- 07-183 Yoshimi Saito, Tomio Umeda
- The asymptotic limits of zero modes of massless Dirac operators
(28K, LaTeX 2e)
Jul 20, 07
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Asymptotic behaviors of zero modes of
the massless Dirac operator $H=\alpha\cdot D + Q(x)$ are discussed, where
$\alpha= (\alpha_1, \, \alpha_2, \, \alpha_3)$ is
the triple of $4 \times 4$ Dirac matrices,
$ D=\frac{1}{\, i \,} \nabla_x$, and
$Q(x)=\big( q_{jk} (x) \big)$ is a $4\times 4$ Hermitian matrix-valued function
with
$| q_{jk}(x) | \le C \langle x \rangle^{-\rho} $, $\rho >1$.
We shall show that for every zero mode $f$,
the asymptotic limit of $|x|^2f(x)$
as $|x| \to +\infty$ exists.
The limit is expressed in terms of an integral of $Q(x)f(x)$.
- Files:
07-183.src(
07-183.keywords ,
limits0719.tex )