- 06-114 L. Bertini, E.N.M. Cirillo, E. Olivieri
- Perturbative analysis of disordered Ising models close to criticality
(261K, pdf)
Apr 12, 06
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We consider a two-dimensional Ising model with random
i.i.d. nearest-neighbor ferromagnetic couplings and no external magnetic
field. We show that, if
the probability of supercritical couplings is small enough, the system
admits a convergent cluster expansion with probability one.
The associated polymers are defined on a sequence of increasing scales;
in particular the convergence of the above expansion implies the infinite
differentiability of the free energy but not its analyticity.
The basic tool in the proof are a general theory of graded cluster expansion and a stochastic domination of the disorder.
- Files:
06-114.src(
06-114.keywords ,
bcocor.pdf.mm )