- 05-113 Barry Simon
- Jost Functions and Jost Solutions for Jacobi Matrices, III. Asymptotic Series for Decay and Meromorphicity
(281K, PDF)
Mar 18, 05
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We show that the parameters $a_n, b_n$ of a Jacobi matrix have a complete asymptotic series
\begin{align*}
a_n^2 -1 &= \sum_{k=1}^{K(R)} p_k(n) \mu_k^{-2n} + O(R^{-2n}) \\
b_n &= \sum_{k=1}^{K(R)} p_k(n) \mu_k^{-2n+1} + O(R^{-2n})
\end{align*}
where $1 < |\mu_j| < R$ for $j\leq K(R)$ and all $R$ if and only if the Jost function, $u$, written in terms of $z$ (where $E=z+z^{-1}$) is an entire meromorphic function. We relate the poles of $u$ to the $\mu_j$'s.
- Files:
05-113.src(
05-113.keywords ,
Simon_305.pdf.mm )