- 03-43 Guillaume van Baalen
- Phase turbulence in the Complex Ginzburg--Landau equation
via Kuramoto--Sivashinsky phase dynamics.
(364K, LaTeX2e with 3 ps figures)
Feb 10, 03
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We study the Complex Ginzburg--Landau initial
value problem
\begin{equation}
\partial_t u=(1+i\alpha)~\partial_x^2 u + u - (1+i\beta)~u~|u|^2~,
u(x,0)=u_0(x)
\end{equation}
for a complex field $u\in{\bf C}$, with $\alpha,\beta\in{\bf R}$. We
consider the Benjamin--Feir linear instability region
$1+\alpha\beta=-\epsilon^2$ with $\epsilon\ll1$ and $\alpha^2<1/2$.
We show that for all
$\epsilon\leq{\cal O}(\sqrt{1-2\alpha^2}~L_0^{-32/37})$, and for
all initial data $u_0$ sufficiently close to $1$ (up to a global
phase factor $\ed^{i~\phi_0},~\phi_0\in{\bf R}$) in the
appropriate space, there exists a unique (spatially) periodic solution
of space period $L_0$.
These solutions are small {\em even} perturbations of the traveling
wave solution,
$u=(1+\alpha^2~s)~\ed^{i~\phi_0-i\beta~t}~\ed^{i\alpha~\eta}$,
and $s,\eta$ have bounded norms in various $\L^p$ and Sobolev spaces.
We prove that $s\approx-\frac{1}{2}~\eta''$ apart from
${\cal O}(\epsilon^2)$ corrections whenever the initial data satisfy
this condition, and that in the linear instability range
$L_0^{-1}\leq\epsilon\leq{\cal O}(L_0^{-32/37})$, the dynamics is
essentially determined by the motion of the phase alone, and so
exhibits `phase turbulence'.
Indeed, we prove that the phase $\eta$ satisfies the
Kuramoto--Sivashinsky equation
\begin{equation}
\partial_t\eta=
-\bigl({\textstyle\frac{1+\alpha^2}{2}}\bigr)~\triangle^2\eta
-\epsilon^2\triangle\eta
-{(1+\alpha^2)}~(\eta')^2
\end{equation}
for times $t_0\leq{\cal O}(\epsilon^{-52/5}~L_0^{-32/5})$,
while the amplitude $1+\alpha^2~s$ is essentially constant.
- Files:
03-43.src(
03-43.keywords ,
caption2.sty ,
cgl.tex ,
gvbarticle.cls ,
mhequ.sty ,
comparison.eps ,
ltwonorms.eps ,
phasediagram.eps ,
cgl.aux.mm ,
cgl.toc.mm )