- 05-348 Nandor Simanyi
- The Boltzmann-Sinai Ergodic Hypothesis in Full Generality (Without Exceptional Models)
(420K, PDF)
Oct 2, 05
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We consider the system of $N$ ($\ge2$) elastically colliding hard balls of masses $m_1,\dots,m_N$ and radius $r$ on the flat unit torus $\Bbb T^\nu$, $\nu\ge2$. We prove the so called Boltzmann-Sinai Ergodic Hypothesis, i. e. the full hyperbolicity and ergodicity of such systems for every selection $(m_1,\dots,m_N;r)$ of the external geometric parameters, without exceptional values.
- Files:
05-348.src(
05-348.keywords ,
bol-sin.pdf.mm )