- 02-406 Oleg Safronov
- The amount of discrete spectrum
of a perturbed periodic Schr\"odinger operator
inside a fixed interval $(\lambda_1,\lambda_2)$
(193K, Postscript)
Sep 30, 02
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. In this paper we extend the results of \cite{Sa} for a more general class
of perturbations.
Let $A$ be a periodic Schr\"odinger operator
and let $V\geq0$ be a decaying potential. We study the number
$ \tilde{N}(\alpha)$
of the
eigenvalues of the operator $A(\alpha)=A-\alpha V$ inside a fixed interval
$(\lambda_1,\lambda_2)$. We obtain an asymptotic formula for
$\tilde{N}(\alpha)$
as $\alpha\to\infty$.
- Files:
02-406.src(
02-406.keywords ,
lara2.ps )