinger operator $S_A$ in $L^2 (\mathbb{R}^2)$
with an Aharonov-Bohm magnetic field is continuously
embedded in $L^{\infty} (\mathbb{R}^+, \ rdr) \otimes
L^2 (\mathbb{S}^1)$. An implication of this is that, when
$V \in L^{1} (\mathbb{R}^+, \ rdr) \otimes
L^{\infty} (\mathbb{S}^1) $, \ $S_A$ and $S_A +V$
have the same form domain and coincident essential spectrum,
namely $[0, \infty)$
- Files:
00-383.src(
00-383.keywords ,
A-B_compact20Sept.ps )