 01332 Vincent Bruneau, Vesselin Petkov
 Meromorphic continuation of the Spectral Shift Function.
(109K, Latex 2e)
Sep 21, 01

Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers

Abstract. We obtain a representation of the derivative of the spectral shift
function $\xi(\lambda, h)$ in the framework of semiclassical
"black box" perturbations. Our representation implies a meromorphic
continuation of $\xi(\lambda, h)$ involving the semiclassical
resonances. Moreover, we obtain a Weyl type asymptotics of the
spectral shift function as well as a BreitWigner approximation in an
interval
$(\lambda  \delta, \lambda + \delta), \:\: 0 < \delta < \epsilon h.$
 Files:
01332.src(
01332.keywords ,
mero.tex )