- 05-221 D. H. U. Marchetti, V. Sidoravicius, M. E. Vares
- Oriented percolation in one-dimensional beta / |x-y|^2, beta > 1 random-cluster model
(508K, postscript)
Jun 20, 05
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We consider the one-dimensional long-range Fortuin--Kasteleyn random-cluster
model, generated by the edge occupation probabilities
p_{<x,y>} = p if |x-y| = 1, 1 - exp{-beta |x-y|^2} otherwise,
and weighting factor kappa \geq 1. We prove the occurrence of oriented
percolation when beta>1 and kappa \geq 1, provided p is chosen
sufficiently close to 1. We also show that the oriented truncated
connectivity tau ^{prime}(x,y) satisfies
tau ^{prime }(x,y) \leq C |x-y|^{-theta }
with theta = min(2(beta eta -1),2) where eta = eta(p) \nearrow 1
as p \nearrow 1.
- Files:
05-221.src(
05-221.comments ,
05-221.keywords ,
Bmsv10.ps )