- 00-400 Vincent Bruneau, Vesselin Petkov
- Representation of the spectral shift function and spectral asymptotics for trapping perturbations
(96K, Latex 2e)
Oct 9, 00
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We obtain in the semi-classical setup of "black box" long-range perturbations a representation for the derivative of spectral shift function $\xi(\lambda)$ related to two self-adjoint operators $L_j(h), \: j = 1,2. $ We show that the derivative $\xi'(\lambda)$ is estimated by the norms of the cut-off resolvents of the operators $L_j(h)$. Finally, we establish a Weyl type formula for the spectral shift function $\xi(\lambda)$ generalizing the results of Robert [R94] and Christiansen [Ch98].
- Files:
00-400.src(
00-400.keywords ,
ssfpreprint.tex )