- 02-136 Massimiliano Berti, Luca Biasco, Philippe Bolle
- Optimal stability and instability results
for a class of nearly integrable Hamiltonian system
(255K, PS)
Mar 19, 02
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We consider a nearly integrable, non-isochronous,
a-priori unstable Hamiltonian system
with a (trigonometric polynomial)
$O(\mu)$-perturbation which does not preserve the unperturbed tori.
We prove the existence of Arnold diffusion with diffusion time
$ T_d = O((1/ \mu) \log (1/ \mu ))$ by a variational method
which does not require the existence
of ``transition chains of tori'' provided by KAM theory.
We also prove that our estimate of the diffusion time $T_d $
is optimal as a consequence of a general stability result
proved via classical perturbation theory.
- Files:
02-136.src(
desc ,
02-136.ps )