- 08-113 Victor Dinu, Arne Jensen, and Gheorghe Nenciu
- Non-exponential decay laws in perturbation theory of near threshold
eigenvalues
(380K, pdf)
Jun 17, 08
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. We consider a two channel model of the form
$$
H_{\varepsilon}=\begin{bmatrix}
H_{\rm op} & 0\\
0 & E_0
\end{bmatrix}
+\varepsilon\begin{bmatrix}
0 & W_{12}\\
W_{21}&0
\end{bmatrix}
\quad
\text{on}
\quad
\mathcal{H}=\mathcal{H}_{\rm op}\oplus \mathbf{C}.
$$
The operator $H_{\rm op}$
is assumed to have the properties of a Schr\"{o}dinger operator in
odd dimensions, with a threshold at zero. As the energy parameter $E_0$ is
tuned past the threshold, we consider the survival probability
$\lvert{\langle{\Psi_0},{e^{-itH_{\varepsilon}}\Psi_0}\rangle}\rvert^2,
$
where $\Psi_0$ is the eigenfunction corresponding to eigenvalue $E_0$ for
$\varepsilon=0$. We find non-exponential decay laws
for $\varepsilon$ small and $E_0$ close to zero,
provided that the resolvent of $H_{\rm op}$ is not at least Lipschitz continuous at the threshold zero.
- Files:
08-113.src(
08-113.keywords ,
DJN.pdf.mm )