- 07-69 Noam Berger, Marek Biskup, Christopher E. Hoffman, Gady Kozma
- Anomalous heat-kernel decay for random walk among bounded random conductances
(192K, PDF)
Mar 24, 07
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We consider the nearest-neighbor simple random walk on $\Z^d$, $d\ge2$, driven by a field of bounded random conductances $\omega_{xy}\in[0,1]$. The conductance law is i.i.d. subject to the condition that the probability of $\omega_{xy}>0$ exceeds the threshold for bond percolation on $\Z^d$. For environments in which the origin is connected to infinity by bonds with positive conductances, we study the decay of the $2n$-step return probability $P_\omega^{2n}(0,0)$. We prove that $P_\omega^{2n}(0,0)$ is bounded by a random constant times $n^{-d/2}$ in $d=2,3$, while it is $o(n^{-2})$ in $d\ge5$ and $O(n^{-2}\log n)$ in $d=4$. By producing examples with anomalous heat-kernel decay approaching $1/n^2$ we prove that the $o(n^{-2})$ bound in $d\ge5$ is the best possible. We also construct natural $n$-dependent environments that exhibit the extra $\log n$ factor in $d=4$.
- Files:
07-69.src(
07-69.keywords ,
heat-kernel-final.pdf.mm )