- 03-454 Tomio Umeda
- Generalized eigenfunctions of relativistic Schr "odinger operators I
(174K, LaTeX 2e)
Oct 6, 03
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Generalized eigenfunctions of the 3-dimensional relativistic Schr "o dinger operator $ sqrt{ Delta} + V(x)$ with $|V(x)| le C langle x rangle^{{- sigma}}$,$ sigma > 1$, are considered.
We construct the generalized eigenfunctions by exploiting results on the limiting absorption principle. We compute explicitly the integral kernel of $( sqrt{- Delta}-z)^{-1}$,
$z in { mathbb C} setminus [0, , + infty)$, which has nothing in common with the integral kernel of $({- Delta}-z)^{-1}$, but the leading term of the integral kernels of the boundary values $( sqrt{- Delta}- lambda mp i0)^{-1}$, $ lambda >0$, turn out to be the same, up to a constant, as the integral kernels of the boundary values $({- Delta}- lambda mp i0)^{-1}$. This fact enables us to show that the asymptotic behavior, as $|x| to + infty$, of the generalized eigenfunction of $ sqrt{ Delta} + V(x)$ is equal to the sum of a plane wave and a spherical wave when $ sigma >3$
- Files:
03-454.src(
03-454.keywords ,
umeda1.tex )