- 02-256 P. Contucci, M. Degli Esposti, C. Giardina', S. Graffi
- Thermodynamical Limit for Correlated Gaussian Random Energy Models
(25K, LaTeX 2e)
Jun 6, 02
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Let $\{E_{\s}(N)\}_{\s\in\Sigma_N}$ be a family of $|\Sigma_N|=2^N$
centered unit Gaussian random variables defined by the covariance
matrix $C_N$ of elements $\displaystyle
c_N(\s,\tau):=\av{E_{\s}(N)E_{\tau}(N)}$, and $H_N(\s) = -
\sqrt{N} E_{\s}(N)$ the corresponding random Hamiltonian. Then the
quenched thermodynamical limit exists if, for every decomposition
$N=N_1+N_2$, and all pairs $(\s,\t)\in \Sigma_N\times \Sigma_N$:
$$
c_N(\s,\tau)\leq \frac{N_1}{N}\;c_{N_1}(\pi_1(\s),\pi_1(\tau))+
\frac{N_2}{N}\;c_{N_2}(\pi_2(\s),\pi_2(\tau))
$$
where $\pi_k(\s), k=1,2$ are the projections of $\s\in\Sigma_N$
into $\Sigma_{N_k}$. The condition is explicitly verified for
the Sherrington-Kirckpatrick, the even $p$-spin, the
Derrida REM and the Derrida-Gardner GREM models.
- Files:
02-256.src(
02-256.keywords ,
crem.tex )