- 02-308 Olaf Post
- Periodic Manifolds with Spectral Gaps
(132K, LaTeX2e with 3 PS-Figures)
Jul 14, 02
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We investigate spectral properties of the Laplace operator on a class of non-compact Riemannian manifolds. For a given number $N$ we construct periodic (i.e. covering) manifolds such that the essential spectrum of the corresponding Laplacian has at least $N$ open gaps. We use two different methods. First, we construct a periodic manifold starting from an infinite number of copies of a compact manifold, connected by small cylinders. In the second construction we begin with a periodic manifold which will be conformally deformed. In both constructions, a decoupling of the different period cells is responsible for the gaps.
- Files:
02-308.src(
02-308.keywords ,
gaps.tex ,
figure-1.eps ,
figure-2.eps ,
figure-3.eps )