- 02-324 Andrej Zlatos
- The Szego Condition for Coulomb Jacobi matrices
(67K, LaTeX 2e)
Jul 25, 02
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. A Jacobi matrix with $a_n\to 1$, $b_n\to 0$ and spectral measure $\nu'(x)dx+d\nu_{sing}(x)$ satisfies the Szeg\H o condition if
\[
\int_{0}^\pi \ln \bigl[ \nu'(2\cos\tht)\bigr]d\tht
\]
is finite. We prove that if
\[
a_n\equiv 1+\frac \al n + O(n^{-1-\eps}) \qquad \qquad b_n\equiv \frac \be n +O(n^{-1-\eps})
\]
with $2\al\ge |\be|$ and $\eps>0$, then the corresponding matrix is Szeg\H o.
- Files:
02-324.src(
02-324.comments ,
02-324.keywords ,
szego.tex )