- 02-192 Sergei Belov and Alexei Rybkin
- On the existence of WKB-type asymptotics for the generalized eigenvectors of discrete string operators
(32K, LaTeX)
Apr 22, 02
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Let $J$ be a Jacobi real symmetric matrix on $l_{2}$ with zero diagonal and non-diagonal entries of the form $\{1+p_{n}\}$. If $p_{n-1}\pm
p_{n}=O(n^{-\alpha })$ with some $\alpha >2/3$, then we prove the existance of bounded solutions of $Ju=\lambda u$ for a.e. $\lambda \in (-2,2)$ with the WKB-type asymptotic behavior.
- Files:
02-192.src(
02-192.keywords ,
Jacobi.tex )